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Abstract: This paper delves into the problem of moving-target detection in partially homogeneous
environments (PHE) with unknown Gaussian disturbance using a frequency diverse array multiple-
input multiple-output (FDA-MIMO) radar. Using training data, we have derived expressions for
four adaptive detectors, including the one-step and two-step generalized likelihood ratio test (GLRT),
two-step Rao (TRao) test, and two-step Wald (TWald) test criteria, respectively. All the proposed
detectors are characterized by the constant false-alarm rate (CFAR). The theoretical analysis and
simulation results validate the effectiveness of the proposed detectors.
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1. Introduction

The frequency diverse array (FDA) was first introduced by Antonik at the 2006 IEEE
Radar Conference [1]. Since then, it has gained significant attention from the radar com-
munity [2–6] due to its various advantages over traditional phased arrays (PAs). The FDA
radar uses a small frequency increment across its array elements to produce a range-angle-
time dependent beampattern. This range and time dependency allows for more degrees of
freedom (DOFs) in operating the beampattern for improved performance. However, the
time dependency and range-angle coupled beampattern can sometimes pose challenges for
accurate target detection and estimation. To address these issues, a frequency diverse array
multiple-input multiple-output (FDA-MIMO) radar has been developed by combining
an FDA with a MIMO system, which is presented in the literature [7]. This innovative
technology effectively eliminates time-variance and coupling effects while preserving target
information [8–10]. The FDA-MIMO radar has a wide range of applications, including
secure physical layer communications [11], high-resolution and wide-swath synthetic aper-
ture radar (HRWS-SAR) imaging [12,13], SAR deceptive jamming rejection [14–16], and
more. By discriminating echoes at different distances, the mainlobe interferences [17],
mainlobe clutter [18], main-beam deceptive jamming [9,10,17,19–21], etc., can be effectively
suppressed using the FDA-MIMO-based range information.

Accurate target detection is a critical aspect of radar performance, and FDA-MIMO
radars are no different. However, target detection in diverse environments using FDA-MIMO
radars [18,22–24] has yet to be thoroughly investigated. For instance, Gui et al. [23] developed
a low complexity unstructured generalized likelihood ratio test (UGLRT) approach for an
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FDA-MIMO radar in the case of an unknown interference covariance matrix (ICM), including
deceptive and suppressive jamming. Huang et al. [25] investigated the target detection
problem in an interference background using the Rao and Wald principles. Please note that
these approaches did not use any training data to estimate the interference covariance due
to the range dependency of the deceptive jamming covariance matrix for an FDA-MIMO
radar. Therefore, the covariance matrix of the training data sampled from near-range cells
does not apply to the current cell under test (CUT). However, techniques such as secondary
range dependence compensation [26] can help overcome the range dependency and acquire
independent and identically distributed (IID) training data, which allows the estimation of the
unknown covariance matrix and improves detection performance. Therefore, Lan et al. [22]
analyzed the FDA-MIMO-based target detection problem with training data in the case of an
unknown interference-plus-noise covariance matrix according to the traditional generalized
likelihood ratio test (GLRT) criterion. Chen et al. [27] proposed a space-range-doppler
focus-based moving-target detection approach that utilized training data for an FDA-MIMO
radar in clutter and noise environments. Li et al. [28] adopted the GLRT criterion and used
training data to design adaptive detectors for an FDA-MIMO radar in the cases of known and
unknown target velocity with unknown Gaussian noise. Please note that the training and test
data observe a common covariance matrix in the aforementioned detectors, i.e., homogeneous
environments (HE). Nevertheless, in practice, it is rare to find completely homogeneous
environments due to various environmental and instrumental factors. When the terrain is
undulating, there may be power variations between the training and test data. This leads to
partially homogeneous environments, which is a commonly held assumption when dealing
with nonhomogeneous environments. In partially homogeneous environments, it is assumed
that the training and test data observe the same covariance matrix up to an unknown scaling
factor [29–31], which helps to improve the robustness against noise power level variations
between the training and test data [32]. If the scaling factor equals 1, then the radar operates in
a homogeneous environment; otherwise, it operates in a partially homogeneous environment.
The partial homogeneity assumption is critical for airborne and ground-based radars [30,33]
as it provides an accurate scenario description. Consequently, it is necessary to thoroughly
investigate target detection methods in partially homogeneous environments for an FDA-
MIMO radar.

In this paper, we thoroughly investigate adaptive detectors with training data for an
FDA-MIMO radar in partially homogeneous Gaussian disturbance environments where
thermal noise, mainlobe deceptive jamming, and range-compensated clutter exist. It should
be noted that finding a uniformly optimal detector for this detection problem is nearly
impossible, but we can still explore suboptimal detectors. As common detector design
guidelines, it has been found that the one-step GLRT (OGLRT) offers superior detection
performance [30], while the two-step GLRT (TGLRT) performs similarly to OGLRT but
with less computation. Additionally, the two-step Rao (TRao) test and two-step Wald
(TWald) test exhibit greater selectivity or robustness to signal mismatch while also reducing
computational complexity [34,35]. Therefore, these four criteria will be utilized to design
adaptive detectors for the FDA-MIMO radar-based target detection problem. We evaluate
the detection performance in partially homogeneous environments and prove that the
detectors demonstrate a constant false-alarm rate (CFAR) property against the covariance
matrix and the scaling factor. The experimental outcomes demonstrate that the proposed
OGLRT detector outperforms the other proposed detectors when steering vectors match.
In contrast, the other proposed detectors exhibit superior detection performance when
steering vectors mismatch. The main contributions of this paper are summarized as follows:

(1) This study is the first to explore the target detection problem for an FDA-MIMO radar
in partially homogeneous environments and illustrates that the proposed methods
are general since they can also be applied in homogeneous environments.

(2) With training data, four adaptive detectors are designed for FDA-MIMO radar based
on the OGLRT, TGLRT, TRao, and TWald methods, and it is proven that they have a
CFAR property for the covariance matrix and the scaling factor.
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The remaining sections of this paper are structured as follows: the next section intro-
duces the problem of moving-target detection for FDA-MIMO radar. Section 3 derives the
detectors with training data. Section 4 investigates the CFAR property of the proposed
detectors. Section 5 assesses the performance of proposed detectors by Monte Carlo (MC)
simulations. Section 6 draws conclusions.

2. Problem Formulation

Consider an FDA-MIMO radar with an M-element FDA transmitter and an N-element
PA receiver for a far-field scenario. The inter-element spacings of transmit and receive
arrays are set to be dT and dR, respectively. Suppose a point-like moving target is located at
(rs, θs), where rs is the slant range and θs represents the azimuth angle. The target is moving
at a constant radial velocity v towards the radar. After mixed and matched filtered, the kth
snapshot of an FDA-MIMO signal (using frequency-shifted orthogonal waveforms with
large frequency increments leads the waveform correlation matrix to an identity matrix [23])
can be mathematically modeled as [36]

xk = αsωk( fd,s)atr(rs, θs) + nk, (1)

where αs is the unknown complex amplitude depending on both the radar cross sec-
tion (RCS) and the propagation coefficient. The moving-target Doppler has the form
ωk( fd,s) = e j2π fd,sk/

√
K , with K and fd,s = 2v f0TPR/c being the total number of

transmit pulses and the relative Doppler frequency caused by the moving-target, re-
spectively. Additionally, c, f0, and TPR represent the speed of light, reference carrier
frequency, and pulse repetition interval (PRI), respectively. Moreover, atr(rs , θs) is the
joint transmit-receive steering vector, defined as

atr(rs, θs) ≜ at(rs, θs)⊗ ar(θs) ∈ CMN×1, (2)

where ⊗ is the Kronecker product, and at(rs, θs) stands for the transmit steering vector,
given by

at(rs, θs) ≜ at(θs)⊙ e(−τ) ∈ CM×1, (3)

where ⊙ is the Hadamard product, with

at(θs) =

[
1, ej2π

dT
λ0

sin θs , · · · , ej2π
dT
λ0

(M−1) sin θs
]T

∈ CM×1, (4)

and
e(t) =

[
1, ej2π∆ f t, · · · , ej2π(M−1)∆ f t

]T
∈ CM×1, (5)

representing the transmit array vector and the carrier vector, respectively. The notation
(·)T stands for the matrix (vector) transpose, λ0 is the wavelength corresponding to f0, ∆ f
stands for the inter-element frequency increment in the transmit array, and τ = 2rs/c is the
two-way time delay. The receive steering vector ar(θs) is given by,

ar(θs) =

[
1, ej2π

dR
λ0

sin θs , · · · , ej2π
dR
λ0

(N−1) sin θs
]T

∈ CN×1, (6)

Finally, the additive term nk ∈ CMN×1 represents the Gaussian noise (thermal noise,
mainlobe deceptive jamming and range-compensated clutter) in the receiver array.

Furthermore, jointly processing over K snapshots (For the sake of mathematical con-
venience, assume that the target motion does not cross the range cell or undergo a Doppler
shift during the K snapshots.), we can obtain the received data in a matrix form, expressed
as [23]:

X = αsatr(rs, θs)wT
d ( fd,s) + N ∈ CMN×K, (7)
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where
X = [x0, x1, · · · , xK−1] ∈ CMN×K, (8)

wd( fd,s) = [ω0( fd,s), ω1( fd,s), · · · , ωK−1( fd,s)]
T ∈ CK×1, (9)

and
N = [n0, n1, · · · , nK−1] ∈ CMN×K. (10)

In addition, a set of available training data Xl = Nl ∈ CMN×K , l = 1, 2, · · · , L, is
sampled from the neighboring range cells, which only contain noise, with ns

l,k ∈ CMN×1

representing the kth column of lth training data matrix Nl . The noise terms nk and ns
l,k ,

k = 0, 1, · · · , K − 1, are modeled as zero-mean circularly complex Gaussian independent
random vectors with unknown positive definite covariance matrices Rt and R, i.e.,
nk ∼ CN(0, Rt) and ns

l,k ∼ CN(0, R), respectively. The assumption of a partially
homogeneous environment implies that the covariance matrix of the training data is
related to that of the test data with a constant scaling factor, so we have:

Rt = γR, (11)

where γ is a positive value representing the power mismatch between the two matrices. In
particular, when γ = 1, the covariance matrices are identical, indicating that the current
detection environments are under the homogeneity assumption.

Hence, the FDA-MIMO radar-based detection problem can be formulated as a binary
hypotheses test: 

H0 :

{
X = N,
Xl = Nl , l = 1, 2, · · · , L,

H1 :

{
X = αsatr(rs, θs)wT

d ( fd,s) + N,
Xl = Nl , l = 1, 2, · · · , L.

(12)

where the null hypothesis H0 represents target absence, whereas the alternative hypothesis
H1 indicates target presence. Please note that in (12), atr(rs, θs) and wd( fd,s) are both
known, while αs, γ and R remain unknown. It is important to point out that this paper
takes a different approach compared to the literature [28], as we address the target detection
problem for the FDA-MIMO radar in partially homogeneous environments, whereas the
literature [28] concentrated solely on designing OGLRT-based detectors in homogeneous
environments. Additionally, we will demonstrate that our proposed detectors are effective
in solving the detection problem for the FDA-MIMO radar in both homogeneous and
partially homogeneous environments. Subsequently, for notational brevity, we replace
atr(rs, θs) and wd( fd,s) with atr and wd, respectively.

For future reference, we define Y = [X1, X2, · · · , XL] ∈ CMN×LK, then the joint proba-
bility density function (PDF) of X and Y under hypothesis H0 is

f (X, Y|γ, R, H0 ) =
e− tr(R−1XXH/γ )e− tr(R−1S)

πMNK(L+1)γMNKdetK(L+1)(R)
(13)

where S = YYH ∈ CMN×MN is KL times sample covariance matrix (SCM). Please note that
to obtain a nonsingular covariance matrix estimate, it is necessary to ensure KL ≥ MN. The
symbols tr(·) and det(·) represent the trace and the determinant of a matrix, respectively.
Meanwhile, the notations (·)H and (·)−1 denote the conjugate transpose and inverse of the
nonsingular matrix argument, respectively.

Similarly, the joint PDF of X and Y under hypothesis H1 is

f (X, Y|αs, γ, R, H1 ) =
e− tr(R−1Xαs XH

αs /γ )e− tr(R−1S)

πMNK(L+1)γMNKdetK(L+1)(R)
(14)
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where Xαs = X − αsatrwT
d ∈ CMN×K.

3. Detector Design

In this section, we use the training data and apply the OGLRT, TGLRT, TRao test, and
TWald test to design detectors for an FDA-MIMO radar.

3.1. OGLRT

According to the OGLRT criterion, the decision statistics are given by [37]

ΛOGLRT−PHE =

max
αs ,γ,R

f (X, Y|αs, γ, R, H1 )

max
γ,R

f (X, Y|γ, R, H0 )

H1
≷
H0

λOGLRT−PHE, (15)

where λOGLRT−PHE is the detection threshold.
To derive OGLRT, we need to maximize both the numerator and denominator of (15),

respectively. We accomplish this by taking the logarithm of (14) and then taking its deriva-
tive with respect to R, resulting in

∂

∂R
ln f (X, Y|αs, γ, R, H1 ) = R−1

(
Xαs XH

αs

γ
+ S

)
R−1 − K(L + 1)R−1, (16)

where the symbols ∂(·) and ln(·) denote partial derivative and natural logarithm, respec-
tively. Equation (16) to zero gives the maximum likelihood estimate (MLE) of R under
hypothesis H1 as

R̂1 =
1

K(L + 1)

(
Xαs XH

αs

γ
+ S

)
. (17)

Plugging above expression into (14) and applying det(I + AB) = det(I + BA) for any
applicable matrices, lead to

f
(
X, Y

∣∣αs, γ, R̂1, H1
)
=

βdet−K(L+1)(S)

γMNKdetK(L+1)(IK + XH
αs S−1Xαs /γ

)
=

βdet−K(L+1)(S)

γMNKdetK(L+1)(IK + X̃H
αs X̃αs /γ

) , (18)

where β = [K(L + 1)/eπ ]MNK(L+1), X̃αs = S−1/2 Xαs = X̃ − αsãwT
d with X̃ = S−1/2 X and

ã = S−1/2 atr, and IK denotes the identity matrix of K × K. It is apparent that maximiz-
ing (18) over αs is tantamount to minimizing (19), as following

f (αs) = det

(
IK +

X̃H
αs X̃αs

γ

)
. (19)

In accordance with the theorem presented in [38], we can obtain the MLE of αs and
the minimum of f (αs) as

α̂s =
ãHX̃w∗

d
ãH ã

, (20)

and

f (α̂s) = det

Ik +

(
X̃ − PãX̃w∗

dwT
d

)H(
X̃ − PãX̃w∗

dwT
d

)
γ

, (21)
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respectively, where Pã = ããH

ãH ã is the projection matrix onto the column space of ã. Appendix A
provides a detailed derivation of these results. Substituting (21) into (18) yields

f
(
X, Y

∣∣α̂s, γ, R̂1, H1
)
=

βdet−K(L+1)(S)

γMNKdetK(L+1)
[

IK +
(X̃−PãX̃w∗

dwT
d )

H
(X̃−PãX̃w∗

dwT
d )

γ

] . (22)

Likewise (17), we also have the MLE of R under hypothesis H0 as

R̂0 =
1

K(L + 1)

(
XXH

γ
+ S

)
. (23)

Substituting (23) into (13) leads to

f
(
X, Y

∣∣γ, R̂0, H0
)
=

βdet−K(L+1)(S)

γMNKdetK(L+1)
(

IK + X̃H X̃
γ

) , (24)

where the determinant lemma is used once again. We can then insert (22) and (24) into (15)
and take its K(L + 1)th root to obtain

Λ′
OGLRT−PHE =

min
γ

γ
MN
L+1 det

[
IK + X̃H X̃

γ

]
min

γ
γ

MN
L+1 det

[
IK +

(X̃−PãX̃w∗
dwT

d )
H
(X̃−PãX̃w∗

dwT
d )

γ

]H1
≷
H0

λ′
OGLRT−PHE, (25)

where λ′
OGLRT−PHE denotes a modification of the threshold in (15).

Assuming that γ̂0 and γ̂1 are the MLEs of γ under hypotheses H0 and H1 respectively.
The technique used in [39] is adopted to find the solution for γ̂i(i = 0, 1), which is the
unique positive solution to the following equation

R

∑
r=1

δr,i

δr,i + x
=

MN
L + 1

, (26)

where R = min(MN, K), x denotes the unknown, δr,0 and δr,1 represent the rth non-zero

eigenvalues of the matrices X̃HX̃ and
(

X̃ − PãX̃w∗
dwT

d

)H(
X̃ − PãX̃w∗

dwT
d

)
, respectively.

The detailed derivations of the above results are provided in Appendix B. Once we have
found γ̂i(i = 0, 1), it is inserted into (25), and we obtain the final OGLRT detector as

Λ′
OGLRT−PHE =

γ̂
MN
L+1
0 det

[
IK + X̃H X̃

γ̂0

]
γ̂

MN
L+1
1 det

[
IK +

(X̃−PãX̃w∗
dwT

d )
H
(X̃−PãX̃w∗

dwT
d )

γ̂1

]H1
≷
H0

λ′
OGLRT−PHE. (27)

3.2. TGLRT

In this subsection, we investigate the TGLRT criterion to address the detection problem
proposed earlier. First, we derive the GLRT using a deterministic and known matrix R.
Then, we replace R in the GLRT derived above with the training data SCM S/(KL).

The GLRT for the known R is given by [37]

ΛTGLRT−PHE =
max
αs ,γ

f (X, Y|αs, γ, R, H1 )

max
γ

f (X, Y|γ, R, H0 )

H1
≷
H0

λTGLRT−PHE, (28)
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where λTGLRT−PHE is the detection threshold. Deriving the derivative of the logarithm
of (14) regarding γ leads to

∂ ln f (X, Y|αs, γ, R, H1 )

∂γ
= −MNK

γ
+

tr
(
R−1Xαs XH

αs

)
γ2 . (29)

Setting ∂ ln f (X,Y|αs ,γ,R,H1 )
∂γ = 0, we obtain the MLE of γ under H1 as

γ̂1 =
tr
(
R−1Xαs XH

αs

)
MNK

. (30)

Inserting (30) into (14) yields

f (X, Y|αs, γ̂1, R, H1 ) =
ε

trMNK
(
R−1Xαs XH

αs

) , (31)

where ε = (MNK)MNKe−MNK−tr(R−1S)

πMNK(L+1)detK(L+1)(R)
denotes a parameter without unknown variables αs and

γ. Furthermore, we define
g(αs) = tr

(
R−1Xαs XH

αs

)
, (32)

which appears in (30) and (31) simultaneously. The derivative of (32) regarding αs leads to

∂g(αs)

∂αs
= −wT

d XH
αs R−1atr = −wT

d

(
X − αsatrwT

d

)H
R−1atr. (33)

Equation (33) to zero gives the MLE of αs as

α̂s =
aH

tr R−1Xw∗
d

aH
tr R−1atr

, (34)

where the fact wT
d w∗

d = 1 is applied. Plugging (34) into (32), we obtain

g(α̂s) = tr
(

XHR−1X
)
−
∣∣aH

tr R−1Xw∗
d
∣∣2

aH
tr R−1atr

. (35)

where symbol |·| denotes modulus of a complex number. It is worth noting that (35) can
also be interpreted as an estimate of γ̂1, which neglects constants and has no unknown
variables.

Similar to (30), the MLE of γ under H0 can be obtained as

γ̂0 =
tr
(
R−1XXH)
MNK

. (36)

Then, we can simplify (13) by applying (36) as follows

f (X, Y|γ̂0, R, H0 ) =
ε

trMNK(R−1XXH)
. (37)

After substituting (31), (35) and (37) into (28) and taking the MNKth root and perform-
ing algebraic operations, we can obtain

Λ′
TGLRT−PHE =

tr
(
R−1XXH)

tr(XHR−1X)− |aH
tr R−1Xw∗

d|
2

aH
tr R−1atrwT

d w∗
d

H1
≷
H0

λTGLRT−PHE
′. (38)

where λ′
TGLRT−PHE denotes a modification of the threshold in (28).
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As a matter of fact, in practice, (38) is not feasible due to the presence of an unknown
noise covariance matrix (NCM). Hence, we use SCM S/(KL) to replace R to obtain the
final TGLRT detector independent of R as

Λ′
TGLRT−PHE =

tr
(
X̃HX̃

)
tr
(
X̃HX̃

)
− |ãH X̃w∗

d|2
ãH ã

H1
≷
H0

λTGLRT−PHE
′. (39)

3.3. TRao Test

Let θ be a parameter vector, expressed as

θ =
[
θT

r , θT
s

]T
, (40)

where θr = αs ∈ C1×1 contains a useful argument, and θs =
[
γ, vecT(R)

]T ∈ C(1+M2 N2)×1

contains redundant arguments with symbol vec(·) denoting vectorization. The Fisher
information matrix (FIM) can be partitioned as

F(θ) =
[

Fθr ,θr(θ) Fθr ,θs(θ)
Fθs ,θr(θ) Fθs ,θs(θ)

]
, (41)

or equivalently expressed as

F(θ) = E
[(

∂ ln f (X, Y|αs, γ, R, H1 )

∂θ∗

)(
∂ ln f (X, Y|αs, γ, R, H1 )

∂θT

)]
, (42)

where

Fθi ,θj(θ) = −E

[
∂2 ln f (X, Y|αs, γ, R, H1 )

∂θ∗i ∂θT
j

]
i, j ∈ (r, s)

= E

[(
∂ ln f (X, Y|αs, γ, R, H1 )

∂θi
∗

)(
∂ ln f (X, Y|αs, γ, R, H1 )

∂θj
T

)]
,

(43)

with symbol E(·) denoting the statistical expectation. Next, the Rao test with known R is
expressed as [40]

ΛTRao−PHE =
∂ ln f (X, Y|αs, γ, R, H1 )

∂θr

∣∣∣∣ T
θ = θ̂0

[
F−1(θ̂0

)]
θr ,θr

(44)

∂ ln f (X, Y|αs, γ, R, H1 )

∂θ∗r

∣∣∣∣ θ = θ̂0

H1
≷
H0

λTRao−PHE

with θ̂0 =
[
θT

r0, θT
s0

]T
being the MLE of θ under hypothesis H0. λTRao−PHE is the detec-

tion threshold. Moreover, according to Schur complement theorem,
[
F−1(θ)

]
θr ,θr

can be
written as [

F−1(θ)
]

θr ,θr
=
[
Fθr ,θr (θ)− Fθr ,θs(θ)F

−1
θs ,θs

(θ)Fθs ,θr (θ)
]−1

. (45)

As for the partial derivative parts in (44), derivatizing the logarithm of (14) regarding
θr and θ∗r , respectively, produces

∂ ln f (X, Y|αs, γ, R, H1 )

∂θr
=

∂ ln f (X, Y|αs, γ, R, H1 )

∂αs
= wT

d

(
X − αsatrwT

d

)H
R−1atr/γ , (46)

and

∂ ln f (X, Y|αs, γ, R, H1 )

∂θ∗r
=

∂ ln f (X, Y|αs, γ, R, H1 )

∂α∗s
= aH

tr R−1
(

X − αsatrwT
d

)
w∗

d/γ . (47)
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Substituting (46) and (47) into the second equation in (43), and equating αs to zero,
result in

Fθr ,θr

(
θ̂0
)
= aH

tr R−1 E
(

Xw∗
dwT

d XH
)

R−1atr/γ̂2
0 = wT

d w∗
daH

tr R−1atr/γ̂0 = aH
tr R−1atr/γ̂0. (48)

Moreover, according to the first equation in (43), taking the derivative of (47) regarding
θT

s and performing the expectation yield

Fθr ,θs(θ) = −E
[

∂2 ln f (X, Y|αs, γ, R, H1 )

∂θ∗r ∂θT
s

]
= −E

{
∂
(
aH

tr R−1Xαs w∗
d/γ

)
∂γ

, vecT

[
∂
(
aH

tr R−1Xαs w∗
d/γ

)
∂R

]}
(49)

= E

[
aH

tr R−1Xαs w∗
d

γ2 , vecT

(
R−1Xαs w∗

daH
tr R−1

γ

)]

=

{
aH

tr R−1 E(Xαs)w
∗
d

γ2 , vecT

[
R−1 E(Xαs)w

∗
daH

tr R−1

γ

]}
= 01×(M2 N2+1).

Plugging (48) and (49) to (45), yields[
F−1(θ̂0

)]
θr ,θr

=
[
Fθr ,θr

(
θ̂0
)]−1

= γ̂0

(
aH

tr R−1atr

)−1
. (50)

Applying (46), (47) and (50) to (44) and setting αs to zero yield the Rao test for the
known R as

ΛTRao−PHE =

∣∣aH
tr R−1XHw∗

d

∣∣2
γ̂0aH

tr R−1atr
. (51)

Substitute γ̂0 in (36) into (51) and replace R with SCM S/(KL), we obtain the final
TRao test by ignoring the constant term as

Λ′
TRao−PHE =

∣∣∣ãHX̃w∗
d

∣∣∣2
tr
(
X̃HX̃

)
ãH ã

H1
≷
H0

λ′
TRao−PHE, (52)

where λ′
TRao−PHE denotes a modification of the threshold in (44).

3.4. TWald Test

The Wald test with known R is expressed is [40]

ΛTWald−PHE =
(
θ̂r1 − θr0

)H
{[

F−1(θ̂1
)]

θr ,θr

}−1(
θ̂r1 − θr0

)H1
≷
H0

λTWald−PHE, (53)

where θ̂r1 and θ̂1 are the MLEs of θr and θ under hypothesis H1, respectively. θr0 is the

value of θr under hypothesis H0.
{[

F−1(θ)
]

θr ,θr

}−1
, the Schur complement of Fθs ,θs(θ), is

expressed in the form of the inversion of (45). λTWald−PHE is the detection threshold.
For the intermediate term in (53), in the manner analogous to (48), we obtain

Fθr ,θr

(
θ̂1
)
=

aH
tr R−1atr

γ̂1
. (54)
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Furthermore, we have{[
F−1(θ̂1

)]
θr ,θr

}−1
= aH

tr R−1atr/γ̂1 (55)

Inserting (34) and (55) into (53) yields the Wald test for the known R as

Λ′
TWald−PHE =

∣∣aH
tr R−1Xw∗

d
∣∣2

aH
tr R−1atrγ̂1

H1
≷
H0

λ′
TWald−PHE (56)

where λ′
TWald−PHE denotes a modification of the threshold in (53).

Plugging γ̂1 in (35) into (56) and replacing R with SCM S/(KL), we can derive the
final TWald test as

Λ′
TWald−PHE =

∣∣∣ãHX̃w∗
d

∣∣∣2
ãH ãtr

(
X̃HX̃

)
−
∣∣∣ãHX̃w∗

d

∣∣∣2
H1
≷
H0

λ′
TWald−PHE. (57)

4. Analysis of CFAR Property

As one of the crucial features of the adaptive detectors, the CFAR property has
become a vital requirement. In this section, we refer to the analysis presented in the
literature [30,39,41] to demonstrate that the detectors proposed in (27), (39), (52) and (57)
possess the CFAR property due to their irrelevance to the noise covariance matrix R
and the scaling factor γ.

We first analyze the CFAR property of the OGLRT-PHE detector in (27). Please note

that the term
(

X̃ − PãX̃w∗
dwT

d

)H(
X̃ − PãX̃w∗

dwT
d

)
in the denominator can be rewritten as

(
X̃ − PãX̃w∗

dwT
d

)H(
X̃ − PãX̃w∗

dwT
d

)
= X̃H X̃ − X̃HPãX̃w∗

dwT
d − w∗

dwT
d X̃HPãX̃ + w∗

dwT
d X̃HPãX̃w∗

dwT
d (58)

=
(

X̃H X̃ − X̃HPãX̃
)
+
(

X̃HPãX̃ − X̃HPãX̃w∗
dwT

d

)
−
(

w∗
dwT

d X̃HPãX̃ − w∗
dwT

d X̃HPãX̃w∗
dwT

d

)
= X̃H X̃ − X̃HPãX̃ + P⊥

w∗
d
X̃HPãX̃P⊥

w∗
d
,

where P⊥
w∗

d
= IK − Pw∗

d
with Pw∗

d
= w∗

dwT
d being the projection matrix onto the column

space of w∗
d .

The first term in (58) is equivalent to

X̃HX̃ = XHS−1X =
⌢

X
H⌢

SI
−1⌢

X = γ
⌢

XI
H⌢

SI
−1⌢

XI , (59)

where
⌢

X = R−1/2 X,
⌢

SI = R−1/2 SR−1/2 and
⌢

XI =
⌢

X/
√

γ . At this point, we can observe

that under hypothesis H0, each column of
⌢

XI follows a zero-mean complex circular Gaus-

sian distribution with covariance matrix IMN , i.e.,
⌢

XI ∼ CN(0, IMN ⊗ IK). At the same time,
⌢

SI follows an LK-degree-of-freedom complex central Wishart distribution with associated

covariance matrix IMN [42], i.e.,
⌢

SI ∼ W(LK, IMN). As a result,
⌢

XI and
⌢

SI are independent
of R and γ.

The last two terms in (58) both contain X̃HPãX̃, which can be recast as

X̃HPãX̃ =
XHS−1atraH

tr S−1X
aH

tr S−1atr
=

⌢

X
H⌢

S
−1

I
⌢
a tr

⌢
a

H
tr

⌢

S
−1

I
⌢

X
⌢
a

H
tr

⌢

S
−1

I
⌢
a tr

=
γ

⌢

X
H
I

⌢

S
−1

I
⌢
a tr

⌢
a

H
tr

⌢

S
−1

I
⌢

XI
⌢
a

H
tr

⌢

S
−1

I
⌢
a tr

, (60)
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where
⌢
a tr = R−1/2 atr. Please note that

⌢
a tr ∈ CMN×1 is a full-column-rank matrix, and

after orthogonal triangular decomposition, it can be expressed as

⌢
a tr = aUs, (61)

where a ∈ C1×1 is a non-zero scalar, and sub-unitary matrix Us ∈ CMN×1 is equivalent to
the first column of an unitary matrix U ∈ CMN×MN, with Ia = UHUs =

[
1 01×(MN−1)

]T ∈
CMN×1 . In this way, (60) can be further transformed to

X̃HPãX̃ =
γZHQ−1

(
UH⌢

a tr

)(
UH⌢

a tr

)H
Q−1Z(

UH⌢
a tr

)H
Q−1

(
UH⌢

a tr

) =
γZHQ−1IaIH

a Q−1Z
IH

a Q−1Ia
, (62)

where Z = UH
⌢

XI and Q = UH
⌢

SIU. Please note that under hypothesis H0, Z and Q

in (62) are statistically equivalent to
⌢

XI and
⌢

SI in (59), respectively. Hence, they are also
uncorrelated with R and γ. To proceed with the proof, we partition the matrices Z and Q
as needed. Let

Z =

[
Z1 ∈ C1×K

Z2 ∈ C(MN−1)×K

]
, (63)

Q =

[
Q11 ∈ C1×1 Q12 ∈ C1×(MN−1)

Q21 ∈ C(MN−1)×1 Q22 ∈ C(MN−1)×(MN−1)

]
, (64)

and

Q−1 =

[
Q11 ∈ C1×1 Q12 ∈ C1×(MN−1)

Q21 ∈ C(MN−1)×1 Q22 ∈ C(MN−1)×(MN−1)

]
(65)

with Q11 =
(

Q11 − Q12Q−1
22 Q21

)−1
and Q12 = −

(
Q11 − Q12Q−1

22 Q21

)−1
Q12Q−1

22 = −Q11

× Q12Q−1
22 according to the partitioned matrix inversion formula [43]. Since Q and Q−1

both are Hermitian matrices, i.e., Q = QH and Q−1 =
(
Q−1)H , we have Q21 =

(
Q12)H .

Then, (62) can be further reformulated as

X̃HPãX̃ = γ
[
ZH

1 ZH
2

][Q11

Q21

][
Q11 Q12

][Z1

Z2

](
Q11

)−1

= γ
(

Q11
)−1[

ZH
1 ZH

2

][Q11

Q21

]
Q11

[
Q11 Q12

][Z1

Z2

](
Q11

)−1
(66)

= γ
(

Q11
)−1

[
Q11Z1 +

(
Q21

)H
Z2

]H
Q11

(
Q11Z1 + Q12Z2

)(
Q11

)−1

= γ
(

Z1 − Q12Q−1
22 Z2

)H
Q11

(
Z1 − Q12Q−1

22 Z2

)
= γAH Q11A

where A = Z1 − Q12Q−1
22 Z2. Since Z and Q are independent on R and γ, A is also

independent on R and γ.
In the same way, the term X̃HX̃ in the numerator of (27) is also equivalent to (59). On

the other hand, following the approach in [39], γ̂0 and γ̂1 in (27) can be recast as

γ̂0 = γι0, (67)

and
γ̂1 = γι1, (68)
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respectively, where ι0 and ι1 are independent of R and γ. Plugging (58), (59), (66), (67)
and (68) into (27) results in

Λ′
OGLRT−PHE =

ι
MN
L+1
0 det

[
IK +

⌢
X I

H⌢
S I

−1⌢
X I

ι0

]

ι
MN
L+1
1 det

IK +

⌢
X I

H⌢
S I

−1⌢
X I−AHQ11A+P⊥

w∗
d

AHQ11AP⊥
w∗

d
ι1

 . (69)

Under hypothesis H0, it can be inferred that
⌢

XI ,
⌢

SI , Q, A and ιi, (i = 0, 1) are not
related to R and γ. Therefore, the OGLRT-PHE detector exhibits the CFAR property against
R and γ.

Furthermore, note that (39), (52) and (57) can all be expressed in the same form as

Λ =

∣∣∣ãHX̃w∗
d

∣∣∣2
ãH ã tr

(
X̃HX̃

) =
wT

d X̃H ããHX̃w∗
d

ãH ã tr
(
X̃HX̃

) =
tr
(

wT
d X̃HPãX̃w∗

d

)
tr
(
X̃HX̃

)
=

tr
(

w∗
dwT

d X̃HPãX̃w∗
dwT

d

)
tr
(
X̃HX̃

) =
tr
(

Pw∗
d
X̃HPãX̃Pw∗

d

)
tr
(
X̃HX̃

) . (70)

Inserting (59) and (66) into above expression, we obtain

Λ =
tr
(

Pw∗
d
X̃HPãX̃Pw∗

d

)
tr
(
X̃HX̃

) =
tr
(

Pw∗
d
AHQ11APw∗

d

)
tr
(

⌢

XI
H⌢

SI
−1⌢

XI

) . (71)

Clearly from the derivation above, we conclude that the TGLRT-PHE, the TRao-PHE,
and the TWald-PHE detectors posses the property of CFAR.

5. Simulation Results

In this section, we conduct extensive numerical simulations to evaluate the perfor-
mance of the proposed detectors based on the FDA-MIMO radar. For all simulations, we
assume the radar operates at f0 = 10 GHz, mounted with 3 transmit antennas and 4 receive
antennas. The inter-element spacings are dT = dR = c/(2 f0) , and the bandwidth is B = 1
MHz. Unless stated otherwise, K = 4, L = 6, ∆ f = 1 MHz, and γ = 3.2. Due to the
presence of thermal noise, mainlobe deceptive jamming, and range-compensated clutter in
the scenario, the covariance matrix R can be modeled as

R = σ2
n

(
Rn + ∑

j
ξ jam,jRj

)
, (72)

where σ2
n is noise (including clutter) power, generated deterministically according to the

signal-to-noise ratio (SNR) defined as ξn = 10log10
|αs |2
σ2

n
. ξ jam,j is the jamming-to-noise ratio

(JNR) of the jth deceptive jamming, defined as ξ jam,j = 10log10
σ2

jam,j

σ2
n

with σ2
jam,j is the power

of the jth deceptive jamming. Moreover, the covariances of noise and deceptive jamming
can be modeled as

Rn(i, j) = ρ|i−j|, (73)

and
Rj = atr

(
rj, θj

)
aH

tr
(
rj, θj

)
, (74)

respectively. In the simulation environment, we set j = 2, ξ jam,j = 15 dB, and ρ = 0.9.
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In addition, the detection thresholds and probabilities of detection (PDs) are obtained
through the MC techniques, based on 100/PFA and 104 trials, respectively. PFA represents
the probability of a false alarm, which is set to PFA = 10−3.

Figure 1 illustrates the detection thresholds of proposed detectors in various cases
of power mismatch γ and ρ, respectively. We can find that the detection thresholds of
proposed detectors are less affected by the changes in γ and ρ, which confirms that the four
detectors have CFAR property against γ and R in turn.
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Figure 1. Detection threshold versus (a) γ and (b) ρ, respectively.

Figure 2 displays the detection performance of proposed detectors with different
snapshots. In the legend, CD denotes the detector in (38) with a known covariance matrix
R. Please note that this detector is impractical since it requires knowledge of the covariance
matrix in advance. However, this ideal detector provides a useful performance constraint
for any suboptimal method. Hence, it can be used to measure the performance of the
proposed detectors. From Figure 2, it is evident that the OGLRT-PHE detector achieves
a superior detection performance compared to the other three proposed detectors. This
is because the OGLRT-PHE detector uses both the training and test data to estimate the
covariance matrix R, which results in a more accurate estimation. The remaining three
proposed detectors perform similarly as their detection statistics expressions are equivalent.
Additionally, the larger the number of snapshots K, the better the performance of the
proposed detectors, and the smaller the performance gaps between the proposed detectors
and CD. Therefore, it can be predicted that when the number of snapshots K is large enough,
the performance of all proposed detectors will be almost the same. This is because a larger
number of snapshots leads to an increase in training data, which in turn provides a more
reliable estimate of the covariance matrix R.

Figure 3 shows the detection performance of the proposed detectors with different
sample covariance snapshots. It is observed that as we take more sample covariance
snapshots L, the detectors’ performance improves. This is consistent with the results
obtained by increasing the number of snapshots K, as shown in Figure 2. The improvement
is because increasing L and K provides more training data, which enhances the estimation
precision of the covariance matrix R. However, there is a notable difference between
Figures 2b and 3b. With the same amount of training data (the product of K and L is
equal), increasing the number of snapshots K leads to significant improvement in detection
performance. Moreover, Figure 3a illustrates that the proposed OGLRT-PHE detector
outperforms other proposed detectors with less training data.
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Figure 2. PD versus SNR for different cases of K. (a) K = 4, (b) K = 8.
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Figure 3. PD versus SNR for different cases of L. (a) L = 4, (b) L = 12.

Figure 4 demonstrates the detection performance of the proposed detectors where
the frequency increment is set as ∆ f = 10 MHz. Together with Figure 2a, it can be found
that the performance of all these detectors degrades significantly with the increase of the
frequency increment ∆ f .
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Figure 4. PD versus SNR with ∆ f = 10 MHz.

Figure 5 plots the detection performance of the proposed detectors against various
power mismatch γ where SNR is set as ξn = 0 dB. The results indicate that the detection



Electronics 2024, 13, 851 15 of 21

performance of the proposed detector worsens as the power mismatch γ increases. The
reason for this is that a larger power mismatch causes more disturbance, leading to poorer
estimation precision of the covariance matrix R. Furthermore, the OGLRT-PHE detector
still gains the highest PD among all the proposed detectors.
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Figure 5. PD versus γ with ξn = 0 dB.

In practice, there can be inaccuracies in the array calibration and waveform matching,
which can cause the actual steering vectors to deviate from the presumed ones. To measure
the degree of these discrepancies, we employ two parameters—cos2(ϕ1) and cos2(ϕ2)—
which are defined as

cos2(ϕ1) =

∣∣aH
tr (rs, θs)R−1atr(r0, θ0)

∣∣
aH

tr (rs, θs)R−1atr(rs, θs)aH
tr (r0, θ0)R−1atr(r0, θ0)

, (75)

and

cos2(ϕ2) =

∣∣wH
d ( fd,0)wd( fd,s)

∣∣2∥∥wH
d ( fd,0)

∥∥2∥∥wd( fd,s)
∥∥2 , (76)

respectively. Here, atr(r0, θ0) and wd( fd,0) representing the actual transmit-receive steering
vector and the actual Doppler steering vector, respectively. Smaller values of cos2(ϕ1) and
cos2(ϕ2) indicate a more severe mismatch.

Figure 6 depicts the detection performance of the proposed detectors in the presence of
steering vector mismatches. The figure shows three scenarios: Figure 6a only the transmit-
receive steering vector mismatch exists (cos2(ϕ1) = 0.8), Figure 6b only the Doppler
steering vector mismatch exists (cos2(ϕ2) = 0.8), and Figure 6c both transmit-receive and
Doppler steering vector mismatches exist (cos2(ϕ1) = 0.8 and cos2(ϕ2) = 0.8). When
compared to Figure 2a, it is clear that all the proposed detectors’ performances decline
in the presence of steering vector mismatches, with the OGLRT-PHE detector having the
fastest decline in PD. The effect of the Doppler steering vector mismatch on the PDs is more
significant when there is a single steering vector mismatch. On the other hand, when both
steering vector mismatches exist, the TGLRT-PHE, TRao-PHE, and TWald-PHE detectors
have higher PDs, indicating that these three detectors are more robust.
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Figure 6. PD versus SNR for different cases of steering vector mismatch. (a) cos2(ϕ1) = 0.8,
(b) cos2(ϕ2) = 0.8. (c) cos2(ϕ1) = 0.8 and cos2(ϕ2) = 0.8.

For comparison, we introduce detectors based on OGLRT, TGLRT, TRao, and TWald
criteria in a homogeneous environment. Their statistical expressions are [28,41]:

ΛOGLRT−HE =
1 + wT

d X̃H X̃w∗
d

wT
d w∗

d

1 + wT
d X̃HP⊥

ã X̃w∗
d

wT
d w∗

d

, (77)

and
ΛTS−HE = tr

(
Pw∗

d
X̃HPãX̃Pw∗

d

)
= wT

d X̃HPãX̃w∗
d , (78)

respectively, with Pã and P⊥
ã being defined in Appendix A. Here, the expressions for the

TGLRT, TRao, and TWald detectors in homogeneous environments are all equivalently
uniform to the TS-HE detector.

Figure 7 displays the detection performance of all detectors in homogeneous en-
vironments. Notably, the proposed detectors demonstrate comparable performance to
those derived from homogeneous environments and even exhibit a slight advantage. This
outcome serves as a validation of the effectiveness of the proposed detectors.



Electronics 2024, 13, 851 17 of 21

-10 0 10 20
SNR(dB)

0

0.2

0.4

0.6

0.8

1

Pr
ob

ab
ili

ty
 o

f 
de

te
ct

io
n

OGLRT-PHE
TGLRT-PHE
TRao-PHE
TWald-PHE
CD
OGLRT-HE
TS-HE

Figure 7. PD versus SNR in HE (γ = 1).

6. Conclusions

In this paper, we comprehensively explored the problem of adaptive moving-target
detection in partially homogeneous environments for an FDA-MIMO radar platform. Based
on different criteria, OGLRT-PHE, TGLRT-PHE, TRao-PHE, and TWald-PHE detectors with
CFAR properties were derived using training data. Numerical experiments show that the
OGLRT-PHE detector performs optimally, while the rest of the proposed detectors are more
robust to signal mismatch. Moreover, these proposed detectors perform comparably to
detectors designed for homogeneous environments, even in such environments. For future
work, the detection problem for FDA-MIMO radar in compound Gaussian disturbance and
other nonhomogeneous environments deserves further investigation. Moreover, Durbin
and gradient tests can also provide new methods for FDA-MIMO radar target detection.
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PA phased array
DOF degree of freedom
GLRT generalized maximum likelihood ratio test
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OGLRT one-step GLRT
TGLRT two-step GLRT
TRao two-step Rao
TWald two-step Wald
HE homogeneous environments
PHE partially homogeneous environments
CFAR constant false-alarm rate
HRWS-SAR high-resolution and wide-swath synthetic aperture radar
ICM interference covariance matrix
CUT cell under test
RCS radar cross section
IID independent and identically distributed
PDF probability density function
SCM sample covariance matrix
MLE maximum likelihood estimate
w.r.t with respect to
NCM noise covariance matrix
FIM Fisher information matrix
PD probability of detection
PFA probability of false alarm
SNR signal-to-noise ratio
JNR jamming-to-noise ratio
MC Monte Carlo

Appendix A. Deviation of (20) and (21)

Please note that X̃H
αs X̃αs in (19) can be decomposed into

X̃H
αs X̃αs = X̃||H

αs X̃||
αs + X̃⊥HX̃⊥, (A1)

where X̃||
αs = PãX̃αs = PãX̃ − αsãwT

d and X̃⊥ = P⊥
ã X̃αs = P⊥

ã X̃, with Pã = ããH

ãH ã and
P⊥

ã = IMN − Pã being the projection matrix and the orthogonal projection matrix onto the
column space of ã, respectively. Using the inequality det(A + B) ≥ det(A) [43], where
A ∈ CM×M is positive define matrix and B ∈ CM×M is positive semi-define matrix,
we have,

min
αs∈C

f (αs) = min
αs∈C

det

[
IK +

X̃||H
αs X̃||

αs + X̃⊥HX̃⊥

γ

]

= min
αs∈C

det

[(
IK +

X̃⊥HX̃⊥

γ

)
+

X̃||H
αs X̃||

αs

γ

]
(A2)

= det

(
IK +

X̃⊥HX̃⊥

γ

)
.

When the minimum is obtained, X̃||H
αs X̃||

αs = 0K×K, i.e., X̃||
αs = 0MN×K, that leads to

αsãwT
d = PãX̃. (A3)

Pre-multiplying both sides of (A3) by ãH yields

αsãH ãwT
d = ãHPãX̃. (A4)

Post-multiplying both sides of (A4) by w∗
d , after sorting, it leads to

α̂s =
ãHPãX̃

ãH ã
w∗

d =
ãHX̃w∗

d
ãH ã

, (A5)
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where the fact wT
d w∗

d = 1 is used again.
Obviously, the minimum at this point can be rewritten as

min
αs∈C

f (αs) = f (α̂s) = det

(
IK +

X̃⊥HX̃⊥

γ

)

= det

(
IK +

X̃H
α̂s

X̃α̂s

γ

)

= det

(
IK +

(
X̃ − α̂sãwT

d
)H(X̃ − α̂sãwT

d
)

γ

)
(A6)

= det

IK +

(
X̃ − PãX̃w∗

dwT
d

)H(
X̃ − PãX̃w∗

dwT
d

)
γ

,

with X̃α̂s = X̃ − α̂sãwT
d . Or, in another way, directly plugging (A5) into (19) also can attain

the minimum.

Appendix B. Deviation of (26)

The numerator and denominator of (25) share the same expression form as

f (γ) = γ
MN
L+1 det

[
IMN +

A
γ

]
= γ

MN
L+1

R

∏
r=1

(
1 +

δr

γ

)
, (A7)

where A ∈ CK×K is positive semi-define matrix with rank R and non-zero eigenvalues
δr(r = 1, · · · , R). Taking the derivative of (A7) regarding γ, we have

d f (γ)
dγ

=
MN
L + 1

γ
MN
L+1−1

[
MN
L + 1

R

∏
r=1

(
1 +

δr

γ

)
−

R

∑
i=1

δi
γ

R

∏
j=1,j ̸=i

(
1 +

δj

γ

)]
(A8)

= γ
MN
L+1−1

R

∏
r=1

(
1 +

δr

γ

)(
MN
L + 1

−
R

∑
r=1

δr

γ + δr

)
.

Define

g(γ) =
R

∑
r=1

δr

γ + δr
. (A9)

Clearly, g(γ) is continuous and monotonically decreasing over γ ∈ (0,+∞), thus we
have

max
γ

g(γ) = g(0) = R, (A10)

and
min

γ
g(γ) = g(+∞) = 0. (A11)

Therefore, if MN
L+1 ∈ (0, R), there is a unique positive value of γ satisfying d f (γ)

dγ = 0 by

solving the equation MN
L+1 =

R
∑

i=1

δi
γ+δi

. Otherwise, namely MN
L+1 ≥ R, it follows that d f (γ)

dγ ≥ 0,

∀γ ∈ (0,+∞), hence, the minimum of f (γ) occurs at γ = 0. The latter case should be
excluded because γ corresponding to the minimum of f (γ) is out of the range. In summary,

f (γ) attains its minimum regarding γ ∈ (0,+∞) as the solution of MN
L+1 =

R
∑

i=1

δi
γ+δi

.

Now, we go back to (25). For the numerator, there is A = X̃H X̃ and its non-zero
eigenvalues δr,0s, (r = 1, · · · , R). For the denominator, there is A =

(
X̃ − PãX̃w∗

dwT
d

)
×
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(
X̃ − PãX̃w∗

dwT
d

)H
and its non-zero eigenvalues δr,1s, (r = 1, · · · , R). Herein, R = min

(MN, K).
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