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Abstract: This paper presents an efficient two‑dimensional (2D) direction of arrival (DOA) estima‑
tion method, termed as decoupled projected atomic norm minimization (D‑PANM), to solve the
angle‑ambiguity problem. It first introduces a novel atomic metric via projecting the original atom
set onto a smoothing space, based on which we formulate an equivalent semi‑definite program‑
ming (SDP) problem. Then, two relatively low‑complexity decoupled Toeplitz matrices can be ob‑
tained to estimate the DOAs. We further exploit the structural information hidden in the newly
constructed data to avoid pair matching for the azimuth and elevation angles when the number of
sensors is odd, and then propose a fast and feasible decoupled alternating projections (D‑AP) algo‑
rithm, reducing computational complexity to a great extent. Numerical simulations are performed
to demonstrate that the proposed algorithm is no longer restricted by angle ambiguity scenarios,
but instead provides a more stable estimation performance, even when multiple signals share the
same angles in both azimuth and elevation dimensions. Additionally, it greatly improves the reso‑
lution, with control of the computation load compared with the existing atomic norm minimization
(ANM) algorithm.

Keywords: two‑dimensional DOA estimation; angle ambiguity; atomic norm minimization; pair
matching; fast algorithm

1. Introduction
Two‑dimensional (2D) direction of arrival (DOA) estimation is an important branch

of array signal processing encountered in various applications: radar, wireless communi‑
cation, sonar, seismology, etc. [1–5]. The core issue of this field is the nonlinear 2D spatial
parameters estimation problem. Although numerous algorithms have been devised for 2D
DOA estimation to date [6–8], the investigation of fast and effective algorithms with high
resolution and precision, utilizing highly limited snapshots with increasingly complex sig‑
nal scenarios, remains a hot topic.

The current state‑of‑the‑art high‑resolution 2D DOA estimation algorithms primarily
focus on the subspace‑basedmethods and the sparsity‑based ones. The classic subspace al‑
gorithms are 2DMUSIC and 2D ESPRIT [9–11]: MUSIC is implemented by employing the
orthogonality of the steering vectors and the noise subspace, with a huge computational
cost of 2D spectral peak search, and ESPRIT constructs two subspaces of rotation‑invariant
properties corresponding to two diagonal angular matrices, respectively, thus avoiding a
spectral search. Although the subspace methods mentioned above have achieved consid‑
erable performance in terms of resolution, theoretically reaching the Cramér–Rao bound
(CRB), they heavily rely on a relatively large number of snapshots, an environment with
a high signal‑to‑noise ratio (SNR), and a known source number. Conversely, the sparse
reconstruction algorithms are intended to build mathematical models between array ob‑
servation data and the 2D DOA, followed by a series of optimization steps based on dif‑
ferent matching criteria, which no longer require the number of sources as a prior and
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are robust to noise. Nevertheless, the original sparsity‑based algorithms divide the entire
spatial directions into discrete grids [12–14], forming a redundant dictionary to formulate
the array data, where the grid mismatch problem may occur to a large extent. In view of
this, varieties of off‑grid algorithms have been proposed, one after the other, to overcome
this strict grid limit by introducing quantization errors between divided grids and real val‑
ues [15–17], and many types of strategies are applied to approximate these errors instead.
Unfortunately, these strategies can still hardly express the data precisely when the quanti‑
zation errors are larger, reducing the accuracy of algorithms greatly. In addition, they all
have to face huge computational challenges.

The sparse reconstruction algorithms have opened a new chapter, with the concept
of continuous compressed sensing (CCS) first introduced by Candès et al. [18], and the es‑
timated parameters are no longer dependent on the grid, but allowed to take any values.
Thus, a theory of super‑resolution was born based on the total variation (TV) norm, along
with a theoretically minimum interval condition. Due to the CCS presented in a continu‑
ous domain, Chandrasekaran et al. [19] and Tang et al. [20] then generalized the theory to
the discrete domain and developed an atomic norm metric, which served as the founda‑
tion for a range of later algorithms, especially in terms of the parameter estimation, where
the atomic norm minimization (ANM) theory made it possible to handle data with a few
snapshots—even a single one—while retaining the advantages of sparse algorithms. Mean‑
while, Tang et al. [20] argued that the atomic norm could be minimized through equiva‑
lent semi‑definite programming (SDP), which was further extended to one‑dimensional
(1D) parameter estimation from complete and incomplete data by Yang et al. [21], and
they also completed an intensive study of a reweighting strategy to enhance the resolution
greatly [22]. Similar theories have been advanced regarding high‑dimensional data by Chi
et al. [23] and [24],[25]]. However, the computational complexity begins to increase dra‑
matically as the number of dimensions increases. To handle this, Tian et al. [26] proposed
a decoupled atomic norm minimization (DeANM) algorithm expressing the 2D Toeplitz
problem into two decoupled 1D matrices. Despite the algorithm displaying a low com‑
plexity in terms of computational load, its results are ill‑posed when the sources share
the same angles in either azimuth or elevation dimension, i.e., they exhibit the problem of
angular ambiguity.

In this paper, we consider 2D DOA estimation for a uniform rectangular array (URA)
in the case of angle ambiguity and propose an efficient optimization method based on the
framework of atomic normminimization (ANM). Motivated by the idea of spatial smooth‑
ing processing [27], we introduce a novel atommetric via a projection operator, which fully
exploits the phase elimination property of the SDP problem converted from ANM. The
SDP is formulated mainly by two relatively low‑complexity decoupled Toeplitz matrices,
which is similar to the de‑noising covariances in the traditional sense, and hence, the esti‑
mations of azimuth and elevation of interest can be efficiently achieved, respectively. This
proposed algorithm is, therefore, named decoupled projected atomic norm minimization
(D‑PANM). In addition, this paper presents a more stable recovery method without pair
matching, utilizing the newly constructed atomwhen the array has an odd number of sen‑
sors. This method always provides correct angle pairs, even in complex scenarios where
multiple signals share the same angles. Subsequently, a fast implementation of D‑PANM,
named decoupled alternating projections (D‑AP), is presented, which is generalized from
the 1D alternating projections (AP) algorithm [28], reducing the computational complexity
greatly compared with the most commonly used SDP solver, namely, SDPT3. However,
its application is conditional. The simulation results show that the proposed D‑PANM is
no longer limited by the application scenarios and exhibits a better anti‑noise performance
than the DeANM algorithm proposed in [26]. Furthermore, compared with the vectorized
ANM algorithm [23,24], it provides more effective DOA estimation without pair matching,
even when multiple signals share the same azimuth and elevation angles, and it addition‑
ally has remarkable advantages in terms of both resolution and computational load.

Our main contributions are summarized as follows:
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• We formulate a novel atom norm metric under the framework of ANM via a defined
projected operator, which not only follows the decoupled strategy of DeANM to re‑
duce the complexity, but also has the ability to handle the angle‑ambiguity problem
compared with existing methods.

• We utilize the structural characteristics of the newly constructed data to provide a
more stable recovery criterion without pair matching.

• We present a fast implementation of our algorithm to reduce the computational com‑
plexity, and employ a joint low‑rank projection to improve the convergence rate.

• We further show that our proposed algorithm with a decoupled reweighted strategy
has a higher resolution than existing vectorized ANM.
The rest of the paper is organized as follows. Section 2 formulates the 2DDOA estima‑

tionmodel and introduces the problem setup. Section 3 introduces the proposed approach.
Section 4 performs numerical simulations to validate the proposed method. Section 5 con‑
cludes the paper. For ease of presentation, the main abbreviations used in this paper are
provided in Table 1, and a brief overview of the proposed method and the related ANM
algorithms is also given in Table 2.

Table 1. The abbreviation index.

Acronyms Full Name Acronyms Full Name

1 D one‑dimensional TV total variation

2 D two‑dimensional AP alternating projections

DOA direction of arrival MM majorization‑minimization

URA uniform rectangular
array SDP semi‑definite programming

CRB Cramér–Rao bound PSD positive semidefinite

SNR signal‑to‑noise radio CCS continuous compressed sensing

RMSE root mean squared error ANM atomic norm minimization

AWGN additive white
Gaussian noise CVX Matlab software package for

convex programming [29]

MUSIC multiple signal
classification SDPT3 Matlab software package for

semidefinite programming [30]

ESPRIT

estimation of signal
parameters using

rotational invariance
techniques

MMV multiple measurement vector

DeANM decoupled atomic norm
minimization D‑PANM decoupled projected atomic

norm minimization

vecANM vectorized atomic norm
minimization D‑PRAM decoupled projected reweighted

atomic norm minimization

vecRAM
vectorized reweighted

atomic norm
minimization

D‑AP decoupled alternating
projections

Table 2. An overview of the proposedmethod and related algorithms under the framework of ANM.

Algorithms Main Idea Advantages Challenges

ANM(1D)
[19,20]

Atom norm
minimization (ANM).
Semi‑definite
programming (SDP).

Resolution: high.
Number of snapshots:
small.
Number of sources:
not required.

A minimum
separation between
the parameters
is required.
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Table 2. Cont.

Algorithms Main Idea Advantages Challenges

RAM(1D)
[22]

Iteratively carry out
ANM(1D) with A
reweighting strategy.

Resolution: higher, no
limit to minimum
separation.

Applied only to
1D data.

vecANM(2D)
[23]

2D ANM induced by
vectorized atoms.
An equivalent SDP.

Retains advantages of
the ANM framework
for 2D data.
Ability to handle
angle‑ambiguity
problem: yes.

Computational cost:
huge.
Pair matching
required: yes.

DeANM(2D)
[26]

2D ANM induced by
atoms in matrix form.
A decoupled strategy
for SDP.

Computational cost:
low.
Number of snapshots:
single.

Ability to handle
angle‑ambiguity
problem: no.
Anti‑noise
performance:
reduced.

Proposed
D‑PANM(2D)

2D ANM induced by
novel atoms constructed
via projection operator.
A decoupled strategy
for SDP.
A recovery criterion
without pair matching
based on the structural
characteristics of the
newly constructed data.

Ability to handle
angle‑ambiguity
problem: yes.
Anti‑noise
performance: better
than DeANM.
Computational cost:
lower than vecANM
Pair matching
required: no.
Number of snapshots:
single.

Computational cost:
having space
to improve.

Proposed
D‑AP(2D)

A fast solver for
D‑PANM.
Decoupled alternating
projections.
A joint projection.

Computational cost:
low.

Anti‑noise
performance:
reduced.

Proposed
D‑PRAM(2D)

Iteratively carries out
D‑PANM(2D) with a
decoupled reweighting
strategy.

Resolution: higher than
reweighted version of
vecANM, i.e., vecRAM
(in Section 4).

Computational cost:
increased.

Notations: Boldface letters stand for vectors and matrices. (·)∗, (·)T , (·)H , (·)−1, (·)+,
and E{·} denote the conjugate, transpose, conjugate transpose, inverse, pseudo‑inverse,
and statistical expectation, respectively. trace(·), T1(·), T(·), rank(·), and conv(·) represent
the trace, the 1D Toeplitz matrix, the block Toeplitz matrix, the rank, and the convex hull,
respectively. C denotes the set of complex numbers. diag(A) retains the diagonal elements
of A as a vector, while DIAG(a) constructs a matrix with vector a as the diagonal and
zeros elsewhere. ⌈·⌉ and ⌊·⌋ are rounded up and down to integers, respectively. vec(A)
indicates the vectorization of the matrix A. ∥·∥ and ∥·∥F stand for ↕2 and the Frobenius
norm, respectively. ∥ · ∥A represents the atom norm induced by A. |·| is the amplitude of
a complex scalar or the absolute of a real one. ⊗ denotes the Kronecker product. A ≽ 0
implies that A is positive semidefinite (PSD).

2. Signal Model and Problem Statement
Consider a uniform rectangular array (URA) consisting of N × M sensors with inter‑

sensor spacing d along the x‑direction and z‑direction, respectively. There are I far‑field
narrowband uncorrelated signals {ci(t)}I

i=1 impinging from distinct directions
{(θi, φi)}I

i=1, where θi represents the azimuth angle and φi is the elevation value. Note
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that θi is redefined as the angle between the signal and the yoz plane rather than the tradi‑
tional one (Figure 1).

Electronics 2024, 13, x FOR PEER REVIEW 5 of 25 
 

 

that i  is redefined as the angle between the signal and the yoz plane rather than the 

traditional one (Figure 1). 

 

sources

y

z

x





......

...
...

...
...

...

...

...

...

 

Figure 1. Uniform rectangular array (URA) configuration. 

Therefore, the single-snapshot array output matrix without noise can be expressed 

as  

( ) ( ) ( ) ( )( )
1

M

I
H

H

N i N i M i

i

c  

=

= =X A θ CA φ a a  (1) 

where ( ) ( ) ( ) ( )1 2, , ,N N N N I  =   A θ a a a  is the array manifold matrix with the steering 

vectors ( ) ( ) ( ) ( ),1 ,2 ,, , ,
T

N i N i N i N N ia a a    =  a , having a Vandermonde structure of size 

N , and ( ) ( ) ( ) ( )1 2, , ,M M M M I     =  A φ a a a  is defined similarly, with conjugated Van-

dermonde steering vectors ( ) ( ) ( ) ( ),1 ,2 ,, , ,
T

M i M i M i M M ia a a       =  a   of size M  . 

( )idiag c=C , where i i ic c =  with ic  being the amplitude of the receiving signal ic  

and i  being the phase. Let the spacing d  be half the wavelength of the signals as usual, 

and the elements of X  can then be given by  

( ) ( ) ( )1 sin 1 sin

1

I
j n j m

i

i

x n,m c e e
   − − − −

=

=  (2) 

In addition, assume that the phases  
0

I

i i


=
 are i.i.d. samples uniformly drawn from 

either distribution with mean   0iE  =  or the complex unit circle, which is a necessary 

condition to guarantee the solutions of the subsequent algorithms in this paper [20,31]. 

The goal of our paper is to recover  
1

I

i i


=
 and  

1

I

i i


=
 from the receiving data X . 

Note that X  is a linear combination of a few steering matrices ( ) ( )( )
H

N i M i a a . As is 

similar to the decoupled atomic norm minimization (DeANM) algorithm in [26], we then 

utilize the atomic norm to seek the sparsest expression of some defined atoms by treating 

( ) ( )( )
H

N i M i a a   as the atom. Specifically, the atom set M   and the atomic norm in-

duced by M  are defined as  

( ) ( )( )     
( )     

, , , ,

       = , , ,

H

M N M

M

       

   

=  −  −

  −  −

a a

A

 (3) 

Figure 1. Uniform rectangular array (URA) configuration.

Therefore, the single‑snapshot array output matrix without noise can be expressed as

X = AN(θ)CAH
M(φ) =

I

∑
i=1

ciaN(θi)(a∗M(φi))
H (1)

whereAN(θ) = [aN(θ1), aN(θ2), · · · , aN(θI)] is the arraymanifoldmatrixwith the steering
vectors aN(θi) = [aN,1(θi), aN,2(θi), · · · , aN,N(θi)]

T , having a Vandermonde structure of
size N, andAM(φ) =

[
a∗M(φ1), a∗M(φ2), · · · , a∗M(φI)

]
is defined similarly, with conjugated

Vandermonde steering vectors a∗M(φi) =
[

a∗M,1(φi), a∗M,2(φi), · · · , a∗M,M(φi)
]T

of size M.
C = diag(ci), where ci = |ci|ξi with |ci| being the amplitude of the receiving signal ci and
ξi being the phase. Let the spacing d be half the wavelength of the signals as usual, and the
elements of X can then be given by

x(n, m) =
I

∑
i=1

cie−jπ(n−1) sin θe−jπ(m−1) sin φ (2)

In addition, assume that the phases {ξi}I
i=0 are i.i.d. samples uniformly drawn from

either distribution with mean E{ξi} = 0 or the complex unit circle, which is a necessary
condition to guarantee the solutions of the subsequent algorithms in this paper [20,31].

The goal of our paper is to recover {θi}I
i=1 and {φi}I

i=1 from the receiving data X.
Note that X is a linear combination of a few steering matrices aN(θi)

(
a∗M(φi)

)H . As is
similar to the decoupled atomic norm minimization (DeANM) algorithm in [26], we then
utilize the atomic norm to seek the sparsest expression of some defined atoms by treating
aN(θi)

(
a∗M(φi)

)H as the atom. Specifically, the atom setAM and the atomic norm induced
by AM are defined as

AM =
{
aN(θ)

(
a∗M(φ)

)H , θ ∈ [−π, π], φ ∈ [−π, π]
}

= {AM(Θ), Θ ∈ [−π, π]× [−π, π]}
(3)

∥X∥AM
= inf

{
I

∑
i
|ci|

∣∣∣∣∣X =
I

∑
i

ciAM(Θi), AM(Θ) ∈ AM

}
(4)

where Θ = (θ, φ), and ∥·∥AM
denotes the atom norm symbol. Next, the atomic norm

∥X∥AM
is optimized via an equivalent semi‑definite programming (SDP) given by
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∥X∥AM
= min

uθ ,uφ

{
1

2
√

NM

(
trace(T1(uθ)) + trace

(
T1
(
uφ

)))}
s.t.

[
T1
(
uφ

)
XH

X T1(uθ)

]
≽ 0

(5)

where T1(uθ) and T1
(
uφ

)
denote the 1D Toeplitz matrices, with uθ and uφ as their respec‑

tive first columns, and the {θi}I
i=1 and {φi}I

i=1 of interest are coded in these two Toeplitz
matrices, respectively. Once the optimum solutions T1(ûθ) and T1

(
ûφ

)
are determined,

the estimates of {θi}I
i=1 and {φi}I

i=1 can be obtained accordingly. Unfortunately, when
two or more signals impinge from the same direction in either the azimuth or elevation
dimension, the optimization results of (5) will be ill‑posed because the Toeplitz matrix of
the corresponding dimension will be rank‑deficient.

3. The Proposed Approach
3.1. The Proposed D‑PANM

In order to handle the angle‑ambiguity problem mentioned above, [27] adopted a
linear projection operator to map the array output matrix to a block Hankle matrix, and
then exploited the newly constructed array matrix to estimate the DOAs combined with a
traditional matrix pencil approach.

The constructed matrix is a K × K block Hankle matrix, written as

Xe=


X0 X1 · · · XK−1
X1 X2 · · · XK
...

...
...

...
XK−1 XK · · · XN−1

 (6)

where

Xn =


x(n, 0) x(n, 1) · · · x

(
n, L − 1

)
x(n, 1) x(n, 2) · · · x

(
n, L

)
...

... · · ·
...

x(n, L − 1) x(n, L) · · · x(n, M − 1)

 (7)

is also an L × L Hankle matrix, with L = M − L + 1, and K = N − K + 1. According
to [27], the estimation of DOAs achieved the optimal performance when K = ⌈N/2⌉ and
L = ⌈M/2⌉. In fact, Xe is a matrix enhanced by applying smoothing processing along
each dimension. Here, each column of Xn is a window segment of the vector sequence
{x(n, 0), x(n, 1), · · · , x(n, M − 1)}, and the parameter L is the corresponding sliding win‑
dow length. Xe is formed by the window segment of the matrix sequence
{X0,X1, · · · ,XN−1}, and parameter K denotes the sliding window length accordingly.

Then, Xe can be given in the form of steering vectors by

Xe =
I

∑
i=1

ci

(
aK(θi)aT

K(θi)
)
⊗

(
aL(φi)aT

L(φi)
)

=
I

∑
i=1

ci(aK(θi)⊗ aL(φi))
(
a∗

K(θi)⊗ a∗
L(φi)

)H (8)

where aK(θi) = [aN,1(θi), aN,2(θi), · · · , aN,K(θi)]
T and aK(θi) = [aN,1(θi), aN,2(θi), · · · ,

aN,K(θi)]
T are obtained from parts of aN(θi), respectively, while being acquired in the

same way from aM(φi) for aL(φi) = [aM,1(φi), aM,2(φi), · · · , aM,L(φi)]
T and aL(φi) =[

aM,1(φi), aM,2(φi), · · · , aM,L(φi)
]T
. Letting bKL(θi, φi) = aK(θi)⊗ aL(φi) and bKL(θi, φi)

= a∗
K(θi)⊗ a∗

L(φi), (8) can be concisely expressed as

Xe =
I

∑
i=1

cibKL(θi, φi)bH
KL(θi, φi) =

I

∑
i=1

|ci|ξibKL(θi, φi)bH
KL(θi, φi) = BFH (9)
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where B = [bKL(θ1, φ1),bKL(θ2, φ2), · · · ,bKL(θI , φI)], and FH =
[
fH

1 , fH
2 , · · · , fH

I

]T
with

fi = |ci|ξ∗i bKL(θi, φi). Using (9), it follows that

XeXH
e = BFHFBH (10)

Note that FHF is a diagonally dominantmatrixwith real values on the diagonal, based
on which a new covariance matrix R1 = BΛ1BH with Λ1 = diag

(
FHF

)
=

DIAG
([

s2
1, s2

2, · · · , s2
I
])

is redefined, where s2
i = ∥fi∥2 = KL|ci|2. Obviously, the newly

defined R1 displays the same features as the traditional covariance matrix of the Toeplitz
structure, and therefore, as long asR1 is given, the azimuth angles {θi}I

i=1 can be estimated
via extensive existing approaches such as the Vandermonde decomposition [24], thematrix
pencil method [32], etc.

On the other hand, we construct another matrix of size LK × LK as follows:

X′
e =

I

∑
i=1

ci(aL(φi)⊗ aK(θi))
(
a∗L(φi)⊗ a∗K(θi)

)H
(11)

It is also a block Hankle matrix applied to estimate the elevation angles {φi}I
i=1 [33],

whose analysis procedure is similar to that of the azimuth angles, and (11) can also be
rewritten as

X′
e =

I

∑
i=1

|ci|ξidLK(φi, θi)dH
LK(φi, θi) = DGH (12)

by letting dLK(φi, θi) = aL(φi) ⊗ aK(θi) and dLK(φi, θi) = a∗
L(φi) ⊗ a∗

K(θi), where D =

[dLK(φ1, θ1),dLK(φ2, θ2), · · · ,dLK(φI , θI)], GH =
[
gH

1 ,gH
2 , · · · ,gH

I
]T with gi =

|ci|ξ∗i dLK(φi, θi); hence, the diagonally dominant matrix X′
eX′

e
H

= DGHGDH is obtained.
We redefined another new covariance matrix R2 = DΛ2DH by retaining diag

(
GHG

)
=

DIAG
([

s2
1, s2

2, · · · , s2
I
])

as the diagonal matrix Λ2, and then {φi}I
i=1 could be estimated

through an assumed R2 in a similar fashion to that outlined in the approaches mentioned
earlier.

Inspired by the analysis above, we introduce a permutation matrix:

H =
L

∑
j

K

∑
i

HL×K
j,i ⊗ HK⊗L

i,j (13)

where HL×K
j,i denotes a matrix of size L × K with one at the position (j, i) and zeros else‑

where, and HK⊗L
i,j is defined similarly, except for the size, which is K × L. Then, we further

construct more efficient array observation data XeHH rather than utilizing X or Xe directly,
expressed as

XeHH =
I

∑
i=1

ci(aK(θi)⊗ aL(φi))
(
a∗

L(φi)⊗ a∗
K(θi)

)H

=
I

∑
i=1

cibKL(θi, φi)dH
LK(φi, θi)

= BCD’H

(14)

where D’ =
[
dLK(φ1, θ1),dLK(φ2, θ2), · · · ,dLK(φI , θI)

]
has the same structure as the

conjugate ofD, except in terms of size. We denoted the projection operator of the original
array receiving matrix X onto the new observation data space by

P(X) =
I

∑
i=1

ciP
(
aN(θi)(a∗M(φi))

H
)
=

I

∑
i=1

cibKL(Θi)dH
LK(Θi) = BCD’H (15)
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and the range of P by P =
{
E ∈ CKL×LK

∣∣E = P(X),X ∈ CN×M
}
, where P is essentially a

smoothing operator that handles the data through multiple sliding windows: K = ⌈N/2⌉,
L = ⌈M/2⌉, K = N − K + 1, and L = M − L + 1.

Next, let us define a new projected atom set as:

AP = {P , (AM)} =
{
bKL(Θ)dH

LK(Θ), Θ ∈ [−π, π]× [−π, π]
}

= {AP (Θ), Θ ∈ [−π, π]× [−π, π]}
(16)

and hence, the projected atomic norm induced by the convex hull of AP is given by

∥P(X)∥AP
= inf{t > 0|P(X) ∈ tconv(AP )}

= inf
{

I
∑
i
|ci|

∣∣∣∣P(X) =
I

∑
i

ciAP (Θi), AP (Θ) ∈ AP

}
(17)

Note that (17) is an optimization problem seeking the smallest possible combination
of the projected atoms from an infinite set AP . This is not easy to solve directly. As such,
we turn to the optimization of an equivalent semi‑definite programming (SDP) instead,
and propose a decoupled projected atomic norm minimization (D‑PANM) problem as de‑
scribed in the proposition below.

Proposition 1. For any N × M array receiving matrix X0 =
I

∑
i

ciAM(Θi), consider new observa‑

tion data of size KL × LK as follows:

P(X) =
I

∑
i

ckP(AM(Θi)) =
I

∑
i

ckAP (Θi) (18)

utilizing the projection operator of X = X0 onto P, if the minimum angle distance between{Θi}I
i=1

satisfies

∆min,Θ = min
i ̸=j

∥∥Θi − Θj
∥∥
−∞

= min
i ̸=j

min
{∣∣θi − θj

∣∣, ∣∣φi − φj
∣∣} ≥ min{⌊4/(N − 1)⌋, ⌊4/(M − 1)⌋} (19)

where
∣∣θi − θj

∣∣ and ∣∣φi − φj
∣∣ are considered the wrapped distances on the unit circle. Then, the

solution to (17) is guaranteed by (18) with at least a possibility of 1 − δ, and two Toeplitz matrices
with {Θi}I

i=1 coded in can be efficiently achieved via a SDP given by:

∥P(X)∥AP
= min

X,ub ,ud

{
1

2
√

KLKL
(trace(T(ub)) + trace(T(ud)))

}
s.t.

[
T(ud) P(X)H

P(X) T(ub)

]
≽ 0,X = X0

. (20)

SinceP is a linear operator satisfying its homogeneity and additivity, the performance
guarantees of this proposition, followed by the equivalent SDP problem, can be easily de‑
rived from the atom norm theory in [20,26,31]. We omit the details and provide a brief
proof of the equivalence (20) in Appendix A.

Remark 1. Given

P(X) =
I

∑
i

ciAP (Θi) =
I

∑
i
|ci|AP (Θi, ξi) =

I

∑
i
|ci|bKL

(
Θi,

1
2

ξi

)
dH

LK

(
Θi,

1
2

ξi

)
, (21)

the positive semidefinite (PSD) feasible cone can be expressed as follows:
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[
T(ud) P(X)H

P(X) T(ub)

]
=

I

∑
i
|ci|

dLK

(
Θi, 1

2 ξi

)
bKL

(
Θi, 1

2 ξi

)dLK

(
Θi, 1

2 ξi

)
bKL

(
Θi, 1

2 ξi

)H

≽ 0. (22)

Then, one has the following two Toeplitz matrices

T(ub) =
I

∑
i
|ci|bKL

(
Θi,

1
2

ξi

)
bH

KL

(
Θi,

1
2

ξi

)
=

I

∑
i
|ci|bKL(Θi, 0)bH

KL(Θi, 0) (23)

T(ud) =
I

∑
i
|ci|dLK

(
Θi,

1
2

ξi

)
dH

LK

(
Θi,

1
2

ξi

)
=

I

∑
i
|ci|dLK(Θi, 0)dH

LK(Θi, 0) (24)

with ub =
I

∑
i
|ci|bKL(Θi, 0) and ud =

I
∑
i
|ci|dLK(Θi, 0), which implies that T(ub) in the PSD

cone owns the same column space as the covariance matrix R1 defined previously, while
T
(
u∗d

)
also has the same Toeplitz structure asR2, except for the size and the constant differ‑

ences in terms of the diagonal elements. That is to say, we can efficiently estimate {θi}I
i=1

and {φi}I
i=1 by exploiting the optimum solutions T(ûb) and T(û∗d), respectively. It is im‑

portant to note that the PSD constraint above will eliminate the phase information of mul‑
tiple measurement data, which here results in the phase eliminations of P(X) and P(X)H ,
respectively, making it possible to separately process the two spaces of P(X). However,
for single‑snapshot data, this constraint can help to deal with cases where the rank of the
covariance is one, which explains how the framework of ANM can even handle the data
with a single snapshot. In addition, the estimators T(ûb) and T(û∗d) are obtained with a
de‑noising process; thus, knowledge of the number of sources is not needed, even if the
traditional methods are then applied to achieve estimates of {θi}I

i=1 and {φi}I
i=1.

Remark 2. In particular, the conditions for the minimum angle distances still rely on the size
of X (i.e., the lengths N and M) rather than the projection parameters K and L. Furthermore, [23]
has shown that the minimum distances can be relaxed tomin{⌊1.19/(N − 1)⌋, ⌊1.19/(M − 1)⌋},
which satisfies most practical applications. We conducted experiments to verify these, and these are
described in Section 4 of the paper.

In fact, the array receiving data are always corrupted by the additive white Gaussian
noise (AWGN) as follows:

Y0 = X+N (25)

and hence, the projection of Y0 onto P is given by

P
(
Y0

)
= P(X) + P(N) (26)

Nevertheless, P(N) can hardly be employed directly, because projecting N onto P
will not only increase the computation complexity, but also make the statistically indepen‑
dent noise variables become correlated. Note that P is a linear mapping, and thus, P(N)
is uniquely determined by the noise data N. Thereby, N can be considered as the ker‑
nel of P(N), and is an acceptable noise constraint. Combining (17), (20), and Remark 1,
two Toeplitz optimization matrices, where {θi}I

i=1 and {φi}I
i=1 of interest are coded in, are

achieved in the presence of noise via

min
X

∥P(X)∥AP
s.t.

∥∥∥Y0 − X
∥∥∥2

F
≤ η2 (27)

or, equivalently,
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min
X,ub ,ud

{
1

2
√

KLKL
(trace(T(ub)) + trace(T(ud)))

}
s.t.

[
T(ud) P(X)H

P(X) T(ub)

]
≽ 0,

∥∥∥Y0 − X
∥∥∥2

F
≤ η2

(28)

where η2 is the noise level known. The equations in (20) or (28) are usually solved based
on the interior point method using a SDP solver of the CVX tool, namely, SDPT3 [29,30].
Then, {θi}I

i=1 and {φi}I
i=1 can be estimated from the optimum solutions T(ûb) and T(ûd)

via traditional estimation methods, as mentioned before.

3.2. The Odd‑Number Array and Fast Algorithm
This section focuses mainly on the case where both N and M are odd, and develops

a new estimation criterion for {θi}I
i=1 and {φi}I

i=1 without pair matching [33] after the
SDP (20) or (28) is solved, which can bring computational convenience and performance
improvements.

Now, we select the optimal parameters K = (N + 1)/2 and L = (M + 1)/2, where
one has K = N − K + 1 = K and L = L. Assume that two estimators T(ûb) and T(ûd)
have been obtained, and then the following equations hold:(

D’
)∗

= PB T(û∗d) = PT(ûb)PH (29)

according to (15), (23), and (24). We denote the eigenvalue decompositions of T(ûb) and
T(ûd) by

T(ûb) = UbsΛbsUH
bs, T(û∗d) = UdsΛdsUH

ds (30)

where Ubs contains the principal eigenvectors of T(ûb), whose eigenvalues satisfy{
σb,i ≥ γσb,max

}
. Here, σb,max denotes the maximum eigenvalue of T(ûb), and γ is a con‑

stant and can be fixed at 0.1. Meanwhile, Uds is obtained in the same way from T(û∗d),
which is reasonable because the minor components of the de‑noising estimators T(ûb) and
T(û∗d) have almost near‑zero eigenvalues. Then, assuming there are two nonsingular ma‑
trices such that

Ubs = BU−1
1 , Uds =

(
D’

)∗
U−1

2 (31)

we obtain Uds = PBU−1
2 = PUbsU1U−1

2 . Denoting U1U−1
2 ≜ O leads to Uds = PUbsO and

O−1U1 = U2 (32)

Let us further construct U
_
+

bs
Ubs and U_

+

ds
Uds, where U_ bs

and Ubs are selected from Ubs

with the last and first L rows deleted, respectively, whileU
_ ds

andUds are constructed from

Uds in the samewaywith the K rows deleted. We then obtain the two following eigenvalue
decompositions:

U
_
+

bs
Ubs = U1ΓU−1

1 , U
_
+

ds
Uds = U2ΨU−1

2 (33)

and {θi}I
i=1 and {φi}I

i=1 are coded in the diagonal eigenvalue matrices Γ and Ψ according
to the rotational invariant subspace method [27]. Using (32) and (33), it follows that

Γ = U−1
1 U

_
+

bs
UbsU1, Ψ = U−1

2 U
_
+

ds
UdsU2 = U−1

1 OU
_
+

ds
UdsO−1U1. (34)

Since O is also a nonsingular matrix, OU
_
+

ds
UdsO−1 displays the same eigenvalues as

U
_
+

ds
Uds, i.e., the eigenvalue matrix Ψ. Then, the following linear fitting and a joint eigen‑

value decomposition are computed by

αU
_
+

bs
Ubs + (1 − α)U

_
+

ds
Uds = UDUH (35)
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where parameter α is introduced to prevent the rank defect when θi = φi. Finally, the
eigenvalue matrices can be obtained, adopting the common eigenvector matrix U as

Γ = UHU
_
+

bs
UbsU, Ψ = UHU

_
+

ds

ˉ
UdsU (36)

and the estimation of the DOAs can be achieved directly using Φ̂ = (diag(Γ), diag(Ψ))
without a pairing step. This new estimation criterion not only quickens the solving process
to a certain extent, but also provides the DOA estimation without pair matching, which
proves to be more effective even when multiple signals share the same angles in both the
azimuth and elevation dimensions (Section 4).

In addition, due to higher temporal complexity of the SDPT3 solver based on the inte‑
rior pointmethod, we further propose a fast implementation of the SDP (20) or (28), termed
as the decoupled alternating projections (D‑AP) algorithm, to adequately exploit the struc‑
tural information about P(X), which is motivated by [28,34]. Note that the optimization
problem (20) displays the following features:
1. The feasible set

S =

[
T(ud) P(X)H

P(X) T(ub)

]
(37)

is PSD.

2. We obtain T(ub) ≽ 0 and T(ud) ≽ 0 using the Schur Complement Lemma [35]; hence,
λd,i ≥ 0 and λb,i ≥ 0 for all the i = 1, 2, · · · , I, where λd,i and λb,i denote the eigen‑
values of T(ub) and T(ud), respectively. Thus, the essence of the objective function
in (20) becomes minimizing two ↕1 norms of the eigenvalues. Also, because of the
Hermitian features of T(ub) and T(ud), (20) is equivalent to optimizing two low‑rank
Toeplitz matrices.

3. T(ub) and T(ud) on the PSD cone have the following relationship:

T(ud) = PT(u∗b)P
H (38)

Aimingat the analysis above, some importantprojectionoperators aredefined accordingly:

1. Let S be the projection of a J × J Hermitian matrixA onto the PSD subspace, and the
range of S is the PSD set as

S(A) =
{
B ∈ CJ×J

∣∣∣∣∣B =
J

∑
j=1

max
(
λj, 0

)
υjυ

H
j , A =

J

∑
j=1

λjυjυ
H
j

}
(39)

whereA =
J

∑
j=1

λjυjυ
H
j is the eigenvalue decompositionwith eigenvalues

{
λj
}J

j=1 and

eigenvectors
{
υj
}J

j=1.

2. Let L be the projection of a J × J Hermitian matrix A onto the low‑rank set, with a
rank of no more than Q, by introducing a threshold parameter τ,

L(A) =
{

rank(B) ≤ Q

∣∣∣∣∣B =
J

∑
j=1

max
(
λj − τ, 0

)
υjυ

H
j A =

J

∑
j=1

λjυjυ
H
j

}
(40)

which aims mainly to make the eigenvalues ofA sparse, and τ is chosen for a balance
between the accuracy of the solution and the convergence rate of the algorithm [36].

3. Let T be the projection of a KL × KL matrix A onto the two‑level Toeplitz subspace,
such that
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T (A) =


TB(U)

∣∣∣∣∣∣∣∣∣∣∣∣∣

UK−i+1,j =
1

K−i+1

K−i+1
∑

m=1
(Bj)m,m+i−1, i = 1, . . . , K, j = 1, 2, . . . , L

UK−i−1,j =
1

K+i+1

K+i+1
∑

m=1
(Bj)m−i−1,m, i = −K, . . . ,−2, j = 1, 2, . . . , L

Bj =
1

2(L−j+1)

L−j+1
∑

t=1

A((t − 1)K + 1 : tK, (t − 1)K + (j − 1)K + 1 : tK + (j − 1)K)+
AH((t − 1)K + (j − 1)K + 1 : tK + (j − 1)K, (t − 1)K + 1 : tK)


(41)

where TB(U) is an L × L block Toeplitz projection with each block
Th

(
UK:2K−1,|h|+1,U1:K,|h|+1

)
being a 1D Toeplitz matrix of size K × K, h =

−(L − 1), · · · , 0, 1, · · · , (L − 1) [23], and UK:2K−1,|h|+1 and U1:K,|h|+1 denote the first
column and the first row of Th, respectively.

Then, the D‑AP algorithm can be carried out via iteratively projecting the optimiza‑
tion variables S, T(ub), and T(ud) onto the corresponding spaces, which are presented in
detail in Table 3, where T(ub) and T(ud) share a joint low‑rank projection utilizing the
mathematical relationship (29), improving both the accuracy and the convergence rate of
the algorithm to a certain extent.

Table 3. The D‑AP algorithm.

Algorithm 1: D‑AP

  1. Initialization: given n = KL, Z0 =
(
Y0

)
, T0(ub) =

(
ZZH

)
, T0(ud) =

(
ZHZ

)
  2. Iteration:
   for j = 1:max iterations

   2.1 Sj−1 =

T j−1(ud)
(
Zj−1

)H

Zj−1 T j−1(ub)

, and Sj =
(
Sj−1

)
   2.2 T j(ub) = Sj(n + 1 : end, n + 1 : end), T j(ub) = L

(
T j(ub)

)
T j(ud) = PT j(ub)PH

   2.3 cut‑off condition: if
∥∥∥Sj − Sj−1

∥∥∥
F
≤ δ, break

   end
  3. Estimation: DOAs Φ̂ are estimated through T(ûb) and T(ûd).

Remark 3. The initial Y0should be unitized, helping to select the parameter τ in the low‑rank
projection steps, and an empirical value 0.1 is provided here for the signals in this paper. Note that
the low‑rank projection in the D‑AP algorithm is also a de‑noising process in the presence of noise,
so this algorithm can also deal with the SDP (28). In addition, the convergence of our proposed
D‑AP algorithm has been guaranteed, because the range spaces of the projection operators utilized
in D‑AP are all closed and convex except for the low‑rank projection, which is nonconvex, but has
been proven to exercise no influence on the convergence of the algorithm [37,38].

Remark 4. The D‑AP algorithm is an iterative process that involves alternating projections onto
the PSD and two low‑rank spaces. Specifically, at each iteration, the PSD projection consists of
two steps: the eigenvalue decomposition and matrix multiplication, resulting in a computational
complexity of O

((
1/22)(NM)3

)
. The low‑rank projections follow a similar process, but with re‑

duced complexity of O
((

3/26)(NM)3
)
due to a joint projection of T(ub) and T(ud). Assuming

that the maximum number of iterations is kp, the overall complexity is O
(

kp
(
19/26)(N)6

)
for

N = M. Recall that the D‑PANM algorithm implemented by the SDPT3 solver relies on calculat‑
ing the Newton direction by solving a group of linear equations, and its complexity, determined by
the size of the PSD constraint, is O

(
(N)7

)
for N = M [26]. Consequently, the D‑AP algorithm

offers a more computationally efficient solution compared with the D‑PANM one.
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3.3. Higher Resolution and Discussions
In the previous section, we discussed a fast implementation algorithm utilizing two

low‑rank projections under the framework of the proposed projected atomic norm. Ac‑
tually, since the atomic norm theory is limited by the conditions of the minimum angle
distances (stated in Proposition 1), it is usually substituted by an atomic ↕0 norm [22,39],
which will be further transformed into the low‑rank problem for optimization.

We define a projected atomic ↕0 norm via the projected atom set AP , proposed in
Section 3.1 as

∥P(X)∥AP ,0 = inf

{
I

∣∣∣∣∣P(X) =
I

∑
i

ciAP (Φi), AP (Φ) ∈ AP

}
(42)

Similarly, an approximation of ∥P(X)∥AP ,0 is allowed as

∥P(X)∥AP ,0 = min
X,ub ,ud

{
1
2 rank(T(ub)) +

1
2 rank(T(ud))

}
s.t.

[
T(ud) P(X)H

P(X) T(ub)

]
≽ 0,

∥∥∥Y0 − X
∥∥∥2

F
≤ η2

(43)

Unfortunately, the discontinuous problem (43) above is NP‑hard. Although the D‑AP
algorithm proposed earlier can be exploited to solve the low‑rank problem, it lacks stabil‑
ity in some case with higher resolution requirements. In order to obtain a more accurate
solution, many smooth surrogate functions which simulate the characters of the rank are
then adopted for the objective function of (43) instead [40]. Here, we consider two concave
trace functions given by

f1(T(ub)) = trace
(
(T(ub) + εbI)

−1
)

, f2(T(ud)) = trace
(
(T(ud) + εdI)

−1
)

(44)

as the approximations of rank(T(ub)) and rank(T(ud)), where εb and εd are the parameters
introduced to avoid the appearances of zero matrices. We then find the local optimum for
the new programming problem via the majorization–minimization (MM) algorithm [41],
which is an iterativemethodwith the following decoupledweighted optimization problem
for each iteration:

min
ub,j+1,ud,j+1,P(X)j+1

{
1
2 trace

(
Wb,jT(ub)

)
+ 1

2 trace
(
Wd,jT(ud)

)}
s.t.

[
T(ud) P(X)H

P(X) T(ub)

]
≽ 0,

∥∥∥Y0 − X
∥∥∥2

F
≤ η2

(45)

with the weighting functions Wb,j = trace
((

T
(
ub,j

)
+ εb,jI

)−1
)

and Wd,j =

trace
((

T
(
ud,j

)
+ εd,jI

)−1
)
. Then, problem (43) can be implemented via iterative opti‑

mization (45) until the accuracy condition is met, and this algorithm is termed decoupled
projected reweighted atomic norm minimization (D‑PRAM), following the same naming
convention seen in [22].

The reason for mentioning the above problem in this paper is that we are surprised to
find that our proposed projected atom set can not only handle the angle‑ambiguity prob‑
lem under the framework of ANM, but also has a better resolution performance under
the framework of atomic ↕0 norm minimization than the existing 2D reweighting atomic
norm algorithm induced by a vectorized atom set [22–24]. The vectorized 2D atomic norm
optimization problem adopts an atom set given by

AV =
{
a∗M(φ)⊗ aN(θ), θ ∈ [−π, π], φ ∈ [−π, π]

}
= {aV(Θ), Θ ∈ [−π, π]× [−π, π]} (46)
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via vectorization of the matrix set AM, and its atomic norm, defined similarly to the way
stated earlier except for the induced atom, can be computed via the following SDP problem:

∥vec(X)∥Av
= min

u,vec(X)

{
1

2
√

NM
trace(T(u)) + 1

2 t
}

s.t.
[

t vec(X)H

vec(X) T(u)

]
≽ 0,

∥∥∥vec
(
Y0

)
− vec(X)

∥∥∥2

2
≤ γ2

(47)

where T(u) is a NM × NM block Toeplitz matrix. For ease of comparison, this 2D atomic
norm algorithm is termed as vectorized atomic normminimization (vecANM), and its cor‑
responding reweighted algorithm is referred to as vectorized reweighted atomic norm
minimization (vecRAM) according to [22,24], which is a problem optimizing the atomic
↕0 norm induced by the vectorized atom set AV and similarly formulates the following
SDP for each iteration:

min
uj+1,vec(X)j+1

{
1
2 trace

(
WjT(u)

)
+ 1

2 t
}

s.t.
[

t vec(X)H

vec(X) T(u)

]
≽ 0,

∥∥∥vec
(
Y0

)
− vec(X)

∥∥∥2

2
≤ γ2

(48)

where Wj denotes the weighting function accordingly. Note that (48) here reweights to
the single term of the objective function, while the proposed D‑PRAM adopts a decoupled
reweighting strategy, and we will show that the decoupled strategy achieves a more en‑
hanced performance in terms of resolution in the subsequent simulation. Additionally, the
computational load of our proposed algorithms has also been relatively reduced compared
with these vectorized 2D atomic norm optimization algorithms. According to the analysis
in the previous subsection, the complexity of the vecANM problem (47) is predominantly
influenced by the size of the PSD cone, which can reachO

(
(NM)3.5

)
. In contrast, the pro‑

posed D‑PANM algorithm has a PSD constraint of smaller size KL × LK, thereby reducing
the complexity to O

(
(NM)3.5/23.5

)
. For the reweighted versions, i.e., vecRAM and D‑

PRAM, the computational complexities are O
(

kR,1(NM)3.5
)
and O

(
kR,2(NM)3.5/23.5

)
,

respectively, given the iterations kR,1 and kR,2. Notably, this implies that D‑PRAM holds
more noticeable advantages regarding computational efficiency, particularly in scenarios
necessitating multiple iterations.

4. Numerical Simulations
We present a series of numerical simulations to illustrate the performance of the pro‑

posed D‑PANM algorithm and its derived results compared with those of the existing
ANM algorithms. All of the methods involved in this section are illustrated briefly in
Table 4, along with the computational complexity. Each experiment was based on single‑
snapshot array data, the signals were generated independently with the same constant
magnitudes σs and the phases satisfied a randomly uniformdistribution from−π toπ such
that E

(
CCH

)
= σ2

s I. The array’s signal‑to‑noise radio (SNR) was set to be 10 log10
(
σ2

s /σ2
n
)
,

where σ2
n is the covariance of the Gaussian noise. Specifically, the number of signals I

was not known as a priori, and only the information about the magnitude of noise NMσ2
n

was given.
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Table 4. A brief illustration of proposed algorithms and the comparison ones. (kR,1, kR,2, and kP

denote the maximum number of iterations in related algorithms).

Algorithm Illustration Complexity
(N =M)

DeANM Atomic norm minimization induced by matrix atom set [26] O
(
23.5N3.5)

vecANM Atomic norm minimization induced by vectorized atom set [23] O
(

N7)
vecRAM Reweighted version of vecANM [22,24] O

(
kR,2N7)

D‑PANM Proposed decoupled projected atomic norm minimization O
(

1
23.5 N7

)
D‑PRAM Reweighted version of D‑PANM O

(
kR,1

1
23.5 N7

)
D‑AP Proposed fast implementation of D‑PANMwith decoupled

alternating projections O
(

kP
19
26 N6

)

First, we provide an intuitive example to verify the accuracy of the proposed algo‑
rithms when the signals share common angles in both the azimuth and elevation dimen‑
sions. In particular, consider a URA with N = M = 9, and I = 7 narrowband signals ran‑
domly generated with σ2

s = 1 and directions (−37.1◦, 81.2◦), (−19.6◦, 34.9◦), (5.2◦, 19.2◦),
(5.2◦, 70.6◦), (20.1◦, 55.3◦), (38.5◦, 19.2◦), and (57.3◦, 55.3◦). Assume single‑snapshot ar‑
ray data polluted by the noise with σ2

n = 1/10SNR/10, where SNR = 30dB, and let K =
L = (N + 1)/2 = 5. Then, 500 Monte Carlo experiments were carried out to estimate
the DOAs for each of the algorithms DeANM, vecANM, and D‑PANM. Figure 2a–c show
the results, respectively, all of which were implemented by the SDPT3 solver. It is ap‑
parent that DeANM could hardly obtain correct angles, and vecANM provided incorrect
DOA pairs in some runs in such a multi‑angle ambiguity scenario. However, the pro‑
posed D‑PANM with an automatic pairing criterion demonstrated a strong performance.
Furthermore, the estimated results of the fast algorithm D‑AP proposed in Section 3.2 are
described in Figure 2d, which had almost the same recovery performance as the D‑PANM
did using an SDPT3 solver, but with a fairly small amount of computation. We will give a
detailed computational analysis in the following simulation.

Electronics 2024, 13, x FOR PEER REVIEW 17 of 25 
 

 

 

  

(a) (b) 

  

(c) (d) 

Figure 2. The estimated DOAs in the angle-ambiguity scenario with 9N M= =  , 5K L= =  , 

30dBSNR = , and the number of signals 7I = : (a) DeANM; (b) vecANM; (c) proposed D-PANM; 

(d) proposed D-AP. 

Second, we investigate the performance of the algorithms in terms of resolution, adding the 

reweighted versions of the corresponding algorithms. Let 9N M= =  and the mapping parame-

ters 5K L= = . Suppose there were 2I =  sources impinging onto the array, one of which was 

set to be the reference with DOAs ( )30 ,30 , while the other one gradually moved away by a di-

rectional step of 0.5  on a scale of 1  to 10  in both the azimuth and elevation dimensions, and 

that a random fluctuation within a range of 0.025  was allowed for each trial. We empirically set 

the initial reweighting parameters max =  for each algorithm uniformly and reduced them by 

half in each iteration, where max  denotes the maximum eigenvalue of the corresponding Toeplitz 

matrix in the first iteration. One hundred Monte Carlo experiments were carried out, and their re-

sults are shown in Figure 3, which compares D-PANM and vecANM with their reweighted algo-

rithms, respectively, where RMSE is the root mean squared error. The results show that D-PANM 

and vecANM had the same resolution performance, being able to exactly recover two sources mu-

tually separated by 8.5  , and verified the condition for the minimum angle distance argued in 

Proposition 1: ( ) ( ) ( )( )sin 8.5 min 1.19 / 1 ,  1.19 / 1N M − −  . Meanwhile, D-PRAM (the reweighted 

version of D-PANM) could efficiently distinguish the sources with a 3  distance while vecRAM 

(the reweighted version of vecANM) can only distinguish a 6  one, which is to say that our de-

coupled reweighting strategy adopted in D-PRAM is superior to the one utilized in vecRAM. In 

addition, the resolution performance of D-AP is also presented in Figure 3 with a deletion of failed 

runs, denoted by D-APDeleted. Note that, although the curve shows that D-AP is almost unlimited 

in resolution, it becomes increasing unstable as the angle distance grows closer. To verify this, the 

success rates of our algorithms D-PRAM and D-AP are shown in Figure 4, where the success rate is 

Figure 2. Cont.



Electronics 2024, 13, 846 16 of 22

Electronics 2024, 13, x FOR PEER REVIEW 17 of 25 
 

 

 

  

(a) (b) 

  

(c) (d) 

Figure 2. The estimated DOAs in the angle-ambiguity scenario with 9N M= =  , 5K L= =  , 

30dBSNR = , and the number of signals 7I = : (a) DeANM; (b) vecANM; (c) proposed D-PANM; 

(d) proposed D-AP. 

Second, we investigate the performance of the algorithms in terms of resolution, adding the 

reweighted versions of the corresponding algorithms. Let 9N M= =  and the mapping parame-

ters 5K L= = . Suppose there were 2I =  sources impinging onto the array, one of which was 

set to be the reference with DOAs ( )30 ,30 , while the other one gradually moved away by a di-

rectional step of 0.5  on a scale of 1  to 10  in both the azimuth and elevation dimensions, and 

that a random fluctuation within a range of 0.025  was allowed for each trial. We empirically set 

the initial reweighting parameters max =  for each algorithm uniformly and reduced them by 

half in each iteration, where max  denotes the maximum eigenvalue of the corresponding Toeplitz 

matrix in the first iteration. One hundred Monte Carlo experiments were carried out, and their re-

sults are shown in Figure 3, which compares D-PANM and vecANM with their reweighted algo-

rithms, respectively, where RMSE is the root mean squared error. The results show that D-PANM 

and vecANM had the same resolution performance, being able to exactly recover two sources mu-

tually separated by 8.5  , and verified the condition for the minimum angle distance argued in 

Proposition 1: ( ) ( ) ( )( )sin 8.5 min 1.19 / 1 ,  1.19 / 1N M − −  . Meanwhile, D-PRAM (the reweighted 

version of D-PANM) could efficiently distinguish the sources with a 3  distance while vecRAM 

(the reweighted version of vecANM) can only distinguish a 6  one, which is to say that our de-

coupled reweighting strategy adopted in D-PRAM is superior to the one utilized in vecRAM. In 

addition, the resolution performance of D-AP is also presented in Figure 3 with a deletion of failed 

runs, denoted by D-APDeleted. Note that, although the curve shows that D-AP is almost unlimited 

in resolution, it becomes increasing unstable as the angle distance grows closer. To verify this, the 

success rates of our algorithms D-PRAM and D-AP are shown in Figure 4, where the success rate is 

Figure 2. The estimated DOAs in the angle‑ambiguity scenario with N = M = 9, K = L = 5,
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(d) proposed D‑AP.

Second, we investigate the performance of the algorithms in terms of resolution,
adding the reweighted versions of the corresponding algorithms. Let N = M = 9 and
the mapping parameters K = L = 5. Suppose there were I = 2 sources impinging onto
the array, one of which was set to be the reference with DOAs (30◦, 30◦), while the other
one graduallymoved away by a directional step of 0.5◦ on a scale of 1◦ to 10◦ in both the az‑
imuth and elevation dimensions, and that a random fluctuation within a range of ±0.025◦

was allowed for each trial. We empirically set the initial reweighting parameters ε = λmax
for each algorithm uniformly and reduced them by half in each iteration, where λmax de‑
notes the maximum eigenvalue of the corresponding Toeplitz matrix in the first iteration.
One hundred Monte Carlo experiments were carried out, and their results are shown in
Figure 3, which compares D‑PANM and vecANM with their reweighted algorithms, re‑
spectively, where RMSE is the root mean squared error. The results show that D‑PANM
and vecANM had the same resolution performance, being able to exactly recover two
sources mutually separated by 8.5◦, and verified the condition for the minimum angle dis‑
tance argued in Proposition 1: sin(8.5◦) ≥ min(1.19/(N − 1), 1.19/(M − 1)). Meanwhile,
D‑PRAM (the reweighted version of D‑PANM) could efficiently distinguish the sources
with a 3◦ distancewhile vecRAM (the reweighted version of vecANM) can only distinguish
a 6◦ one, which is to say that our decoupled reweighting strategy adopted in D‑PRAM is
superior to the one utilized in vecRAM. In addition, the resolution performance of D‑AP
is also presented in Figure 3 with a deletion of failed runs, denoted by D‑APDeleted. Note
that, although the curve shows that D‑AP is almost unlimited in resolution, it becomes
increasing unstable as the angle distance grows closer. To verify this, the success rates of
our algorithms D‑PRAM and D‑AP are shown in Figure 4, where the success rate is set to
be the ratio of runs with RMSE < 10−2. The results indicate that the performance of D‑AP
is not stable enough when the angle distances are relatively closer, even though it is gen‑
erally considered that the implementation method based on AP is capable of handling the
low‑rank problem. However, its stability becomes guaranteed starting with a larger angle
interval of 13◦, and the computational complexity benefit remains attractive. By contrast,
D‑PRAMhas a 100% success rate as long as the sources are separated within the minimum
allowable range.



Electronics 2024, 13, 846 17 of 22

Electronics 2024, 13, x FOR PEER REVIEW 18 of 25 
 

 

set to be the ratio of runs with 
2RMSE 10− . The results indicate that the performance of D-AP is 

not stable enough when the angle distances are relatively closer, even though it is generally consid-

ered that the implementation method based on AP is capable of handling the low-rank problem. 

However, its stability becomes guaranteed starting with a larger angle interval of 13 , and the com-

putational complexity benefit remains attractive. By contrast, D-PRAM has a 100%  success rate as 

long as the sources are separated within the minimum allowable range. 

  

(a) (b) 

Figure 3. Comparison of resolutions for two signals with 9N M= =  and 5K L= = : (a) azimuth 

distance i ; (b) elevation distance i . 

  

Figure 3. Comparison of resolutions for two signals with N = M = 9 and K = L = 5: (a) azimuth
distance ∆θi; (b) elevation distance ∆φi.

Electronics 2024, 13, x FOR PEER REVIEW 19 of 25 
 

 

 

  
(a) (b) 

Figure 4. Success rates of DOA estimation with respect to the angle interval: (a) azimuth distance 

i ; (b) elevation distance i . 

Furthermore, the mean computational times of the algorithms involved in this section 

are provided in Figure 5, obtained by a computer with an Inter i7-7700K 4.20 GHz CPU. 

As shown in the figure, the performance of D-PANM showed improvement in terms of 

reducing the computational amount compared with vecANM, meanwhile, D-PRAM 

based on the decoupled reweighted strategy even displayed the same computational com-

plexity as vecANM after multiple iterations, but had a greatly enhanced resolution. Of 

course, D-AP, as a fast implementation of D-PANM, exhibited reductions orders of mag-

nitude larger in terms of computational complexity. Additionally, it is interesting to find 

that the curve of DeANM was higher than that of D-AP even though the theoretical com-

putational complexity of DeANM was lower than that of D-AP, which was most likely 

due to the differences in implementation methods between different algorithms and the 

time-consuming nature of scheduling the SDPT3 solver. However, there was a downward 

trend for DeANM as the number of sensors increased. 

  

Figure 4. Success rates of DOA estimation with respect to the angle interval: (a) azimuth distance
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Furthermore, themean computational times of the algorithms involved in this section
are provided in Figure 5, obtained by a computer with an Inter i7‑7700K 4.20 GHz CPU. As
shown in the figure, the performance of D‑PANM showed improvement in terms of reduc‑
ing the computational amount compared with vecANM, meanwhile, D‑PRAM based on
the decoupled reweighted strategy even displayed the same computational complexity as
vecANM after multiple iterations, but had a greatly enhanced resolution. Of course, D‑AP,
as a fast implementation of D‑PANM, exhibited reductions orders of magnitude larger in
terms of computational complexity. Additionally, it is interesting to find that the curve of
DeANMwas higher than that of D‑AP even though the theoretical computational complex‑
ity of DeANM was lower than that of D‑AP, which was most likely due to the differences
in implementation methods between different algorithms and the time‑consuming nature
of scheduling the SDPT3 solver. However, there was a downward trend for DeANM as
the number of sensors increased.

Finally, we carried out 100 Monte Carlo experiments to validate the performance of
the proposed algorithms in the presence of noise. In this simulation, we considered the
scenario without angle ambiguity for the convenience of comparing our algorithms and
the DeANM algorithm, which can hardly deal with the data when the signals share the
same angles in either the azimuth or elevation dimension. In particular, we take a group
of signals with distinct directions (18◦, 32◦), (38◦, 70◦), and (50◦, 55◦), and let N = M = 11
and K = L = 6. Assume the array receiving data are polluted by the Gaussian noise, with
the SNR varying from 0 to 30dB, and Figure 6 compares the RMSEs of different algorithms
with respect to SNR, where CRB denotes the Cramér–Rao bound. The results show that
the RMSE curve of the proposed D‑PANM kept the same level as that of vecANM, but
was lower than that of DeANM, i.e., although the noise constraint in D‑PANM relying on
the kernel matrix was the same as that in DeANM, the performance of D‑PANM was still
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better, implying that the smoothing projection process helped to improve the anti‑noise
performance. In addition, the proposed fast implementation algorithm D‑AP exhibited
good performance under a larger SNR, but began to degenerate as SNR decreased, mainly
due to the influence of the parameters.
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5. Conclusions
In this study, we developed a 2D DOA estimation method in angle‑ambiguity sce‑

narios based on the framework of ANM, and a valid atom set, i.e., the projected atom set
AP , was then constructed taking full advantage of the phase elimination property of the
equivalent SDP problem, along with the smoothing idea. Indeed, the D‑PANM algorithm
induced by it fully retained the benefits of ANM. That is, it is capable of handling the ar‑
ray data with limited snapshots, even a single one, without knowing the source number.
Moreover, it not only accurately yielded the estimation of DOA with automatic pairing
when two or more signals impinged from the same directions, but also was more robust to
the noise comparedwith ANMof the decoupled type. In addition, the proposed algorithm
had a lower computational load compared with the existing vecANM, and its resolution
with a decoupled reweighted strategy was superior to that of the comparison algorithms.
Furthermore, a D‑AP algorithm was also utilized to accelerate the implementation of our
problem, which proved effective under many conditions.
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However, the proposedmethod is based on the ideal array manifold matrix and is rel‑
atively sensitive to signals with vastly different power levels, so a more robust algorithms
in a real test environment should be investigated in the future. Moreover, we will consider
incorporating the processing method with multiple‑snapshot data. Lastly, a characteristic
of ANM is that it can deal with incomplete data, so a sparse array or an array with missing
elements is also a direction for future research.
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M.L.; validation, M.L., Y.D. and G.Z.; formal analysis, Y.D.; data curation, G.Z.; writing—original
draft preparation, M.L.; writing—review and editing, M.L.; visualization, Y.D.; supervision, C.D.;
funding acquisition, Y.D. and C.D. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 61901332.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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Appendix A

Proof of (20) in Proposition 1. Let us introduce the following theorem first before proving
this equivalence:

Theorem A1 ([31]). Suppose a 1D multiple measurement vector (MMV) Y ∈ CN×L is expressed

as Y =
I

∑
i=1

|ci|a(θi)ϕi, where a(θi) denotes the steering vector, |ci| > 0 denotes the amplitude of

the receiving signal ci, and the matrix ϕi is the phase of ci with ϕi = |ci|−1ci and ∥ϕi∥ = 1. Then,
the atom set of MMV data can be defined as

AMM = {a(θ)ϕ, ∥ϕ∥ = 1} (A1)

and its atomic norm induced by AMM is given by

∥Y∥AMM
= inf

{
I

∑
i
|ci|

∣∣∣∣∣Y =
I

∑
i
|ci|a(θi)ϕi, a(θi)ϕi ∈ AMM

}
(A2)

which equals the following SDP:

∥Y∥AMM
= min

W,u

{
1

2
√

N
[trace(W) + trace(T1(u))]

}
s.t.

[
W YH

Y T1(u)

]
≽ 0

(A3)

where T1(u) denotes the 1D Toeplitz matrix with u as its first column, and W is an introduced
optimization variable. In addition, the right side of (A3) is denoted by SDPM(Y).

□

Next, denote the right side of (20) by SDP(P(X)), and show ∥P(X)∥AP
= SDP(P , (X))

by proving SDP
(
P(X) ≤ ∥P(X)∥AP

and SDP(P(X)) ≥ ∥P(X)∥AP
.

On the one hand, we prove SDP
(
P(X) ≤ ∥P(X)∥AP

. Suppose that



Electronics 2024, 13, 846 20 of 22

(PX) =
I

∑
i

ckP(AM(Θi)) =
I

∑
i

ckAP (Θi) =
I

∑
i
|ci|bKL

(
Θi,

1
2

ξi

)
dH

LK

(
Θi,

1
2

ξi

)
(A4)

is given, then let ub =
I

∑
i
|ci|bKL(Θi, 0) and ud =

I
∑
i
|ci|dLK(Θi, 0). We have

T(ub) =
I

∑
i

√
KL
KL

|ci|bKL(Θi, 0)bH
KL(Θi, 0) =

I

∑
i

√
KL
KL

|ci|bKL

(
Θi,

1
2

ξi

)
bH

KL

(
Θi,

1
2

ξi

)
(A5)

T(ud) =
I

∑
i

√
KL
KL

|ci|dLK(Θi, 0)dH
LK(Θi, 0) =

I

∑
i

√
KL
KL

|ci|dLK

(
Θi,

1
2

ξi

)
dH

LK

(
Θi,

1
2

ξi

)
(A6)

Then,

[
T(ud) P(X)H

P(X) T(ub)

]
=

I

∑
i

1√
KLKL

|ci|

√KLdLK

(
Θi, 1

2 ξi

)
√

KLbKL

(
Θi, 1

2 ξi

)√KLdLK

(
Θi, 1

2 ξi

)
√

KLbKL

(
Θi, 1

2 ξi

)H

(A7)

is positive semidefinite (PSD), since |ci| ≥ 0 for all i hold. In addition, each diagonal

element of T(ub) is
√

KL
KL

I
∑
i
|ci|, and the diagonal elements of T(ud) is

√
KL
KL

I
∑
i
|ci|, so the

following equations hold:

1√
KLKL

trace(T(ub)) =
I

∑
i
|ci|,

1√
KLKL

trace(T(ud)) =
I

∑
i
|ci|. (A8)

Therefore, SDP(P(X)), as the minimum point, has the following relationship:

SDP(P(X)) ≤ 1

2
√

KLKL
(trace(T(ub)) + trace(T(ud))) =

I

∑
i
|ci| (A9)

i.e., SDP(P(X)) ≤ ∥P(X)∥AP
.

On the other hand, we prove SDP(P(X)) ≥ ∥P(X)∥AP
from the results of Theorem

A1.
Given

P(X) =
I

∑
i
|ci|bKL

(
Θi, 1

2 ξi

)
dH

LK

(
Θi, 1

2 ξi

)
=

I
∑
i
|ci|

∥∥∥dH
LK

(
Θi, 1

2 ξi

)∥∥∥bKL

(
Θi, 1

2 ξi

) dH
LK(Θi , 1

2 ξi)
∥dH

LK(Θi , 1
2 ξi)∥

=
I

∑
i

√
KL|ci|bKL

(
Θi, 1

2 ξi

) dH
LK(Θi , 1

2 ξi)
∥dH

LK(Θi , 1
2 ξi)∥

(A10)

Then,
∥∥∥∥ dH

LK(Θi , 1
2 ξi)

∥dH
LK(Θi , 1

2 ξi)∥

∥∥∥∥ = 1, and bKL

(
Θi, 1

2 ξi

) dH
LK(Θi , 1

2 ξi)
∥dH

LK(Θi , 1
2 ξi)∥

has the same structure as

a(θ)ϕ, which can be considered as the atom of AMM. Thus, ∥P(X)∥AMM
=

I
∑

i=1

√
KL|ci|,

and
SDPM(P(X)) = min

W,ub

1
2
√

KL
[trace(W) + trace(T(ub))]

s.t.
[
W P(X)H

P(X) T(ub)

]
≽ 0

. (A11)

Therefore, one has



Electronics 2024, 13, 846 21 of 22

∥P(X)∥AP
=

I

∑
i=1

|ci| =
1√
KL

∥P(X)∥AMM
. (A12)

Combining (20) with (A11), we know that SDP(P(X)) has the same objective function
as 1√

KL
SDPM(P(X)) except for an additional Toeplitz constraint T(ud). Thus,

SDP(P(X)) ≥ 1√
KL

SDPM(P(X)) =
1√
KL

∥P(X)∥AMM
. (A13)

According to (A12) and (A13), SDP(P(X)) ≥ ∥P(X)∥AP
.

In conclusion, we obtain ∥P(X)∥AP
= SDP(P(X)).
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