
Citation: Zhang, J.; Shi, Y. A

Personalized Federated Learning

Method Based on Clustering and

Knowledge Distillation. Electronics

2024, 13, 857. https://doi.org/

10.3390/electronics13050857

Academic Editor: Young-Koo Lee

Received: 15 January 2024

Revised: 3 February 2024

Accepted: 7 February 2024

Published: 23 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Personalized Federated Learning Method Based on Clustering
and Knowledge Distillation
Jianfei Zhang * and Yongqiang Shi

School of Computer Science and Technology, Changchun University of Science and Technology,
Changchun 130031, China; syq@mails.cust.edu.cn
* Correspondence: jfzhang@cust.edu.cn

Abstract: Federated learning (FL) is a distributed machine learning paradigm under privacy preser-
vation. However, data heterogeneity among clients leads to the shared global model obtained after
training, which cannot fit the distribution of each client’s dataset, and the performance of the model
degrades. To address this problem, we proposed a personalized federated learning method based on
clustering and knowledge distillation, called pFedCK. In this algorithm, each client has an interactive
model that participates in global training and a personalized model that is only trained locally. Both of
the models perform knowledge distillation with each other through the feature representation of the
middle layer and the soft prediction of the model. In addition, in order to make an interaction model
only obtaining the model information from the client, which has similar data distribution and avoids
the interference of other heterogeneous information, the server will cluster the clients according to
the similarity of the amount of parameter variation uploaded by different interaction models during
every training round. By clustering clients, interaction models with similar data distributions can
cooperate with each other to better fit the local dataset distribution. Thereby, the performance of
personalized model can be improved by obtaining more valuable information indirectly. Finally, we
conduct simulation experiments on three benchmark datasets under different data heterogeneity
scenarios. Compared to the single model algorithms, the accuracy of pFedCK improved by an average
of 23.4% and 23.8% over FedAvg and FedProx, respectively; compared to typical personalization
algorithms, the accuracy of pFedCK improved by an average of 0.8% and 1.3%, and a maximum of
1.0% and 2.9% over FedDistill and FML.

Keywords: federated learning; knowledge distillation; clustering; data heterogeneity

1. Introduction

Nowadays, various web services such as smart cities, smart healthcare, etc., are widely
used and benefit from artificial intelligence (AI) and big data. However, their training
models require large-scale data support, and considering the risk of data privacy leakage, it
is not possible to collect data distributed in multiple data sources together to train powerful
models. Federated Learning (FL) [1], as an emerging distributed learning paradigm under
privacy constraints, can reduce the risk of data privacy leakage by disclosing only the client
model parameter information instead of the raw data during multi-party collaborative
training. The traditional federated learning algorithm is that the server randomly selects
clients to participate during each round of training and sends down global model param-
eters. After receiving the model, the client iteratively trains on the local dataset until the
model converges, and then uploads the local model parameters to the server. Finally, the
server weights and aggregates the local model parameters according to the proportion of
the client’s local data quantity to obtain the global model for the next round. This approach
aims to train a shared global model so that this model can perform well on the data distri-
bution of all clients. However, in reality, the data of each client is non-independently and
identically distributed (Non-IID), which makes the local models obtained from training
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vary widely. In this case, it is difficult to obtain a global model adapted to each client, and
the phenomenon of model bias occurs, leading to model performance degradation and
difficulty in convergence. This is due to the fact that each local model is updated with
local data only, and local updates for individual devices have significant differences in the
parameter space. Sahu, Anit Kumar et al. [2] introduced a loss term to limit the local model
update and reduce the discrepancy between local and global model. Gao, Liang et al. [3]
argued that restricting the optimal direction of the local model hinders its fitting to the
distribution of the local dataset, and that using the local drift variable to learn the parameter
gaps between the local model and the global model would give a better result. While these
methods can mitigate the data heterogeneity in federated learning to a degree, a single
global model is still unable to fit the data distribution of all clients simultaneously.

Therefore, many methods take a personalized federated learning approach to address
the challenges caused by data heterogeneity in federated learning through designing
personalized models for each client from various perspectives. Collins, Liam et al. [4] divide
the local model into a base layer and a classification layer, where the base layer participates
in global sharing and the classification layer is updated only locally. Deng, Yuyang et al. [5]
mix local and global models and use their correlation to learn a personalized model for
each client with adaptive mixing weights. Tan, Yue et al. [6] chose to transfer abstract class
prototypes between the client and the server instead of model parameters, and regulate
the training of local models with global class prototypes. In Zhang, Michael et al. [7], in
order for each client to acquire only the knowledge that is relevant to it, other client models
that perform well on the local target are chosen to be downloaded from the server. They
are filtered based on their loss in the local validation set, and personalized aggregation is
performed locally.

Instead, we focus on personalized federal learning using knowledge distillation.
Knowledge distillation requires the migration of knowledge from the teacher model to
the student model under the same dataset. However, in federated learning, the server
cannot access the data information of each client. Therefore, most current approaches to
combine knowledge distillation with federated learning introduce a proxy dataset and let
the local model be pre-trained on the proxy dataset. Soft predictions are generated and
uploaded to the server, which is weighted and aggregated and then sent down to clients.
The client uses the received global soft predictions to guide the local model to train on
the private data. In this way, knowledge from other client models is migrated to the local
model. However, proxy datasets are usually difficult to collect, and the distillation effect
of the model depends highly on how similar the proxy dataset is to the private dataset. A
higher similarity means that the proxy dataset is more consistent with the data distribution
of the global view, and the distillation effect is better.

Inspired by Shen, Tao et al. [8], we choose to maintain both an interaction model
and a personalized model on the client, and only the interaction model is responsible for
acquiring external information. And we adopt two ways to make the interactive model and
the personalized model distill each other on the private dataset, based on the middle layer
feature representation and the soft prediction of the model. This breaks the limitations of
the proxy dataset, and allows knowledge from other client models to be migrated to the
personalized model via the interaction model, which can also be continuously updated
during distillation based on feedback from the personalized model. In addition, to reduce
the impact of client data heterogeneity on the distillation effect, we utilize the clustering
mechanism to cluster clients, so that the interaction models of clients with similar data
distributions cooperate with each other to target knowledge acquisition and avoid the
interference of heterogeneous information from other clients. The mechanism utilizes
the similarity in the amount of parameter variation across client interaction models to
measure the degree of similarity in client data distributions [9]. This allows different types
of knowledge to be shared within different clusters, further improving the performance
of the personalized model. Moreover, the process does not involve the private data of the
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client, ensuring information security. In summary, the main contributions of this paper are
as follows:

• To address the impact of data heterogeneity on model performance in federated
learning, we propose a new personalized federated learning method, pFedCK, which
establishes a dual-model structure on the client and combines two model mutual
distillations based on the middle layer feature representation and the soft prediction
of the model. It enables each client to have its own personalized model, and improves
the accuracy of the model.

• Cluster partitioning of clients is realized by using the similarity of the amount of
parameter variations in interaction models instead of the differences in data dis-
tribution. The interaction models of the clients with similar data distributions are
enabled to learn together, thus reducing the impact of data heterogeneity on the dis-
tillation effect and further improving the accuracy of the personalized model in the
Non-IID environment.

• The performance evaluation on three image datasets, MNIST, CIFAR10 and CI-
FAR100, shows that the method proposed in this paper has high accuracy compared
to baseline algorithms.

2. Related Work
2.1. Clustered Federated Learning

Traditional federation learning aims to train a shared global model for all clients,
and personalized federation learning is used to train individual models for each client.
Clustered federation learning strikes a balance between them by dividing the clients into
clusters according to some specific criteria and generating a common cluster model for the
clients in each cluster. This enables clients with different data distributions to be converted
into multiple groups with similar data distributions as much as possible, thus reducing the
impact of data heterogeneity on the model performance.

Sattler, Felix et al. [9] proposed the first iterative clustering method CFL. The server
clusters clients using the cosine similarity of the client gradient in each iteration. The server
clusters the clients using the cosine similarity of their gradients in each iteration. Each
cluster then performs federation training individually. This allows clients with similar data
distributions to jointly generate a cluster model, reducing data heterogeneity in federation
learning. Ghosh, Avishek et al. [10] also takes an iterative approach to clustering, but
requires the number of clusters to be specified before training. In each iteration round, the
server sends down all cluster models to the client. The client re-estimates the clusters to
which it belongs by minimizing the loss function, and then uses the optimal cluster model
for local training. This method significantly improves the model accuracy compared to CFL,
but introduces a huge communication overhead, as well as aggravates the computation at
the local nodes.

Some approaches try to perform one-time clustering before training and then perform
federation training in each cluster. Jamali-Rad et al. [11] provide the client with an encoder
to convert the data into a latent representation. The client then passes the labels of the data
back to the server. The server completes one-time clustering by maximizing the separability
between data labels. Liu, Bingyan et al. [12] found that neural network middle-channel
sparsity can express client data distribution information, and one-time clustering of clients
using sparsity values can reduce data heterogeneity among clients. Before training begins,
each node first trains a sparse representation model. Then, the sparse vectors obtained from
the sparse representation model are transmitted to the server. The server then performs
clustering based on the similarity between the sparse vectors of each client. Also, the
number of clusters needs to be specified. In contrast to iterative clustering, if these one-
time clustering algorithms generate incorrect estimates at the beginning, they cannot be
corrected during the training phase.

In this paper, we choose to recursively separate two groups of clients with inconsistent
descent directions based on the cosine similarity of parameter variations in the client
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interaction model. The method completely separates all the inconsistent clients through
multiple rounds of iterations. Adaptive generation of the final number of clusters is more
flexible compared to other clustering methods. Combined with knowledge distillation, it
can generate a personalized model for each client. Since the personalized model can fit the
local dataset distribution better, the model has a better performance.

2.2. Knowledge Distillation in Federated Learning

Knowledge distillation [13] is the process of training a student model by using the
predictions of a complex model (teacher) as learning objectives for a simple model (student),
so that its predictions are constantly close to those of the teacher models. In this manner,
knowledge is transferred to the student model. The gap between the predictions of the
two models is usually measured using KL scatter, also known as soft loss. In order for
students to learn more about the teacher model, the logits output h of the model usually
requires the application of a normalization function with a temperature coefficient T(T > 0).
This smoothes the probability distribution corresponding to each category so that the
information carried by the negative labels is relatively amplified. The soft prediction of the
model is:

p =
exp(h/T)

∑i exp(hi/T)
(1)

In federated learning, soft predictions of the model can be communicated between the
client and the server, instead of model parameters or gradient information. By distilling
the knowledge of the global model to the client model, the generalization problem caused
by data heterogeneity in federated learning can be mitigated, making the model more
adaptable to data with different distributions. However, since the data distribution of each
client in federated learning is different and the server cannot access the client data, a public
dataset needs to be introduced. Each client first pre-trains on the public dataset to get soft
predictions. The server integrates these soft predictions to get a global consensus. Then,
the client models learn this consensus on the local dataset.

Li, Daliang et al. [14] proposed combining knowledge distillation with federated
learning to address data heterogeneity and model heterogeneity in federated learning.
Instead of model parameters, each client sends the soft predictions of its local model on the
proxy dataset to the server and aggregates them into global soft predictions on the server
side. It is then sent down to each client to guide its local update, migrating the knowledge of
all clients to local in this way. Lin, Tao et al. [15] proposed integrated distillation for model
fusion using unlabeled data or generator-generated data for user heterogeneity in federated
learning. Zhu, Zhuangdi et al. [16] chose to learn a generator from the prediction rules
of the client model in order to change the dependence on public datasets for knowledge
distillation in federated learning. This generator is maintained by the server, and can
produce feature representations predicted by the client when given a target label. The
global perspective information is then provided to the client by transmitting the generator.

All of the methods mentioned aim to improve the generalization of the global model
using knowledge distillation without considering the personalization of the client model.
Jeong, Eunjeong et al. [17] also take a data-free knowledge distillation approach to address
the data heterogeneity and model heterogeneity in federated learning. Each client stores
the average logit vectors for each label and periodically uploads these local average logit
vectors to a server for integration and then shares them with other clients. A generator is
also used to balance the local data distribution. Cho, Yae Jee et al. [18] designed a novel
PFL framework. First, they found clients with similar data distributions for clustering, and
then performed co-distillation in the cluster for personalized federated learning. However,
the assistance of small unlabeled public datasets was still needed.

In this paper, we design a dual-model architecture on the client and adopt two mutual
distillation approaches for personalized federated learning with model middle layer feature
representation and soft prediction. This approach can better understand and explain model
responses to input data and without public datasets. The personalization model and the
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interaction model are trained simultaneously on the local dataset to extract information
from each other. Clients are also clustered to reduce the effect of data heterogeneity between
clients and improve the distillation effect.

3. Personalized Federated Learning Method Based on Clustering and
Knowledge Distillation

In this section, we present our personalized federated learning method, pFedCK.
Our pFedCK employs a dual-model structure on every client and incorporates two model
mutual distillations based on both of model middle-layer feature representation and model
soft prediction. In addition, pFedCK uses the similarity of parameter variations in the
client interaction model as an alternative for differences in data distribution between clients.
Cluster partitioning of clients is implemented so that the interaction models of clients with
similar data distributions are trained together. It reduced the impact of data heterogeneity
on distillation effectiveness and further improved the accuracy of personalized models
in Non-IID environments. Figure 1 illustrates the specific process of pFedCK. The entire
process includes 5 steps.
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Figure 1. Structure of the pFedCK. Clients in different clusters have different color patterns, which
means they have different data distributions. Clients in the same cluster with similar colors represent
that they have similar data distributions.

Step 1: In every round of training, each client uses local data to train the personalized
model and the interaction model simultaneously. It enables the interactive model to transfer
information from other clients to the personalized model under the same dataset, so that
the personalized model has the global perspective information. The personalized model
simultaneously feeds knowledge back to the interactive model, which iteratively updates
itself based on the feedback. In this way, the two models can learn from each other and
progress together.

Step 2: each client calculates the parameter variations in the interaction model after
training and uploads them to the server.

Step 3: the server clusters the clients according to the similarity of their parameter
variations and divides the clients into different clusters.

Step 4: The server averages the parameter variations of the clients in the same cluster
formed in step 3, and calculates the average value of parameter variations for each cluster.

Step 5: The server sends the average parameter variations of each cluster back to every
client in the cluster. The client updates the local interaction model and start a new round
of training.
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In the whole process, the personalized model is only trained locally, while the inter-
action model participates in the global federated training process. A personalized model
would be trained for every client.

3.1. Federated Mutual Distillation

The target of traditional federated learning methods is to cooperatively train a global
model θ on a private dataset of N clients such that the global objective function is minimized:

min
θ

F(θ) = ∑N
i=1 pi fi(θ) (2)

where pi is a predefined weight and ∑i pi = 1. The local objective function is:

fi(θ) := Exi∼Di [Li(θ; xi)] (3)

Li is the loss function of client i and xi is a randomly selected data sample from the
local data distribution Di. Each client receives the global model and optimizes the local
objective using stochastic gradient descent on the private dataset. The updated model
parameters are then uploaded to the server for weighted aggregation to obtain a new round
of the global model. However, the single global model generated by this traditional method
is not applicable to the case where the data of each client is heterogeneous, e.g., Di ̸= Dj.

The pFedCK maintains a personalized model and an interaction model at the same
time. By combining the feature representations and the soft predictions of the model, the
personalized model and the interaction model can distill each other during the training
process. So that the interaction model transfers knowledge to the personalized model, and
the personalized model can also feedback knowledge to the interaction model. Therefore,
the two models can learn from each other during the training process, which effectively
improves the performance of both models and eventually trains a personalized model for
each client.

In pFedCK, the loss functions of the two models are as Equations (4) and (5), where
ωi denotes the interaction model of the ith client, and φi denotes the personalized model
trained only locally. Both of these models have the same architecture, and are initialized
by clients. The interaction model ωi shares information with other client models ωj by
participating in the global federation training, and then transmits the acquired knowledge
to the personalized model φi and obtains feedback from φi which, in turn, continues to
iterate based on the feedback.

Lφi = LCEφi
+ DKL

(
pωi ∥ pφi

)
+ MSE

(
zωi ∥ zφi

)
, (4)

Lωi = LCEωi
+ DKL

(
pφi ∥ pωi

)
+ MSE

(
zφi ∥ zωi

)
(5)

where LCE is the cross-entropy loss function, which represents the task-specific supervision
loss. DKL is the Kullback–Leibler (KL) scatter, which represents the knowledge used to
transfer knowledge from the output soft prediction distillation loss. MSE is the mean
square error, which indicates the distillation loss of transferring knowledge from the
middle layer feature representation of the model. pωi and pφi are the soft predictions of the
interaction model and the personalized model, respectively, and zωi and zφi are the middle
layer feature representations of the two models, respectively.

In knowledge distillation, the use of the middle layer of the model feature represen-
tation to transfer knowledge can improve the teaching effectiveness of the teacher model
to the student model [19]. Because the lower layers of the model also contain important
information, and this type of distillation can fully exploit the rich information in the hidden
layers of the teacher model in order to encourage the student model to learn and imitate
the teacher model.

In this paper, pFedCK encourages the two models to learn from each other by mutual
distillation, so that their middle layer feature representations are similar to each other. It
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helps the two models to be more consistent in the representation space, thus encouraging
them to learn more similar features. If the mutual distillation is based only on the soft
prediction of the last layer of the model, some information about the feature representation
is lost. Instead, combining the two for multi-level knowledge distillation helps both
parties to learn more comprehensive features and improve their understanding of the
input data. In this way, the two models mimic both each other’s middle layer features
and each other’s outputs on a training dataset with defined objectives, which will result
in better performance than training each other individually. Since pFedCK maintains
two structurally identical models locally and the two models are trained simultaneously,
the computational overhead is double compared to traditional federated learning where
one model is trained locally. Simultaneously training two models locally to distill each
other does not involve communication overhead with the server. Because the process is
performed independently on the local device, mutual distillation between models does not
require communication in the federated learning framework. The whole learning process
involves no additional communication overhead, only uploading and downloading model
parameter variations. Therefore, the communication overhead between the client and the
server is the same as the traditional federated learning method.

3.2. Clustering Based on Model Parameter Variations

In typical federated learning, a common approach to share information among clients
is to upload local model parameters to the server, which then weights and aggregates the
client local model parameters to produce a global model, and the server sends the global
model down to all clients for local training. However, due to the heterogeneity of data
across clients, the global model may perform worse than the local personalized model, and
training the receiving global model from scratch for each client will also lead to a decrease
in convergence speed. Meanwhile, if the server simply aggregates the parameters of the
interaction model uploaded by the client to form a global model, and then the client uses
the received global model to migrate knowledge to the local personalized model, it will
not be possible for the personalized model to obtain more valuable information from an
immature teacher model by means of knowledge distillation. Because the global model
cannot fit the data distribution of all clients in the data heterogeneous environment.

Thus, in pFedCK, the client with a dual-model structure always exploits the interac-
tion model to communicate information with other clients. And, considering the above
problems, pFedCK uploads only the parameter variations of the client interaction model
after training and completes the cluster division based on the similarity of the parameter
variations in the interaction models of the clients. As the different data distributions of
clients cause their interaction model parameters to be updated in different directions, so
the similarity of parameter variations can indicate the similarity of data distributions.

pFedCK clusters the clients by measuring the cosine similarity between the parameter
variations after training of each client interaction model. The interaction model only absorbs
information from clients that are similar to the local data distribution, thus indirectly
enabling the personalization model, which is only trained locally, to acquire more valuable
knowledge from the interaction model and improve the personalization performance. The
cosine similarity of clients i and j is:

Si,j =
△ωi · △ω j

∥△ωi∥ ·
∥∥∥△ω j

∥∥∥ (6)

where△ωi = ωt
i −ωt−1

i represents the parameter variations in the interaction model of
client i from round t− 1 to round t. The server calculates the similarity Si,j,i ̸=j between the
interaction models of each client in this way, and then constitutes the similarity matrix Sn×n.
On this basis, the division of client clusters is accomplished by using K-Means clustering. To
ensure higher robustness of the algorithm, we use an iterative clustering approach, which
can adaptively adjust according to the distribution and characteristics of the data, and
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performs better when facing complex datasets. First, the model should be trained iteratively
using traditional federated learning methods until a stable point of convergence is reached.
Then, the clients are divided into clusters. Adaptive generation of the final number of
clusters can adequately separate the outliers in the cluster. All these greatly ensure the
accuracy of clustering. We set the number of clusters per recursive division to two, and
the algorithm starts to make clustering decisions according to Equations (7) and (8) after a
certain number of rounds of training.

max
i∈C
∥△ωi∥ > ε1, (7)

mean
i∈C
∥△ωi∥ < ε2 (8)

If the maximum distance between client parameter variations within a cluster is greater
than ε1, and the average distance between client parameter variations within a cluster is
less than ε2, where ε1 and ε2 are given thresholds, the server divides the initialized list
of clusters C = (1 · · ·N) into C = (c1, c2). N clients will be clustered into two clusters
c1, c2, respectively. In the next iteration, the clusters in the cluster list are then determined
separately, and the clusters that satisfy the clustering conditions are clustered and divided to
two new clusters until they do not satisfy the clustering conditions or the defined number of
iteration rounds is reached. Traditional one-time clustering methods may require constant
adjustment of the number of clusters to accommodate changes. This iterative clustering
eliminates the need to set the final number of clusters and adaptively divides clients with
similar data distributions together. After the clustering is finished, the server will average
the parameter variations in the client interaction models in the clusters to aggregate them
separately, so as to realize the sharing and communication of client information in the
clusters. Then, the average parameter variations in each cluster are obtained,

ωck =
1∣∣Sck

∣∣ ∑
i∈ck

△ωi (9)

where ck represents the kth cluster, and
∣∣Sck

∣∣ is the number of clients in the kth cluster. By
merging the information of clients in each cluster, the interactive model can more quickly
learn the underlying patterns of the overall data in the cluster, thereby achieving faster
convergence during the training process. After receiving the average parameter variations
in the corresponding cluster sent from the server, the client updates the interaction model
parameters ωi = ωi + ωck , i ∈ ck and then performs local training. In this way, the
interaction model obtains more valuable information from clients in the same cluster, avoids
the interference of irrelevant information, can better adapt to the local data distribution,
and improves the distillation effect. Therefore, the personalized model can indirectly
obtain relevant knowledge of clients of the same category by learning and imitating the
middle-layer feature representation and soft prediction of the interactive model to improve
its own performance.

3.3. The Process of pFedCK

The pseudo-code of pFedCK is shown in Algorithm 1. The whole process consists of
two parts: the server side and the client side. The server is mainly responsible for receiving
the parameter variations of the client interaction model and clustering the clients. In the
server execution part, lines 2–4 represent the server receives the parameter variations of
the client interaction models. Lines 5–10 represent the calculation of the cosine similarity
between the parameter variations of all the client interaction models and the formation of
the similarity matrix. Lines 11–16 represent the conditional judgment for each cluster in the
cluster list. If the condition is satisfied, K-Means clustering is performed on the clients in
the cluster to divide the clients that originally belonged to the same cluster into two clusters.
Line 17 represents the updating of the whole cluster list after each round of clustering.



Electronics 2024, 13, 857 9 of 15

Lines 18–22 represent the average aggregation of the client interaction model parameter
variations in each cluster to get the average parameter variations of the whole cluster.

The client is mainly responsible for the local training of the two models. In the client
execution section, line 1 represents that each client receives the average parameter variations
of the cluster where it is located and updates the interaction model parameters. Lines 2–5
represent the simultaneous training of the personalized model and interaction model on
the local dataset to complete the mutual distillation operation between models. Line 6
represents the computation of parameter variations of the interaction model after training.

Algorithm 1. pFedCK

Input: n clients, Set of clusters C = {{1, 2 . . . n}}, Lωi : Loss function of interaction model, Lφi :
Loss function of personalized model, initial interaction model ωi, initial personalized model φi,
ηω : interaction model learning rate, ηφ: personalized model learning rate, number of iterations T
Output: {φi}i∈n
Server executes:
1: for each round t =1, 2. . .T do
2: for each client i in parallel do
3: △ωt

i ←ClientUpdata(ωt−1
ck

) , i ∈ ck
4: end
5: for i = 0, 1. . .n do
6: for j = 0, 1. . .n do

7: Si,j ←
△ωi ·△ω j

∥△ωi∥·∥△ω j∥
8: S[i][j]← Si,j
9: end
10: end
11: for c ∈ C do
12: if max

i∈C
∥△ωi∥ > ε1 and mean

i∈C
∥△ωi∥ < ε2

13: c1, c2 ← K-Means (Si,j) , i ∈ c1, j ∈ c2, c1 ∪ c2 = c
14: c = {c1, c2}
15: end
16: end
17: Updata C
18: for each cluster ck ∈ C do
19: for i ∈ ck do
20: ωt

ck
← 1
|Sck |

∑i∈ck
△ωt

i

21: end
22: end
23: end
ClientUpdata:
1: ωt

i← ω t−1
i + ωt

ck
, i ∈ ck

2: for each epoch e = 1, 2 . . . E in parallel do
3: ωt+1

i ← ωt
i − ηω∇Lωi

(
ωt

i , Di
)

4: φt+1
i ← φt

i − ηφ∇Lφi

(
φt

i , Di
)

5: end
6: △ωt+1

i ← ωt+1
i −ωt

i

4. Experiments and Analysis

In this section, we will introduce the experimental procedure and analyze the simula-
tion results. pFedCK will be compared with two traditional federated learning algorithms,
FedAvg [1] and FedProx [2], and two personalized federated learning algorithms, FML [8]
and FedDistill [17], in terms of convergence and client-side accuracy. We also conduct abla-
tion experiments on two relatively complex datasets to verify the effectiveness of different
modules in pFedCK for personalized model accuracy improvement. Our development envi-
ronment used Python (version 3.9) and PyTorch (version 1.12.1), and hardware-accelerated
with a single NVIDIA 3060 GPU.
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4.1. Datasets

We used three image classification datasets for our experiments, MNIST [20], CI-
FAR10and CIFAR100 [21]. MNIST is a dataset for handwritten digit image classification
containing 60,000 training examples and 10,000 test examples with an input data size of
28 × 28. The CIFAR10 dataset is used to classify ten objects such as cats, birds and airplanes
with 6000 examples under each category, including 5000 training examples and 1000 test
examples, and the size of the input data is 32 × 32. The CIFAR100 dataset is an extension of
the CIFAR10 dataset and contains 100 different categories, each with six hundred 32 × 32
pixel color images, CIFAR100 is also divided into a training set and a test set, where the
training set contains 50,000 images and the test set contains 10,000 images.

4.2. Data Partition Setting

In this paper, we set up two different heterogeneous data scenarios. The first one is
to simulate a pathological client data distribution [1]. Data samples of 2/2/10 classes are
randomly sampled for each client from the MNIST/CIFAR10/CIFAR100 dataset with a
total number of 10/10/100 classes, and are not duplicated with each other. The second one
simulates the practical client data distribution [22]. Use Dirichlet distribution to generate
non-independent identically distributed data for each client, denoted as Dir(α). The
density function of Dirichlet is Equation (10):

Dir(X|α) = 1
B(α)∏

K
i=1 Xαi−1

i (10)

where X = (X1 , X2 . . . , XK) is a K-dimensional random vector obeying the Dirichlet

distribution. B is the multivariate beta function defined as B(α) = ∏K
i=1 Γ(αi)

Γ(∑K
i=1 αi)

. In the

Dirichlet distribution, the parameter α regulates the probability distribution of the generated
samples on each category which, in turn, affects the sampling probability of each category
label in the dataset. The proportion of samples from different categories in each client’s
dataset is controlled to achieve the division of data and simulate the real scenario. The
smaller α indicates the stronger data heterogeneity among clients, and the experiments
consider extreme heterogeneous scenarios and set α = 0.1. We use test data with the
same distribution as the training data to compute client test accuracies, using 25% of the
local data as the test dataset and the remaining 75% for training. The performance of the
personalized federated learning algorithm is evaluated by the average test accuracy of
the local model across all clients on the local test set. The performance of the traditional
federated learning algorithm is evaluated by the average test accuracy of the global model
across all clients on the local test set.

4.3. Parameter Settings

If not specifically stated, the experiments will use the following hyperparameter
settings. We use a four-layer CNN network [1] for the image classification task, which
contains two 5 × 5 convolutional layers. The first convolutional layer has 32 channels,
followed by a ReLU activation function and a 2 × 2 maximum pooling layer. The second
convolutional layer has 64 channels, also followed by a ReLU activation function and a
2 × 2 maximum pooling layer. This is followed by a fully connected layer with 512 units
and ReLU activation. Finally, the final classification result is output through a linear layer.
The optimizer for both personalized and interactive model training uses the SGD algorithm,
with a learning rate of 0.01 for the personalized model, a learning rate decay coefficient of
0.99, and a learning rate of 0.005 for the interactive model, with the data batch size set to
32, and the local training epochs is 5, for a total of 100 rounds of training. The number of
clients is 20, and the client participation rate ρ = 1. For the MNIST and CIFAR10 datasets,
the maximum distance threshold between client parameter changes within clusters is set
ε1 = 0.3, and the average distance threshold between client parameter changes within
clusters is set ε2 = 0.04, and for CIFAR100, ε1 = 0.3 and ε2 = 0.08.
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4.4. Baseline Algorithm

FedAvg: a traditional federated learning algorithm where the client and server send
model parameters to each other, and the global model is aggregated on the server using a
weighted average.

FedProx: using global model parameters as regularization terms on the basis of
FedAvg, and restricting the direction of local model updating so that the aggregated global
model better fits the local dataset distribution.

FML: a personalized federated distillation algorithm that does not depend on the
proxy dataset and participates in federated learning with shared model parameters.

FedDistill: data-free federated distillation algorithms that do not share model parame-
ters, but instead share label averages of logit vectors with other clients.

4.5. Results and Discussion

We evaluated the performance of all algorithms in two extremely heterogeneous
scenarios. Table 1 demonstrates the accuracy of each algorithm on different datasets. As
can be seen from Table 1, the pFedCK algorithm improves the personalization accuracy
by about 2% on top of the FedAvg and FedProx, and by 0.42% and 0.07% on top of the
FML and FedDistill, respectively, under the MNIST dataset in the practical heterogeneous
environment. The improvement is not significant because MNIST is a simple handwritten
digit dataset and the algorithms perform the classification task well even in a heterogeneous
environment. However, under the CIFAR10 dataset, pFedCK improves the personalization
accuracy by about 35% over the FedAvg and FedProx and by about 1.4% over the FedDistill
and FML. The improvement is even more obvious with the more complex CIFAR100
dataset. pFedCK can improve 1% and 2.4% over FedDistill and FML, respectively, and also
improves about 22% compared to traditional federated learning algorithms.

Table 1. Accuracy (%) of client personalized model testing in pathologic heterogeneity setting and
practical heterogeneity setting.

Practical Heterogeneous Pathological Heterogeneous

Methods MNIST CIFAR10 CIFAR100 MNIST CIFAR10 CIFAR100

FedAvg 97.36 53.06 27.36 93.35 53.38 22.69
FedProx 97.27 52.37 26.92 92.71 52.66 22.42

FedDistill 99.36 85.73 47.66 99.78 87.81 62.68
FML 99.01 85.96 46.25 99.67 88.12 60.65

pFedCK 99.43 87.13 48.66 99.81 89.09 63.55

It shows that the pFedCK algorithm is more adapted to the complex data heteroge-
neous environment. The FedAvg and FedProx algorithms do not take into account the
individualized needs of different clients, and thus the performance degrades sharply in
complex data heterogeneous environments. The FedDistill algorithm’s performance degra-
dation is a non-negligible factor since it does not share network parameters. The FML
algorithm does not take advantage of the richness of information in the hidden layers of
the teacher model, whereas the pFedCK algorithm implements personalized federated
learning by using multi-level distillation of knowledge and takes into account the effect
of mutual collaboration between the clients, clustering the clients based on the amount of
model parameter variations as a means to improve the personalization performance.

In pathologically heterogeneous environments, pFedCK performs better, improving
by 2.9% and 0.87% over FML and FedDistill under the CIFAR100 dataset, and by about
40% over traditional federated learning algorithms. The reason is that in pathologically
heterogeneous environments, each client has only a few categories of data samples. pFedCK
clusters better in such environments, and can accurately divide clients with the same
category of data samples together to achieve information exchange within the clusters,
improve the model distillation effect, and transfer information about clients with the
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same data distribution to the personalized model. In summary, in both heterogeneous
environments, pFedCK shows significant improvements compared to both FedAvg and
FedProx, and small improvements compared to FML and FedDistill.

Figure 2 shows the accuracy curves of pFedCK and other baseline algorithms on
the MNIST dataset in the two heterogeneous environments, respectively. As can be seen
from Figure 2a, the two traditional federated learning algorithms, FedAvg and FedProx,
both increase in accuracy with the increase in the number of iterations. And all three
personalized federated learning algorithms reach high test accuracy in the first few rounds
of training, and gradually converge near Rounds = 20, with the convergence speed and test
accuracy significantly higher than the two traditional federated learning algorithms. This
phenomenon is more obvious in complex image processing tasks, such as the CIFAR10
and CIFAR100 datasets. Figure 2b illustrates the accuracy curves of the algorithms in
a pathologically heterogeneous environment. The FedDistill and FML algorithms are
basically on the same level as the pFedCK algorithm in terms of accuracy and speed of
convergence. Two traditional federated learning algorithms, FedAvg and FedProx, perform
even worse in pathologically heterogeneous environments, with accuracy decreasing by
about 4% compared to practical heterogeneous environments, and non-convergence at
the end of training. The reason is that the single global model is poorly generalized
and cannot be adapted to different client data distributions. Although FedProx adds a
regularization term on the basis of FedAvg to control the variation in model parameters
and prevent the phenomenon of model drift, it is not ideal from the results. Compared with
traditional federation learning algorithms, personalized federation learning algorithms are
more suitable for data heterogeneous environments. FedDistill, FML and pFedCK are all
personalized federated distillation algorithms that do not rely on external proxy datasets,
and they all showed good performance. This is because they allow each client to update
the model according to the characteristics of its local data. This personalized training
allows each client to focus more on the characteristics of its own data, thus capturing data
heterogeneity more effectively.
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Figure 2. The accuracy curves for pFedCK compared to other baseline algorithms on the MNIST
dataset. (a) Practical heterogeneous environment, (b) pathologic heterogeneous environment.

Since the test accuracy gap between personalized federated learning algorithms and
traditional federated learning algorithms is too dramatic, we only show the average accu-
racy curves of three personalized federated learning algorithms on CIFAR10 and CIFAR100
datasets on Figure 3. As can be seen from Figure 3, pFedCK outperforms all benchmark
algorithms in most of the scenarios. Figure 3a shows the accuracy curves of each algorithm
on the CIFAR10 dataset in a practical heterogeneous environment. The pFedCK algorithm
improves the personalization accuracy over the FedDistill algorithm and the FML algorithm
by 1.4% and 1.17%, respectively, and the accuracy curves are flatter compared to that of
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FedDistill. The FedDistill algorithm has a more obvious fluctuation during the process, and
the accuracy shows a slightly decreasing trend in the end of the global iteration, which is
relatively unstable.
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Figure 3. Average accuracy curves of the three personalized federated learning algorithms on
CIFAR10 and CIFAR100 datasets under different heterogeneous scenarios. (a) Average accuracy curve
of each algorithm on CIFAR10 under practical heterogeneous scenarios. (b) Average accuracy curve of
each algorithm on CIFAR10 under the pathologic heterogeneity scenario. (c) Average accuracy curve
of each algorithm on CIFAR100 under the practical heterogeneity scenario. (d) Average accuracy
curve of each algorithm on CIFAR100 under the pathological heterogeneity scenario.

Figure 3b illustrates the accuracy curves of the algorithms on the CIFAR10 dataset
under pathologically heterogeneous environments. It can be seen that pFedCK has slightly
inferior accuracy and convergence speed compared to the baseline in the first few rounds
of testing, although in different heterogeneous scenarios on the CIFAR10 dataset. However,
after 20 rounds, FedDistill and FML are gradually stabilized, while the accuracy of pFedCK
is still further improved. This is because pFedCK uses a combination of model middle
layer feature representation and model soft prediction to allow local models and interactive
models to mutually distill and learn more comprehensive and extensive feature information.
And clustering begins around the 20th round, so that client interaction models with similar
data distributions are trained cooperatively, which reduces client data heterogeneity and
improves the distillation effect of interaction models and local models. The effect is more
obvious on the more complex dataset CIFAR100.

As can be seen from Figure 3c, pFedCK is significantly better than FML in terms of
convergence speed and accuracy improvement. pFedCK accuracy is also significantly
better than FedDistill after the 20th round in the practical heterogeneous scenario. In the
pathological heterogeneous scenario shown in Figure 3d, the training effect of pFedCK is
significantly better than FedDistill in the middle and late stages of training, and the training
stability is also better. In summary, under the same experimental setup, the pFedCK
algorithm can obtain better results than other algorithms in different datasets and different
data heterogeneous scenarios.
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4.6. Ablation Experiment

In this section, we evaluate the effectiveness of each component in pFedCK. The ver-
sion of pFedCK that does not deploy mutual distillation based on the feature representation
of the middle layer of the model is represented by pFedCK-f, and the version of pFedCK
that does not deploy clustering based on the interaction model variation is represented by
pFedCK-c. These two versions were experimentally compared with complete pFedCK on
CIFAR10 and CIFAR100 datasets in pathologically heterogeneous settings. Table 2 lists the
experimental results.

Table 2. Accuracy of pFedCK vs. other versions on CIFAR10 and CIFAR100.

Dataset pFedCK-f pFedCK-c pFedCK

CIFAR10 88.95 88.89 89.09
CIFAR100 61.77 63.23 63.55

As can be seen from the experimental results in Table 2, clustering is more effective
on the CIFAR10 dataset, and mutual distillation based on the model middle layer fea-
ture representation is more effective on the CIFAR100 dataset. However, pFedCK-f and
pFedCK-c do not perform as well as the complete version of the pFedCK algorithm on
both datasets. This suggests that both the strategies of feature representation-based mutual
distillation and interactive model variation clustering promote the learning effect of models
in heterogeneous scenarios, which is helpful in solving the problem of data heterogeneity
across clients in federated learning.

5. Conclusions

In this paper, we propose a personalized federated learning method based on mutual
distillation and clustering, pFedCK. The pFedCK exploited a dual-model on each client,
and realized mutual distillation based on soft prediction of models and intermediate feature
representation of two models, prompting them to learn more similar features. It improves
the generalization ability of the models and learn more abstract feature representations.
On this basis, pFedCK divides clients with similar data distribution into the same cluster.
Client interaction models in the same cluster can train together and effectively obtain more
valuable information from others, while avoiding the interference of irrelevant information.
Mutual distillation and clustering enable the interaction model to better adapt to the local
data distribution, and achieve more significant results in the distillation process. In the
same way, the personalized model can interact with other clients of the same category to
indirectly acquire relevant domain knowledge and improve its performance.

The simulation results showed that the pFedCK significantly improves the accuracy
compared to all baseline algorithm. Especially on more complex practical heterogeneous
scenarios, such as the CIFAR100, pFedCK improved 21.30%, 21.74%, 2.41% and 1.00%
higher than the FedAvg, FedProx, FML and FedDistill methods, respectively, and the
convergence speed is also significantly improved. Since it is difficult to use the same model
structure for the personalized models of each client in real scenarios, in the future, we will
study the performance of pFedCK in model heterogeneous situations, such as the use of
models of different sizes and structures between clients. Meanwhile, in order to further
improve the robustness of clustering, we will consider the impact of client soft clustering
on model performance in different heterogeneous scenarios.
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