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Abstract: A sparse dictionary reconstruction algorithm based on grid selection is introduced to
solve the grid mismatch when using the sparse recovery space time adaptive processing (SR-STAP)
algorithm. First, the atom most closely related to clutter is selected from the traditional dictionary
through the spectral value dimensionality reduction method. The local mesh is divided around the
selected atoms to create mesh cells, and the mesh cells that are most likely to appear in the real clutter
points are judged according to the local selection iteration criteria. In this way, the mesh spacing
is refined, the local mesh selection is carried out step by step, and the optimal atoms in the local
region are constantly adjusted and selected to narrow the search region until the iteration termination
condition is met. Finally, the space-time plane is divided using a novel meshing technique that
centers around the optimal atom. By removing atoms beyond the maximum range of spatial and
Doppler frequencies, the simplified sparse dictionary can overcome the mesh mismatch problem. The
simulation results demonstrate that the algorithm enhances the sparse recovery accuracy of clutter
space-time spectrum, mitigates the mesh mismatch effect, and boosts STAP performance.

Keywords: space-time adaptive processing; grid mismatch; grid selection; reduced dictionary;
sparse recovery

1. Introduction

Airborne radar enjoys widespread utilization across diverse domains, such as moving
target detection and remote sensing imaging, attributed to its superior maneuverability and
extensive detection capabilities. However, airborne radar faces significant clutter, which
easily interferes with moving targets, thereby leading to a substantial diminution in target
detection capabilities [1]. As an extension technology of array signal processing, space-
time adaptive processing (STAP) technology can significantly enhance the moving target
detection performance in clutter background through two-dimensional joint processing in
space and time domains [2–5]. This technique integrates the space-time degrees of freedom
(DOFs) to build an adaptive angle-Doppler two-dimensional filter dynamically to suppress
the clutter in the range cell to be detected, which can minimize the output clutter power
while maintaining the desired signal response. According to the Reed–Mallett–Brennan
(RMB) rule [6], only when the number of independent and identically distributed (IID)
clutter snapshots is not less than twice the number of system DOFs, the output signal-to-
noise ratio loss of a filter can be guaranteed to be less than 3 dB [7]. However, in practical
applications, especially under non-stationary conditions, the above requirements can be
difficult to meet, and enough IID samples can be challenging to obtain. Hence, addressing
the challenge of enhancing clutter suppression, especially when confronted with limited
training samples, remains a pivotal concern in STAP applications.

To solve the aforementioned problem, recent research has introduced diverse methods,
including the reduced-dimensional STAP method [8,9], reduced-rank STAP method [10,11],
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knowledge-aided STAP method [12], and sparse recovery STAP (SR-STAP) method [13].
For the reduced-dimensional and reduced-rank STAP methods, the required number of
training samples can be reduced to twice the dimensionality reduction or twice the clutter
rank, but in a non-uniform environment, the necessary amount of samples is still large. The
knowledge-aided STAP method uses prior information, such as environmental state, radar
system parameters, and platform motion parameters, to improve the STAP performance.
Thus, the performance of this method greatly depends on the accuracy of prior knowl-
edge. The SR-STAP method introduces the sparsity of clutter distribution in the space-time
domain and uses norm minimization to estimate the clutter covariance matrix (CCM),
which can recover a high-resolution clutter power spectrum using only a limited number of
training samples and achieve an improved clutter suppression performance. According to
the solution method, SR-STAP can be broadly categorized into four categories: the greedy
method, convex optimization method, non-convex optimization method, and Bayesian
method. A typical greedy method is an orthogonal matching pursuit algorithm [14], which
uses the inner product matching criterion for atom recognition and performs Schmidt
orthogonalization on the column vectors of the measurement matrix selected for each
iteration. The least square method is used to obtain the coefficients of a high-dimensional
signal at a non-sparse position. Because the selected column vectors are the most relevant
to the current residual in each iteration, the orthogonal residual can be rapidly reduced.
The convex optimization method [15] can effectively solve the sparse coefficient by con-
structing a sparse relaxation model and using traditional methods, such as the gradient
descent method and iterative shrinkage threshold method. However, it requires setting
the regularization parameters, and its performance depends on this parameter setting.
Analogous to convex optimization methods, non-convex optimization methods employ
approximations to reconstruct the sparse recovery problem and devise a suite of algorithms,
such as the focal underdetermined system solver (FOCUSS) algorithm [16], whose space-
time power spectrum resolution can be enhanced without loss of DOFs. The Bayesian
methods transform the sparse recovery problem into a maximum a posteriori estimation
problem and uses its mean to estimate the sparse coefficient. The sparse Bayesian learning
(SBL) method is one of the representative Bayesian methods [17]. The SBL method assumes
that each element in the sparse coefficient vector obeys a zero-mean Gaussian distribution
with independent parameters that are called hyperparameters. The maximum likelihood
estimation method is used to learn the hyperparameters’ values from the observation vector
to obtain a sparser solution compared to the other sparse recovery algorithms. Although
the SR-STAP method can significantly reduce the requirement for the sample number to
an acceptable level, in the CCM estimation, the discrete space-time grid can cause the
grid mismatch problem, which can severely limit the application of the SR-STAP method
in engineering.

In recent years, several algorithms have been suggested as solutions to address the
grid mismatch issue in the SR-STAP methods [18–20]. A meshless method, which uses
the low-rank matrix recovery theory and the atomic norm to recover clutter directly in a
continuous grid, avoiding the grid mismatch problem, was proposed in [21]. A self-tuning
off-grid sparse Bayesian learning STAP algorithm based on a weighted least squares update
dictionary matrix, whose dictionary is updated iteratively by samples and which can
reduce the influence of the grid mismatch, was proposed in [22]. A STAP algorithm with an
adaptive Laplace prior was introduced in [23]; this algorithm uses a Bayesian model based
on Laplace prior, and constructs a dimensionality reduction dictionary. In this method, the
estimation accuracy of the CCM is improved, and the amount of calculation is reduced. In
addition, a STAP algorithm for meshless sparse Bayesian learning, which uses the block-
Toeplitz matrix to check and parameterize the SBL cost function, was developed. The
proposed non-convex objective function was transformed by an iterative method, which
alleviated the influence of the mesh mismatch problem [24]. A dictionary construction
method, which represents an innovative method in space-time dictionary construction and
differs from the traditional grid division method, was developed in [25]; however, this
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method has poor clutter suppression performance. An algorithm for finding the matching
atoms using the subspace projection method and local grid segmentation was proposed
in [26]; while its computational complexity is relatively low, its robustness decreases after
multiple iterations. Moreover, the clutter power spectrum shows a serious broadening
phenomenon, and the sparse recovery accuracy needs to be further improved.

Aiming to solve the shortcomings of the existing methods, this paper proposes a
reduced sparse dictionary reconstruction algorithm based on the grid selection. The
proposed algorithm first selects atoms with larger power spectrum values and then divides
the surrounding space-time plane around the selected atoms and selects the grid layer by
layer, constantly adjusting the location of the optimal atom until the set error allowable
conditions are met. Finally, a locally reduced sparse dictionary is constructed based on the
selected center. The results of simulation experiments show that the proposed algorithm
can effectively overcome the problem of grid mismatch, achieve high-precision clutter
power spectrum estimation, and significantly improve clutter suppression performance.

The subsequent sections of this paper are arranged in the following manner: Section 2
describes the STAP signal model of airborne radar. Section 3 explains the SR-STAP prin-
ciple and the grid mismatch problem. Section 4 details the suggested sparse dictionary
reconstruction algorithm that is founded upon grid selection. Section 5 carries on the
experimental analysis of the algorithm, and Section 6 summarizes the full text.

2. Signal Model

Think of an airborne side-looking uniform linear array radar consisting of N array
elements, where the array element spacing d is half of the operational wavelength of the
radar. The carrier platform’s altitude is denoted as H, the pulse repetition frequency is given
as fr, and the number of pulses within a coherent processing interval (CPI) is designated as
M. The geometric model of this airborne radar is shown in Figure 1, where Va is the speed
of the carrier platform moving along the x-axis direction, and α and θ are the pitch angles
of the ground reflection point and azimuth, respectively.
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Ignoring the impact of range ambiguity, clutter-plus-noise space-time snapshot data
obtained from a range cell can be expressed as follows:

Xc =
Nc

∑
i=1

δiV( fd,i, fs,i) + N, (1)
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where Nc is the number of clutter scattering blocks evenly divided along a range cell;
N∈CNM×1 is the thermal noise; δi is the echo complex amplitude corresponding to the
ith clutter scattering block; and V(fd,i,fs,i) is the space-time steering vector that is defined
as follows:

V( fd,i, fs,i) = Vt( fd,i)⊗ Vs( fs,i), (2)

where
Vt( fd,i) =

[
1, ej2π fd,i , · · · , ej2π(M−1) fd,i

]T
, (3)

Vs( fs,i) =
[
1, ej2π fs,i , · · · , ej2π(N−1) fs,i

]T
, (4)

where ⊗ denotes the Kronecker product operation; [·]T is the transpose operation; V t(fd,i)
and Vs(fs,i) are the time steering vector and the space steering vector, respectively; fd,i and
fs,i are the normalized Doppler frequency and spatial frequency of the ith clutter reflection
point, respectively, which can be expressed as follows:

fd,i =
2Va

λ fr
cos αi cos θi, (5)

fs,i =
d
λ

cos αi cos θi. (6)

where, λ is the working wavelength of the radar.
Assuming that the snapshot data of each range cell are independent of each other, the

CCM can be expressed as follows [27]:

Rc = E
[
XcXc

H
]
, (7)

where E[·] denotes the mathematical expectation operation, and [·]H is the conjugate
transpose operation.

Based on the linearly constrained minimum variance (LCMV) criterion, the optimal
STAP weight vector can be represented in the following manner [28]:

wOPT = γR−1
c Vtarget, (8)

where V target is the space-time steering vector of a target, and γ = (V target
HRc

−1V target)−1 is
used to ensure that the filtering weight vector has a unit response to the target space-time
steering vector.

Finally, the snapshot data from the detected range cell are filtered, which yields

y = wOPT
HXc, (9)

where Xc represents the snapshot data corresponding to the range cell under detection.

3. Sparse Recovery Principle and Grid Mismatch Problem
3.1. Sparse Recovery Principle

According to the existing research results, there is a coupling relationship between
the spatial frequency and the Doppler frequency of clutter [29], so the clutter spectrum is
sparsely distributed on the angle-Doppler plane. Considering the sparsity of the clutter
distribution, the sparse recovery technique, namely the SR-STAP, can be used for clutter
signal processing. First, the space-time two-dimensional plane is uniformly discretized into
Gd × Gs (Gd = µdN, Gs = µsM) quantization units (µd and µs are the grid resolution factors,
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and typically µd > 1 and µs > 1). Therefore, the clutter snapshot data in Equation (1) can be
re-expressed as follows:

Xc =
Gd

∑
m=1

Gs

∑
n=1

δm,nV( fd,i, fs,i) + N = Φδ + N, (10)

where Φ is the space-time steering vector dictionary matrix with a dimension of NM × GdGs,
δ is the sparse coefficient vector to be solved, and they are, respectively, expressed as follows:

Φ =
[
V( fd,1, fs,1), · · · , V( fd,1, fs,Gs), · · · , V( fd,Gd

, fs,1), · · · , V( fd,Gd
, fs,Gs)

]
∈ CNM×GdGs (11)

δ = [δ1, δ2, · · · , δGdGs ]
T ∈ CGdGs×1. (12)

Next, Equation (7) can be re-expressed as follows:

Rc = E
[
XcXc

H
]
= ΦPΦH + σn

2INM ∈ CNM×NM, (13)

where σn
2 is the noise power; INM is the unit matrix with a dimension of NM × NM;

P = diag(p) ∈ CGdGs×GsGd is a diagonal matrix, whose nonzero elements on the diagonal;
p = [p1,1, . . . , p1,Gs , . . . , pGd ,1, . . . , pGd ,Gs ]

T ∈ CGdGs×1 represent the power of the clutter at
different angles and Doppler frequencies, and pm,n= E[|δm,n|2], m = 1, 2, . . ., Gd, and n = 1,
2, . . ., Gs.

The key task in the SR-STAP method is the estimation of the clutter space-time power
spectrum p. The single measurement vector (SMV) method and the multiple measurement
vector (MMV) method can be used to solve the space-time power spectrum [30]. The SMV
method recovers δ from data on the range cell to be detected and calculates the space-time
power spectrum p, which can be expressed as follows:

argmin∥δ∥0
δ

s.t. ∥Xc − Φδ∥2 ≤ η, (14)

where ∥·∥0 and ∥·∥2 represent the l0 and l2 norms of a vector, respectively, and η is the
noise-allowed error.

Equation (14) represents a nondeterministic polynomial-time hard problem, and it can
be transformed into an equivalent l1 norm problem to obtain a sparse solution as follows:

min
δ

∥δ∥1 s.t. ∥Xc − Φδ∥2
2 ≤ η, (15)

where ∥·∥1 denotes the l1 norm.
After obtaining the sparse solution, the clutter space-time spectrum can be derived

as follows:
p = δ ⊙ δ∗, (16)

where ⊙ represents the Hadamard product, and [·]* is a complex conjugate operation.
Because a single sample contains less clutter information, the sparse recovery effect

and the clutter suppression ability of the clutter space-time spectrum are poor when the
signal-to-noise ratio is low or the target motion speed is slow. Generally, the MMV method
can recover the clutter space-time spectrum p from multiple training samples and estimate
the CCM. Assuming that the training samples satisfy the IID condition, the implementation
of the MMV method can be conducted as follows:

argmin
p

∥p∥0 s.t.
∥∥Rc − R̂0

∥∥
F

2 ≤ η, (17)
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where ∥·∥F represents the Frobenius norm of a matrix, and R̂0 = 1
L

L
∑
i

xixi
H is the estimated

CCM obtained by the traditional sample matrix inversion (SMI) [31].
The MMV method can make full use of a massive clutter sample of data, perform more

robust clutter space-time spectrum recovery, and achieve clutter suppression capabilities
than the SMV method.

3.2. Grid Mismatch Problem

The SR-STAP algorithm requires discretizing the continuous space-time plane. The
discrete intervals of the spatial and Doppler frequencies are denoted by ∆fs and ∆fd, re-
spectively, and the space-time plane is divided into several grids. The SR-STAP algorithm
considers that the clutter is distributed on several grids on the discretized space-time plane.
According to Equation (15), the clutter amplitude at the relevant grid points can be ob-
tained, and then the sparse reconstruction of the clutter can be realized. Because real clutter
is continuously distributed, and due to the influence of the noise and system parameter
error on the received signal of radar, there will be a certain deviation between the real
clutter point and the discrete grid point, which is called the grid mismatch. Therefore, the
estimation of the sparse representation coefficient of clutter in the case of a fixed grid can
introduce an obvious calculation error, which can severely degrade the STAP performance.

In the side-looking case, when the ratio of Gd and Gs is an integer multiple of the clutter
ridge slope, the clutter ridge is distributed at uniform discrete grid points, and there is no
grid mismatch problem; otherwise, the grid mismatch problem will appear. Figure 2a,b
show the clutter distribution diagrams without and with grid mismatch, respectively. The
problem of grid mismatch can lead to a decrease in the CCM estimation accuracy [32], which
can further lead to a decrease in the STAP clutter suppression performance. Therefore, it is
necessary to propose a new method to solve this problem.
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Figure 2. Discrete space-time plane clutter layouts. (a) On-grid clutter distribution map; (b) off-grid
clutter distribution map.

4. Discussion Reduced Sparse Dictionary Reconstruction Algorithm Based on
Grid Selection

Based on existing research results, in the SR-STAP method, the clutter covariance
matrix can be estimated using only a limited number of snapshots. However, in a uniform
discretization of a space-time plane, the grid mismatch problem can reduce the accuracy of
the CCM estimation. To solve this problem, the study proposes a reduced sparse dictionary
reconstruction algorithm based on the grid selection named the GS-SR-STAP algorithm.
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4.1. Global Dictionary Construction

Assume that the space-time plane is uniformly discretized into Gd × Gs grid points, as
shown in Figure 3. The Doppler frequency axis is evenly divided into Gd points with an
interval of ∆fd = 1/Gd, forming the vector [fs,1, fs,2, ···, fd,Gd]. The spatial frequency axis is
evenly divided into Gs points with an interval of ∆fs = 1/Gs, forming the vector [fs,1, fs,2, ···,
fs,Gs]. Each grid point corresponds to a set of the Doppler and spatial frequencies, which are
substituted into Equations (2)–(4) to obtain the space-time steering vector and construct the
original dictionary Φ. Then, using the principle that the power spectrum value of a clutter
point is large, atoms in the original dictionary Φ are iteratively calculated as follows:

Pcapon =
1∣∣∣VH( fd,i, fs,i)R̂
−1V( fd,i, fs,i)

∣∣∣ , (18)

where R̂ is the estimation of the initial clutter covariance matrix.
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The calculation results of Equation (18) are sorted and numbered in descending order
according to the numerical value. The first K numbers are used to select the associated
space-time steering vectors for constructing the global dictionary ΨV, first K numbers are
selected to construct the global dictionary ΨV, and the Doppler and spatial frequencies
corresponding to the atoms in this dictionary are stored in a set U0 in turn. In essence,
this process is to preliminarily select the space-time steering vector most related to the real
clutter which lays a foundation for the subsequent sparse dictionary construction.

4.2. Local Reduction Dictionary Construction

As mentioned above, when the global dictionary is constructed using Equation (18),
only selecting appropriate atoms from the original dictionary cannot solve the problem of
grid mismatch. Therefore, to obtain accurate positions of clutter points on the discretized
space-time plane, the proposed GS-SR-STAP algorithm performs the local search on the
area where the preliminary selected clutter points are located. A local reduction dictionary
is constructed by dividing the grid along the parallel and vertical directions of the clutter
ridge, thus obtaining accurate steering vectors of clutter points and estimating the clutter
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power spectrum more accurately. Based on this, the CCM is recalculated to enhance the
performance of clutter suppression, particularly in scenarios where grid mismatch occurs.

The specific steps of the GS-SR-STAP algorithm are as follows.
STEP 1: Local grid selection
First grid selection: The ith atom in a matrix U0 is selected and used as a center point.

The spatial frequency interval ∆fs/2 (∆fs = 1/N) and the Doppler frequency interval ∆fd/2
(∆fd = 1/M) are used to divide the angle-Doppler plane to form a 2 × 2 grid, as shown in
Figure 4. A total of nine grid points correspond to nine new atoms. Each atom can obtain
its steering vector according to its corresponding Doppler and spatial frequencies. Then,
the local optimization criterion [32] is used to select atoms as follows:

uk
∗ = arg max

u/∈νk−1

∣∣∣∣Vu
HTn

(k−1)
∧
RSCMTn

(k−1)Vu

∣∣∣∣∣∣∣Vu
HTn

(k−1)Vu

∣∣∣ , (19)

where v is the index set for storing the nine atomic numbers; Tn is the orthogonal projection
matrix on the noise subspace; Vu is the space-time steering vector corresponding to a clutter

atom u;
∧
RSCM = 1

L

L
∑

l=0
XlXH

l represents the CCM estimated by L training snapshots; and

Tn
k−1

∧
RSCMTn

k−1 is the residual of
∧
RSCM in the kth iteration.
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The molecule in Equation (19) represents the response of Vu to the residual, and the
denominator can be regarded as the normalization of the molecule. This means that if
the calculation result of Equation (19) is relatively large, the current atom must be in the
clutter subspace. Thus, atoms in the initialization dictionary can be iterated according
to Equation (19), and the results can be arranged in descending order and numbered in
turn. Finally, the atoms corresponding to the first three numbers are selected. The number
1 atom can be used to lock the approximate position of the next layer of local division. The
number 2 and number 3 atoms can assist the number 1 atom to determine the range of the
next layer of local division, so that the adapted clutter atom can be quickly found.

The 2 × 2 grid is divided into grid cells according to the quadrant division rule,
and the four quadrants correspond to four grid cells respectively. As shown in Figure 4,
1⃝ represents the first grid cell, 2⃝ represents the second grid cell, 3⃝ represents the third
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grid cell, 4⃝ represents the fourth grid cell, and then determines the grid cell where the
number 1 atom, the number 2 atom, and the number 3 atom are located.

First, the region where number 1 atom is located is determined; it can fall at any of
the nine grid points. If it falls at the junction of the two grid units, the auxiliary selection
of atoms numbered 2 and 3 is required. Only when the three atoms fall in a grid cell, the
region of the next local division can be determined. This situation can be divided into four
cases, as shown in Figure 5(1)–(4). In Figure 5, the red dots represent the number 1 atom,
the green dots represent the number 2 atom, and the pink dots represent the number 3 atom.
The grid area surrounded by the red rectangular frame is the area of the next local division.
where the red dot represents the number 1 atom, the green dot represents the number 2
atom, and the pink dot represents the number 3 atom. The grid area circled by the red
rectangle box is the area divided by the next expansion locale. The distance indicated by
the arrow is the length of the frequency interval.
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However, during the implementation process of the GS-SR-STAP algorithm, the atoms
numbered 1–3 may not necessarily be in the same grid cell. Therefore, it is necessary to
consider several cases, as shown in Figure 5(5)–(9). Atoms numbered 2 and 3 atoms may
be located in two different grid cells and may form a new grid cell with number 1 atom.

Second grid selection: The grid element determined in the previous step is re-divided
into the current area with a spatial frequency interval of ∆fs/4 and a Doppler frequency
interval of ∆fd/4 to form a 2 × 2 grid, as shown in Figure 6.
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Equation (19) is used to calculate the power spectrum values of the atoms at each
grid point, and the top three atoms with the largest power spectrum values are selected in
descending order to obtain the region for the next expansion of the local division.

Third grid selection: Continue dividing the grid cells determined in the previous step
into the current area with a spatial frequency interval of ∆fs/8 and a Doppler frequency
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interval of ∆fd/8 to form a 2 × 2 grid, as shown in Figure 7. The power spectrum values
of atoms at each grid point are calculated using Equation (19), and three atoms with the
largest power spectrum values are selected in descending order.
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By analogy, the jth local area grid selection is performed in a step-by-step manner,
and atom ψi

j with the largest response value is obtained until the following condition
is satisfied: ∥∥∥ψi

(j) − ψi
(j−1)

∥∥∥
1
< σ, (20)

where σ is the allowable error threshold.
The number of the optimal atom is extracted, and the corresponding Doppler fre-

quency fd_opt and spatial frequency fs_opt are found in the Doppler frequency set and spatial
frequency set, respectively, by using this number.
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STEP 2: Local dictionary construction
Using the Doppler and spatial frequencies determined in STEP 1 as a center, the grid is

divided along the parallel and vertical directions of the clutter ridge, as shown in Figure 8.
The number of grids in the parallel direction of the clutter ridge is L1 and that in the vertical
direction of the clutter ridge is L2. The basis vector of the clutter ridge is p, and the vertical
direction is q. Then, by combining different multiples of p and q, the coordinate values of
atoms in the sparse dictionary can be obtained.
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Consider the values of length t1 and width t2 of a single mesh, which are also called
the modulus of p and q, respectively, and they are expressed as follows:

p = t1

(
1√

1 + β2

)
· (β, 1), (21)

q = t2

(
1√

1 + β2

)
· (1,−β). (22)

The folding coefficient β can be calculated using the radar system parameters as follows:

β =
2Va

d fr
. (23)

Next, by assuming that the total length of the clutter ridge is tmax, it holds that

tmax =

√
(2d/λ)2 + [4V/(λ fr)]

2. (24)

Then, the values of t1 and t2 can, respectively, be obtained as follows:

t1 = tmax/L1
t2 = tmax/L2

. (25)
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Combining different values of p and q generates multiple vectors, and these can
subsequently be represented as follows:

m · p + n · q, (26)

where m = 0, ±1, . . ., ±L1/2, n = 0, ±1, . . ., ±L2/2. Then, fd and fs corresponding to the
vector (m · p + n · q) are expressed as follows:

fd = (mt1β + nt2)/ 1√
1+β2

fs = (mt1 − nt2β)/ 1√
1+β2

. (27)

Therefore, the space-time two-dimensional coordinates of atoms in the sparse dictio-
nary can be obtained as follows:

( fd, fs) =
1√

1 + β2
(mt1β + nt2, mt1 − nt2β). (28)

When m and n are taken over all values, the value range of the spatial and Doppler
frequencies of the sparse dictionary used in this study will certainly exceed the frequency
value range of the original dictionary, and the excessive range of the frequency value can
reduce the performance of the sparse recovery algorithm. Therefore, it is necessary to
reduce the dimension of the sparse dictionary, remove a part of the spatial and Doppler
frequencies, and take only the frequency within the spatial and Doppler frequencies’ value
range that can cover the entire clutter ridge.

The spatial frequency range of the sparse dictionary should satisfy the two
following conditions:  fs_min = fs_opt −

√
2

2 t1

(
L1
2

)
fs_max = fs_opt +

√
2

2 t1

(
L1
2

) . (29)

Similarly, the Doppler frequency range of the sparse dictionary should satisfy the
following conditions:  fd_min = fd_opt −

√
2

2 t2

(
L2
2

)
fd_max = fd_opt +

√
2

2 t2

(
L2
2

) . (30)

The atoms of the space-time two-dimensional coordinates calculated using Equation (27)
satisfying Equations (28) and (29) are used to form a new dictionary, which can be expressed
as follows: {

fs_min ≤ fs ≤ fs_max
fd_min ≤ fd ≤ fd_max

. (31)

By reducing the dictionary dimension, the spatial and Doppler frequencies’ range in
the dictionary cannot exceed those of the original dictionary to enhance the precision of
sparse recovery.

The pseudo-code of the GS-SR-STAP algorithm is shown in Algorithm 1.
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Algorithm 1. GS-SR-STAP algorithm.

Input: ΨV, U0, R̂

Initialization: ΨV = { }, v = { }, U0 = { }, Tn
0 =I, k = 1

The first step: Global dictionary construction
Use Pcapon = 1∣∣∣VH( fd,i , fs,i)R̂

−1V( fd,i , fs,i)
∣∣∣ to construct a global dictionary

The second step: Local grid selection
The first grid selection:

Adopting the local optimization criterion

uk
∗ = arg max

u/∈νk−1

∣∣∣∣Vu
HTn

(k−1)
∧
RSCMTn

(k−1)Vu

∣∣∣∣
|Vu

HTn
(k−1)Vu| ,

three atoms with the largest power spectrum values in the current region are
selected to narrow the local search range;

The second grid selection:
Using the above formula, the three atoms with larger power spectral values in the
current region are further screened out.

The jth local partition:
Repeat the previous step until atom ψi

j with the largest power spectrum value

satisfies the condition of
∥∥∥ψi

(j) − ψi
(j−1)

∥∥∥
1
< σ, and determine the Doppler

frequency f d_opt and the spatial frequency f s_opt corresponding to atom ψi
j.

The third step: Local reduction dictionary construction
The space-time plane is divided by a method of dividing the grid along the clutter
ridge direction and the vertical direction of the clutter ridge.
β = 2Va

d fr

( fd, fs) =
1√

1+β2
(mt1β + nt2, mt1 − nt2β),

m = 0,+1, . . . ,+L1/2, n = 0,+1, . . . ,+L2/2

fd_min = fd_opt −
√

2
2 t2

(
L2
2

)
fd_max = fd_opt +

√
2

2 t2

(
L2
2

)
fs_min = fs_opt −

√
2

2 t1

(
L1
2

)
fs_max = fs_opt +

√
2

2 t1

(
L1
2

)
fd_min ≤ fd ≤ fd_max
fs_min ≤ fs ≤ fs_max
The spatial and Doppler frequencies of the atom are determined, and a reduction.
dictionary is constructed.

5. Simulation Results

The performance of the proposed GS-SR-STAP algorithm was analyzed by simulation
experiments and compared with the MDC-SR-STAP [28] and LMSSE-STAP [29] algorithms.
All experimental results denoted the average values of 100 independent Monte Carlo
simulations. The simulation parameters of the radar system with a side-looking uniform
linear array are shown in Table 1.

Table 1. Simulation parameters of the radar system with a side-looking uniform linear array.

Parameter Value

Element number 10
Pulse number 10

Element spacing (m) 0.15
Operating wavelength (m) 0.3

Airplane velocity (m/s) 240
Aircraft height (m) 3000

Pulse repetition frequency (Hz) 4000
µd 4
µs 4

Training snapshot number 20
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5.1. Space-Time Power Spectrum Analysis of Clutter

The first experiment analyzed the clutter power spectrum of the MDC-SR-STAP,
LMSSE-STAP, and GS-SR-STAP algorithms, and the obtained results are shown in Figure 9.
In Figure 9a,b, it can be seen that the clutter spectrum estimated by the MDC-SR-STAP
and LMSSE-STAP algorithms had an obvious broadening phenomenon, and the clutter
energy was dispersed. Thus, these two algorithms were significantly affected by the grid
mismatch, which led to a decline in the clutter suppression performance. The clutter
spectrum calculated by the GS-SR-STAP algorithm is shown in Figure 9c, where it can be
seen that it showed no broadening phenomenon, and the clutter energy was concentrated
on the clutter ridge. Therefore, the proposed GS-SR-STAP algorithm achieved better clutter
spectrum estimation accuracy than the MDC-SR-STAP and LMSSE-STAP algorithms, which
could be beneficial to the improvement of clutter suppression performance.
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5.2. Signal-to-Clutter-Plus-Noise-Ratio Loss Analysis

The second experiment compared the signal-to-clutter-plus-noise-ratio loss (SCNRLoss)
of the MDC-SR-STAP, LMSSE-STAP, and GS-SR-STAP algorithms to evaluate their clutter
suppression performances. The SCNRLoss was calculated as follows:

SCNRLoss =
σn

2
∣∣wOPT

HVtarget
∣∣2

NKwOPT
HR̂xwOPT

(32)

where σn
2 is the noise power.

The experimental results are shown in Figure 10, where it can be observed that
the notches of the SCNRLoss curves of the MDC-SR-STAP and LMSSE-STAP algorithms
were wide, while that of the proposed GS-SR-STAP algorithm was significantly narrower
compared to the other two. Also, for the proposed algorithm, a deeper depression was
formed in the main clutter region, which was approximately 7 dB and 30 dB deeper than
those of the MDC-SR-STAP and LMSSE-STAP algorithms, respectively. Moreover, the
SCNRLoss in the sidelobe clutter region of the proposed algorithm was very small. Thus,
compared to the other two algorithms, the proposed GS-SR-STAP algorithm had better
clutter-suppressing and detection performances for low-speed moving targets.
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5.3. Output Power Analysis

The third experiment analyzed the moving target detection performance of the three
algorithms, where each algorithm filtered the snapshot data from 150 range cells. The ob-
tained output power results are shown in Figure 11, where it can be seen that all algorithms
could detect the moving target at the 101st range cell. However, compared to the other two
algorithms, the residual clutter output power of the LMSSE-STAP algorithm was signif-
icantly higher, the output signal-to-noise ratio was lower, and the filtering performance
was relatively weak. The residual clutter output power of the GS-SR-STAP algorithm was
approximately 15 dB and 25 dB lower than those of the MDC-SR-STAP and LMSSE-STAP
algorithms, respectively; thus, the moving target detection performance of the GS-SR-STAP
algorithm was the best among all algorithms.
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5.4. Computational Complexity Analysis

The fifth experiment analyzes and compares the average computational complexity
of a single sample of the MDC-SR-STAP algorithm, the LMSSE-STAP algorithm, and the
GS-SR-STAP algorithm proposed in this paper, as shown in Table 2, where Ẑ = µdµs,
Z = NM.

Table 2. Comparison of average complexity of single sample.

Algorithm Name Complex Multiplication Number

MDC-SR-STAP (12Ẑ + 9) Z3 + (8Ẑ + 38) Z2 + 18Z
LMSSE-STAP 3ẐZ3 + (2Ẑ + 36) Z2 + 18Z
GS-SR-STAP (12Ẑ + 9) Z3 + (8Ẑ + 16Z2) + 6Z

The MDC-SR-STAP algorithm has the most complex multiplications, and the GS-SR-
STAP algorithm has 22Z2 + 12Z fewer complex multiplications than the MDC-SR-STAP
algorithm. Although the computational complexity of the two algorithms is higher than
that of the LMSSE-STAP algorithm, in comparison, when the computational complexity
of the GS-SR-STAP algorithm is less than that of the MDC-SR-STAP algorithm, the GS-SR-
STAP algorithm can obtain higher clutter space-time spectrum sparse recovery accuracy
and better clutter suppression performance than the MDC-SR-STAP algorithm and the
LMSSE-STAP algorithm. Therefore, the algorithm proposed in this paper is more suitable
for the requirements of engineering applications.

6. Conclusions

In this paper, a reduced sparse dictionary reconstruction algorithm based on the grid
selection is proposed to solve the problem of grid mismatch. First, the atoms most related
to the clutter subspace are selected from the traditional sparse recovery dictionary using
the spectral value dimension reduction method, and a local search is performed on the
region where the initially selected clutter atoms are positioned. By comparing the power
spectrum values of the atoms at the vertices of the local grid cell, an approximate position
of the optimal atom in the current region is obtained, and the search area is determined
by the power spectrum values of the two atoms that are second only to the optimal atom.
Notably, the power spectrum values considered are only those of the optimal atom and the
two adjacent atoms when arranged according to the power spectrum. The grid spacing
is gradually refined, and the search area is narrowed until the full iteration termination
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condition is satisfied. The optimal atom’s location is determined, and a division method of
discrete grids along the parallel and vertical directions of the clutter ridge is employed to
construct a local reduction dictionary. In this way, a more accurate clutter power spectrum
is obtained to calculate the CCMs and improve the clutter suppression performance. The
proposed algorithm is verified by simulation experiments and compared with MDC-SR-
STAP and LMSSE-STAP algorithms. The results show that the proposed algorithm can find
the atoms that match the real clutter points more accurately than the other two algorithms.
Compared with the traditional dictionary, the dictionary constructed in this study reduces
the influence of the dictionary mismatch effect, improving clutter suppression performance
and algorithm practicability. This leads to better STAP performance in the case of side-
looking. However, in non-side-looking scenarios, the clutter ridge takes the form of a curve
in the space-time plane, leading to a serious grid misalignment phenomenon. Therefore,
the main focus of the next step is to explore a dictionary correction algorithm for non-side-
looking cases.
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