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Abstract: This research addresses the dearth of real-world data required for effective neural network
model building, delving into the crucial field of industrial control and automation system (ICS)
cybersecurity. Cyberattacks against ICS are first identified and then generated in an effort to raise
awareness of vulnerabilities and improve security. This research aims to fill a need in the existing
literature by examining the effectiveness of a novel approach to ICS cybersecurity that draws on data
from real industrial settings. Real-world data from a variety of commercial sectors is used in this
study to produce a complete dataset. These sectors include power systems, freshwater tanks, and gas
pipelines, which together provide a wide range of commercial scenarios where anomaly detection and
attack classification approaches are critical. The generated data are shown to considerably improve
the models’ precision. An amazing 71% accuracy rate is achieved in power system models, and
incorporating generated data reliably increases network speed. Using generated data, the machine
learning system achieves an impressive 99% accuracy in a number of trials. In addition, the system
shows about 90% accuracy in most studies when applied to the setting of gas pipelines. In conclusion,
this article stresses the need to improve cybersecurity in vital industrial sectors by addressing the
dearth of real-world ICS data. To better understand and defend against cyberattacks on industrial
machinery and automation systems, it demonstrates how generative data can improve the precision
and dependability of neural network models.

Keywords: Internet of Things (IoT); Internet of Robotic Things (IoRT); COVID-19; Industry 4.0;
machine learning; deep learning

1. Introduction

Modern business processes use industrial control systems (ICSs) to manage and regu-
late industrial processes and machinery, and a variety of businesses and sectors rely on ICSs.
Keeping complicated machinery and processes running smoothly, safely, and reliably is the
goal of these monitoring and control systems, which are vulnerable to cybersecurity risks
due to their digitization and interconnection. ICS engineers manage computer networks,
mechanical and electrical equipment, and human and automated tasks in an ICS. In the
present scenario, production, power utilities, water storage systems, gas pipelines, and
various other industries can use ICSs for a more robust and innovative environment [1].
ICS attacks can interrupt activities, disable machinery, undermine industrial procedures,
and even endanger people. To protect these networks from attacks via the internet, they
must be identified and fixed. Vulnerability studies and implementation must identify and
generate commercial management system assaults. Analyzing ICSs involves methods of
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communication and ways to be attacked. Security experts and system administrators can
improve critical network safety by analyzing risks and locations for attacks. Commercial
control mechanisms are complex, making vulnerability and attack channel identification
difficult. In contrast to standard IT systems, ICS settings have long lifespans with outdated
equipment and older applications that may lack security patches. It is also important to
comprehend ICS networks’ specialized methods of communication and technologies [2].

Multi-faceted testing is needed to find ICS flaws and weaknesses. This method
combines risk assessments, hacking tests, and ICS architecture analysis. Vulnerability
evaluations detect software, network structure, and system setting weaknesses. Security
experts can assess security and detect attack points using machine learning techniques and
human evaluation. Ethical hacking—penetration testing—simulates practical problems and
attacks [3,4]. This entails exploiting flaws to access important systems. Penetration analysis
evaluates safety measures, ICS-responsive features, and possibilities for growth [5,6]. Threat
sources, intelligence, and internal evaluations are needed to stay abreast of new corporate
control system assault methods [7,8]. Threat analysis informs about ICS-specific risks,
viruses, and attack operations. Industries can prevent cyberattacks and strengthen security
by tracking threats and comprehending their methods. Importantly, ICSs support healthcare
devices, cards with sensors, smart dwellings, and connected cities. ICS assets include
commercial digital equipment. These electronics include SCADA, HMIs, RTUs, and PLCs.
Smart technology and the IoT revolutionize ICSs, but they also raise cybersecurity concerns.
ICSs have programs, configuration, and privacy issues [9,10]. The internet and physical
risks, challenges to wireless and wired ICS innovations, business threats, architectural
and technological risks, networking and information technology risks, and errors made
by people (e.g., fraud and social technology) all go after ICSs. Malware, DoS, DDoS,
identity compromise, memory overrun, exploiting style strings, brute force attempts,
suxnet assaults, and more can target ICSs. Internet connections make the entire globe a
battlefield. Criminals can be found all over the globe and in different legal frameworks.
Electrical and health hazards can cause significant damage quickly. Despite technical
developments, ICSs are becoming more susceptible [11,12].

An ICS exists in every essential facility; hence, it must be secure [13]. Today, humanity’s
economics, welfare, safety, and security as a whole rely on control system security. An
ICS was safe while physically separated; therefore, the only approach to breaching it was
to force your way into it. Because of their ease, technologies are increasingly integrating
into networks that are wireless, bridge innovations, and already established parts, which
compromise ICS safety.

The present paper explores ICS detection of breaches using testbeds. ICS identification
of anomalies also uses deep learning (DL). For theoretical structures and the approach, this
study investigates deep learning, variational self-encoding, and Wasserstein generative
networks of adversarial networks. When it comes to developing classifications from
complex data, deep learning approaches and multi-layer neural networks in particular
really shine. Because of this, they can be used for many different applications, such as
NLP, RL, and image identification. Because of their ability to handle enormous datasets
and complicated problems at scale, deep learning models are frequently used to solve
real-world problems. In many applications, deep learning models have outperformed
and even eclipsed more conventional forms of machine learning. To produce new data
samples, generative models like variational autoencoders can be trained. They can be
used for things like creating images and cleaning up noisy data. To enable logical and
continual interpolations between data points, VAEs map data into an ongoing latent space.
Because of this, they are helpful for things like photo enhancement and clothing swapping.
VAEs are helpful for applications where knowing model uncertainty is critical, such as
medical diagnosis, because of their ability to assess uncertainty in their predictions. Some
of the problems with classic generative adversarial networks’ (GANs’) training stability
are resolved in Wasserstein GANs (WGANs) [14,15]. By switching to a loss function that
is based on Wasserstein distance, training is made more consistent and robust. Samples
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generated using WGANs are typically of greater quality and more consistent than those
generated using other GAN variations. Because of this, they are useful for projects like
creating new images, copying existing ones, and enhancing existing data. Mode collapse
is a typical issue in GANs when the generator produces little variability in generated
samples, while WGANs are less susceptible to this issue. Kullback–Leibler divergence
and Jensen–Shannon divergence are two topics that are studied in probability theory.
Other topics include designing graphical elements for written and produced designs,
fully developed artificial neural network architectures, simulations of latent variations,
variational autoencoders, the generative approach in adversarial networks, and procedural
methods like Modhus [16–18].

The authors of this paper first modeled gas network and water holding tank SCADA
systems. They then used Ian Turnipseed’s upgraded gas pipeline datasets as a substitute.
Sensors, which are controls, an interaction network, and management controls comprise
the dataset’s gas piping system.

Attack detection and deep relic networks are also covered. We discuss data-generating
neural networks and their design. We test the system’s design with MNIST. Using the
generated data, they categorize attacks. After identifying vulnerabilities and attack vectors,
we build breaches and practice situations for the attack. This entails generating attack
programs, malware samples, and exploit tools that mimic real-world attackers. Security
experts can test security policies, response to incidents, and system resilience by simulating
these assaults. Attack data helps industrial control system security designers [14,19]. It
helps businesses assess prospective threats, identify defense flaws, and design mitigation
plans. Simulated attacks can also help security and system operators create realistic train-
ing scenarios to improve their skills and response times. In one word, identifying and
producing assaults in industrial management systems is essential to their resilience and
safety against changing risks related to cybersecurity. Organizations can strengthen the
safety of vital infrastructure by knowing hostile actors’ weaknesses, assault paths, and
methods. Security evaluations, penetration tests, threat analysis, and mock attacks provide
an extensive structure for proactive cyber security of industrial control systems. Businesses
may protect vital facilities by regularly assessing and improving ICS security [20,21].

The primary contributions of this work are

• The development of a dependable system for detecting security breaches, specifically
in industrial control systems, including power systems, freshwater tanks, and gas
pipelines.

• The introduction of an effective neural network model that boasts enhanced perfor-
mance over conventional models.

• A case study was conducted to analyze the comprehensive threat posed to industrial
control systems.

Objectives of This Paper

1. To understand the risks and security concerns in industry with the help of ICSs.
2. Build a cybersecurity system with the help of an industrial control system using

residual neural networks.
3. Develop cybersecurity best practices to protect industrial control systems.

The paper is divided into sections: an introduction that talks about cyberattacks on
ICSs and how they were found and then made to raise awareness about security; a literature
review that talks about the background of this research and related work. A methodology
that uses generative tools such as adaptive autoencoders and Wasserstein adversarial
networks; and finally, a Section 4 that talks about the results and compares the real dataset
to the generated dataset. The Section 5, “Conclusions” summarizes the entire project and
makes suggestions for what comes next.
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2. Literature Review

An ICS has a complex architecture with field equipment, a front-side processor, interac-
tion gateways, a database, the historian program, a technical workstation, a smart electrical
device, a portable termination unit, and configurable logic controllers. Each ICS element
is built so that cybercriminals cannot hack or harm it [22,23]. The verification of input
protects ICS applications from gaining access and unwanted performance. Incorrect input
validation can impair ICS control and data flow. Unsecured code is low-quality. It requires
careful development and maintenance. Hackers may take advantage of ICS application
code weaknesses. A safe environment for development produces vulnerability-free code.
Authorization and privileges regulate ICS access. ICS attackers may capitalize on missing
or poor entitlements, rights, and entry controls. Identification checks ICS commands and
clients for validity and authorization [24]. However, many ICS distant components do not
authorize commands executing unauthorized ones. The ICS can acknowledge invalid data
if protocols and programs do not validate the data source or authenticity. CSRF attacks
may result. Most ICS cryptography packages are weak. Accessibility to ICS information
is also likely due to weak encryption. Clear-text accounts transferred across the internet
expose the ICS to fraudulent usage of genuine login information. Network sniffing devices
let cybercriminals log in with users’ credentials. ICSs are vulnerable to platform short-
comings, misconfigurations, and neglect. The operating system, along with application
upgrades, can reduce risks. ICS products and applications have been thoroughly researched
for vulnerabilities. A different theory examined PLCs and HMIs’ similar security flaws.
They found basic credentials, unsecured remote administration connections, and insuf-
ficient encryption. These flaws allow hackers to take over vital systems, putting ICSs in
danger [25].

Related research by Gautam [26] indicates that a system capable of identifying cy-
berattacks and network anomalies exists for intrusion detection. In order to combat IDS,
many methods have been created. The current trend indicates that the deep learning (DL)
method is superior to more conventional methods for IDS. In these studies, we introduced
a novel, deep learning-based hybrid model consisting of a long short-term memory-gated
recurrent unit–recurrent neural network. The proposed model outperformed other existing
classifiers while using only 58% of the dataset’s features. Additionally, the study shows
that LSTM and GRU with an RNN work well on their own.

For the creation of an IDS, Nagaraju et al. [27] suggested a paradigm. Their method
consists of two distinct phases. To begin, they used a GA (genetic algorithm) to optimize
features, and then they used the RNN framework of deep learning to perform classification.
The LSTM unit sequence was introduced to an RNN to improve its performance. Their
model’s efficacy was measured using data from the NSL-KDD dataset. The results of their
study demonstrate that GA can improve the accuracy of classification in both binary and
multiclass settings. Additionally, when it comes to multiclass classification, their suggested
model is more cutting-edge than both the support vector machine and the random forest in
terms of accuracy. For attack detection against DDoS and DoS, Shurman et al. [28] presented
the deep learning model RNN using the long short-term memory (LSTM) architecture.
They suggested two LSTM models with different numbers of LSTM layers. They stated
that the three-layer LSTM model outperforms the competition. In a report by Savanovi,
despite the IoT’s rapid progress, a major problem inside the IoT continues to restrict deeper
integration. The goal of sustainable healthcare, enabled by the Internet of Things, is to
provide people with organized healthcare that does not negatively impact the environment.
Because security is crucial to the longevity of Internet of Things (IoT) systems, early
detection and remediation are essential to meeting the sustainability problems that must be
met [29–31]. An enhanced configuration application for IoT structures is used to build a
synthetic dataset, which is then used in experiments. All the analyses and comparisons
show that the specified problem can be solved significantly better than before.

Hathaliya et al. [32] undertook an intriguing analysis, summarizing the progression
from Healthcare 1.0 to 4.0. They underlined that vulnerabilities in healthcare 4.0 methods
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can expose sensitive patient information. Sensitive information, such as email addresses,
medical records of patients, messages between users and relevant parties, and more,
might be compromised by an attack. The authors also discovered that the efficiency of data
interchange could benefit from this technique. Savanovic argued that recent advances in IoT
technology have resulted in the widespread adoption of connected devices. The healthcare
industry is a prime example of one that might greatly benefit from the implementation of a
system for active real-time monitoring. The ability to handle nondeterministic polynomial
time-hard problem (NP-hard) issues in realistic time and without accuracy is crucial for
long-term viability in any sector, especially in healthcare, which is where metaheuristic
methods have made a significant contribution to sustainability [33]. An enhanced setup
application for IoT structures is used to build a synthetic dataset, which is then used in
experiments. All of the analyses and comparisons show that the specified problem can be
solved significantly better than before.

Research by Alferaidi [34] showed that intrusion detection is becoming increasingly
crucial as a vital detection tool for the security of data as 5G and other technologies
become increasingly prevalent in the Internet of Vehicles. Conventional detection methods
cannot guarantee their accuracy and real-time needs and are unable to be immediately
applied to the Internet of Automobiles because of the quick changes in the framework of
the IoV, the huge data circulation, and the complex and various kinds of intrusion. To
detect infiltration in a car network and unearth anomalous activity, the cluster combines a
deep-learning convolutional neural network (CNN) with an extending temporary memory
(LSTM) network to extract elements and data from massive amounts of car network data
traffic. According to Chen et al. [35], who contrasted traditional methods with recent
developments in deep learning, the field of deep learning has recently gained a lot of
attention. Chen et al., using deep learning’s smart features, built an intelligent intrusion
detection system. A method for finding suspicious intrusions using a mixed MLP and
CNN was presented by Vijayanand et al. [36]. Network intrusion detection was the focus
of a study by Parimala and Kayalvizhi [37], who created a method based on deep learning.
In order to determine the various forms of invasion, the KDD-CUP99 dataset was analyzed
using the BP neural network. In order to reduce the high complexity of network data,
Karatas et al. [38] devised an intrusion detection method using deep convolutional neural
networks. Training and recognition can improve detection accuracy, false-positive rate, and
detection throughput. To classify diverse attacks with supervised deep learning, Raschka
et al. [39] used Keras on top of TensorFlow, with the best accuracy being reached with RNN
deep learning technology.

A study [40] was performed to establish a web of dependence between various players.
In order to comprehend the behavior of this type of service system, which may be consid-
ered a complex social system, it is possible to analyze the patterns of trust in dependence
networks, as research has shown that trust is the fundamental coordinating mechanism in
community-based organizations. Through his studies, he established a framework for the
behavior and interaction among cognitive agents in their natural environment. Based on
this design, we build a framework for agent-based simulation that can be used to study
the interplay among various service systems’ informational and cooperative dynamics.
The authors [41,42] discussed the intricate webs of finance. Extremely volatile financial
markets are notoriously difficult to capture due to their unique structural characteristics.
Researchers have turned to tail dependency networks as a possible solution to this issue.
According to his findings, tail-dependent networks perform better than Pearson correlation
ones on a global scale. According to a further examination of the connections in the upper-
and lower-tail dependent networks, European markets have more sway over the econ-
omy in both prosperous and downturn economic conditions than their Asian and African
counterparts. Furthermore, the two tail dependency networks have distinct cliques. This
research shows that neighboring markets will feel the effects of financial risks.

The promise of machine learning models was demonstrated in tests where outstanding
classification accuracy was attained, for example, 99.13% in anticipating attacks. For exam-
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ple, water reservoir monitoring and Internet of Things (IoT) device security in healthcare
are only two areas where machine learning approaches have been successfully used in
previous studies. The innovative use of deep learning and adapted metaheuristics to tackle
hard security problems is a prime example of this. Certain models had trouble correctly
categorizing attacks, suggesting they had certain limits in terms of coverage and generaliz-
ability [43–45]. The models may have limited utility if they are tailored to fit just certain
types of data, such as those collected from water reservoirs or Internet of Things devices.
The difficulty in evaluating the relative performance of different research projects stems
from the fact that many of them lacked comparative evaluations with other state-of-the-art
methodologies [46]. To overcome the constraints of past studies, we need models that are
able to adapt well to new attack scenarios and datasets. While claims of high accuracy are
encouraging, further statistical investigation is needed to determine the relevance of the
gains. Real-time intrusion detection can be improved with further study, particularly in
complex systems like the Internet of Vehicles. In order to close these knowledge gaps, this
current research endeavors to conduct a comprehensive comparative analysis, statistically
validate advancements, and center its attention on the extrapolation of intrusion detection
models across a variety of settings. Our study significantly improves upon prior research
efforts by helping to design more reliable and broadly useful intrusion detection systems by
addressing these constraints. In conclusion, our study not only improves upon the strengths
of previous work but also overcomes its shortcomings by offering a more exhaustive and
statistically proven approach to intrusion detection [47–49].

3. Material and Methods

The theoretical background for this paper is presented in this portion of the paper with
Equations (1)–(9). The concepts behind machine learning, including adaptive autoencoders
and Wasserstein adversarial networks that are generative will be discussed.

3.1. Jensen–Shannon with Kullback–Leibler Divergences

KL divergence and Jensen–Shannon divergence measure the resemblance between
distributions of probabilities. p and q are probability distributions. KL divergence quantifies
p-q divergence. DKL is 0 when p(x) = q(x). The predicted shock from applying q as a
framework when the actual range is p is the KL deviation of p off q. KL divergence is
asymmetric and violates the triangle inequality.

DKL(p||q): This is the value that stands in for the KL divergence between the p and q
distributions of probabilities. The distance between p and q is measured.

Log (
∫

xp(x)log(p(x)/q(x))dx: The KL divergence is found by performing an integral
(a computation analogous to finding the dimension under a curve).

The KL divergence measures how different p and q are in terms of information content.
On average, it informs us how much “extra” information we would need to code p if we
utilized the best coding for q. If ( ) = 0 and DKL (pq) = 0, then p and q are coincident (i.e.,
their probability distributions are the same). If () DKL (pq) is non-zero, then p and q are
not identical; a bigger value indicates a larger gap between the two sets.

DKL(p||q) =
∫

x
p(x)log

p(x)
q(x)

dx (1)

A further comparable measure for probability distributions is [0,1]. Despite KL diver-
gence, Jensen–Shannon is symmetric. This equation can be used to calculate the Jensen–
Shannon (JS) divergence of two probability distributions, p and q, with the notation D JS
(pq). The Kullback–Leibler (KL) divergence is symmetric and smoothed down to create this.
The JS divergence is the median of two KL divergences, one measuring the dissimilarity
between p and the mean of p and q and the other measuring the dissimilarity between q
and the mean of p and q. The symmetrical and usually positive JS divergence is a result of
the 1/2 weighting. With a value of 0, the JS divergence indicates that p and q have the same
distribution, while bigger values indicate greater dissimilarity. It is a standard measure
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for contrasting and grouping probability distributions in the fields of probability theory,
statistics, and data analysis. The formula is:

DJS(p||q) = 1
2

DKL

(
p|| p + q

2

)
+

1
2

DKL

(
q|| p + q

2

)
(2)

3.2. Statistical Predictive Model

This method used neural networks with deep layers to estimate the probable density
of a function. The true design probability is p ∗ (x). Randomly sampled processes x
machine learning models have to maximize parameters. The equation p (x) p (x) serves
as an approximation in an effort to as closely approximate the true or desired distribution
p (x). In a nutshell, the objective of many data-driven and modeling tasks is to have the
modeled or learned variable p (x) resemble the target variable p (x) as closely as is humanly
possible. Thus, deep learning seeks the following:

pθ(x) ≈ p ∗ (x) (3)

A probabilistic model should discover the variables that best match the method’s
probability function. A probabilistic model lacks the parameter p(x). Due to excessive
unknowns. The notation p (yx), where y and x are both functions of some unknown
factors, denotes a contingent probability distribution. It is frequently used in the context
of quantitative modeling and machine learning, where x stands for the parameters of the
model and p (yx) stands for the distribution of y given the value of x. In simple terms, it is
the result of a model’s attempt to predict y from x. The real or ideal dependent probability
for the variable y given x is denoted as p (yx). The conditional distribution is the one
we want to come as close to as possible. When p (yx) is a close approximation of p (yx),
we write to denote this. The purpose of several branches of science, including statistics,
machine learning, and scientific modeling, is to train or design a model (parameterized by)
so that p (yx) closely matches p (yx). Maximum likelihood calculation, Bayesian inference,
and training neural networks are common techniques for this purpose, although they vary
with the modeling framework. Thus, a probability model remains conditional, as follows:

pθ(y|x) ≈ p ∗ (y|x) (4)

A case study of this would be a model that classifies a visual representation of the
numerical value 2 as the number 2. The present one is simpler than the other. Predicting
p(x,y) is more difficult. A user inputs 2, and the representation outputs a 2 image [50,51].
Neural networks are networks that parametrize probability functions. Softmax probability
output: _i = 1. Neural network variables are all biased and weighted parameters.

Categorical (y); p = p (yx)
p (yx): This is a representation of the probability distribution of y given x, which

is a parameter of the distribution. The probabilities of various outcomes or classes of y
predicted with the model given input x are denoted by () p (yx).

Distinctive characters
Categorical (y; p): In this notation, y is a categorical random value standing in for

various classes, and p is a vector of probabilities corresponding to those classes. For each y
category, the model predicts a certain probability, denoted by p. For instance:

p = NeuralNet(x) (5)

If p = neural net (x), then neural net (x) is equivalent to p. The results of a neural
network are shown here. The problem at hand determines whether or not it is a vector
or one value. The initial equation stands for the odds that various classes of y will be
produced from the given input x.
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Artificial neural networks: NeuralNet (x) vs. the result of feeding the neural network
the value x as input is indicated here. Various features of the data, such as probability dis-
tributions, can be modeled by feeding them into the neural network and using the output.

pθ(y|x) = Categorical(y; p) (6)

3.3. Models in Graphical Directions

Visual probabilistic models express independent conditions on a graph. Edges rep-
resent conditional independence relations between vertices, which represent unknown
variables. G is a DAG with V = (X_1, . . ., X_d). V = (1, . . ., d) also works. If G describes P,
then P is Related to G.

A solution to the equation 1 p(x) = j = 1 d p(x j x j) can be written as follows:
The sum of the conditional probabilities for the elements of the random vector x

reflects the probability distribution p (x). The combined probability distribution of a group
of random variables can be modeled using this equation by decomposing it into conditional
values that describe the interdependencies and relationships among the variables. In other
words, every p (x j x j) can be interpreted as a local conditional probability distribution that
accounts for pertinent information or context (x j). For each component x j, simplifying the
modeling of complex joint distributions.

p(x) =
d

∏
j=1

p
(

xj

∣∣∣πxj

)
(7)

x_j’s parents are _(x_j). M(G) represents G’s distributions. The conditional probability
distribution of x given x is equal to the conditional probability distribution of x given,
where both are parameterized according to the equation = P (x x) = P (x). This equation may
be useful in a variety of disciplines, including statistics, machine learning, and Bayesian
modeling. This means that the model’s x-based behavior remains unchanged regardless of
whether the equation is used. Neural networks may simply define the following functions:

η = NeuralNet(πx) (8)

Pθ(x|πx) = Pθ( x|η) (9)

3.4. Goals of Study Findings

ICS records are rarely released due to their economic and worldwide effects on indus-
tries. The data sector has worries about the privacy of organizational data. The study will
benefit from real-world industry datasets, but if they end up in inappropriate hands, the
outcome will be terrible. Hackers can target system weaknesses. Cybersecurity methods
for ICSs detect anomalies that can harm organizational data. This paper seeks to address
the lack of ICS data needed for neural network model development. “Limited supply” does
not equal no data. ICS situations involving attacks lack data, whereas normal operation
does not. Most data are typical ICS operations, whereas scenarios involving attacks make
up less than 10%. Additionally, attack scenarios include DoS, man-in-the-middle, injection,
and other attacks. Occasionally, just 1% of the data is attributed to a single assault type [52].

A major problem with the detection of intrusions is the high rate of false positives,
which can overwhelm security teams with false alarms and squander valuable time and
resources. Organizations use a variety of approaches to counteract this problem. One
common practice is to adjust the sensitivity of intrusion detection systems. Detection
criteria and thresholds must be fine-tuned to the specific network architecture. In addition,
sophisticated methods like identifying anomalies and machine learning are utilized by
businesses to better recognize out-of-the-ordinary patterns of behavior. Maintaining and
updating an intrusion detection system on a regular basis is essential for keeping it up-
to-date with the latest fingerprints and patches, which in turn improves its accuracy. To
obtain a fuller picture of network activity, security teams combine malware detection
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with additional safety features like SIEM platforms, taking advantage of context and
correlation in the process. They can discover and prioritize warnings with less chance of
false positives by looking at the bigger picture. Overall, a multi-pronged strategy including
rule customization, improved detection algorithms, frequent updates, and the incorporation
of contextual information is necessary to overcome the problem of false alarms in intrusion
detection. This all-encompassing approach allows businesses to improve their security
posture by simultaneously detecting more actual threats and reducing the number of false
positives [53,54].

Improving cybersecurity in critical facilities requires a methodologically sound ap-
proach, one that may be achieved by the painstaking construction of a breach framework
based on the careful research of parts of industrial control systems (ICSs), communication
mechanisms, and probable attack sources. Businesses are able to better safeguard their
critical facilities, reduce the risk of compromises, and be more prepared for cyberattacks
by taking measures such as recognizing ICS elements, analyzing ways to communicate,
conducting a risk assessment, implementing countermeasures, continuously monitoring
and testing, collaborating, identifying possible attack sources, and creating the breach
framework, which includes attack vectors, areas of attack, exploitation methods, an impact
analysis, and an incident response plan. Given the gravity of the risks associated with
ICS breaches, it is imperative to take preventative and all-encompassing measures to safe-
guard these systems. Kullback–Leibler and Jensen–Shannon are common practices in data
analysis and machine learning to compare and contrast different probability distributions,
and the book Divergences: Likely outlines one such mathematical or statistical method
for doing so. It might be used to check how closely a theoretical model matches up with
the distribution of data that has been collected. A statistical predictive model probably
relates to creating or using such a model. Predictions and inferences about the relationships
between variables may be derived from this model, and these in turn may be associated
with one or more of the research topics. It would appear that the book “Models in Graphi-
cal Directions” addresses the topic of visual models, which are frequently used to depict
intricate interrelationships among variables. The data related to the study topics could be
visualized or analyzed using these models [55,56].

An anomaly identification method (such as an autoencoder) may detect “attack” and
“average operation” with <1% of the data, but it cannot distinguish between different forms
of assault. Classifying assaults requires a model. Classification approaches use several data
pieces to identify distinct attacks. Even with a huge amount of actual data for the study,
industrial control systems do not get hacked enough to build a reliable categorization
system. This paper addresses attack data shortages. Generative networks are used to
generate new information about attacks on ICS data, which is scarce. Our research contains
three specific objectives for this major objective: a new ICS categorization model, checking
ICS data generation, and training an automatic classification model with data that were
generated using semi-supervised machine learning [57–59].

3.5. Collecting Data

A number of different academics have previously collected the datasets used in this
work. We aimed for a comprehensive collection of datasets covering a wide range of
commercial sectors. We drew on the power system, freshwater tank, and gas pipeline
datasets in our analysis. Each of the three categories of industries stands in for a wide range
of everyday situations where anomalous behavior identification and attack categorization
techniques can be invaluable [60].

3.6. Energy Network Statistics

Power systems have four sections. Transmission, distribution, consumption, and trans-
mission are the energy system’s foundation. It transmits power from the generator to the
consumption center, often across miles and miles. Field detectors monitor the transmission
network’s breakers and transformers. In Synchrophasor systems, field sensing uses PMUs.
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GPS signals are used to synchronize PMU data to UTC for continuous tracking. Phasor
data concentration devices (PDCs) use WANs to transport Synchrophasor observations
from temPMUs to the control center. Synchrophasor-based WAMS require PDCs and other
PMUs. SCADA field sensors collect data every few seconds. WAMS use Synchrophasor
technology to measure the data transfer system at 30–120 samples per second, quicker than
SCADA. PDCs gather high-resolution measurement data for system status evaluation. The
control facility uses complex algorithms to make actual time-field element control decisions.
Controlling the loop ellipse centralized control lets system protection components detect
and respond to disturbances [61]. Field sensors monitor transmission system components
like breakers and transformers. A Synchrophasor system, in this particular case as shown
in Figure 1.
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The control center sends command data, and the IDEs send time-synchronized audit
data. It is a finite-state machine. A control center command documented in the control
center panel will induce a system state shift later. Breakers, relays that operate, and cables
for transmission alter behavior over time, which changes the system state. Hardware logs
record every modification. Temporal-state transitions are observed and measured data
changes [62,63].

3.7. The Freshwater Reservoir

An RS-232 network data logger monitored and stored MODBUS traffic from the liquid
storage vessel record. The authors of this paper first modeled gas pipeline functionality and
water-holding container SCADA networks. Instead, we apply Ian Turnipseed’s upgraded
gas pipeline dataset. The water reservoir’s management system mimics petrochemical
manufacturing sector storage vessels for oil because the water-filled tank was developed
for oil storage facilities. The tank has a main holding tank, an additional reservoir for the
water container, and a pump that is used to move fluid out of the secondary reservoir to
the main tank. A gravity-operated manually operated relief valve operates to allow liquid
to pass from the main tank to the supplementary tank. In addition, a gauge is provided to
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measure the main tank’s capacity. Water exits the main tank and fills the additional tank. It
uses closed-loop reservoir control. The water-holding system control method and factors of
the system work correctly if the answer code for a function matches the given command’s
functional code. Error response sub-function codes are the command function code plus
0 × 80. The system measures the water reservoir level. The unsophisticated and advanced
malicious response injection assaults changed the predicted measuring results. During the
test, a pump maintains the desired amount of water. The pump modes are on and off.

Human–machine interfacing (HMI) and the water reservoir system used by researchers
are shown in Figure 2. The water tank was originally intended for oil storage. Moreover, its
control system is based on those used in the petrochemical sector.
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3.8. Gas Piping Statistics

Sensors are device controls, an interaction system, and management controls that
comprise this dataset’s gaseous pipeline structure. This paper illustrates the gas pipeline
network that generated the information being studied and the HMI that controls it. Gas
pipelines have two actuators and a type of pressure sensor. A hydraulic pump and solenoid
govern the entire system’s mechanical process, while supervisory controls regulate pres-
sure. Pipelines that carry gas are manual and automated. Managerial controls choose
two pressure-maintenance systems in automated mode, as shown in Figure 3. First, the
pumping mode setting controls pipeline pressure with the pump on/off controls. This
approach maintains the system load. The solenoid mode is first. Solenoid-controlled relief
valves regulate pressure in this system. This paper used a parametric and randomized ap-
proach to gather statistics. The threats were man-in-the-middle. The payload data includes
gas pipeline state, options, and variables. These show system performance. These data are
capable of identifying system outages and critical states. The dataset has 274,627 occur-
rences. Many aspects are uncertain since Modbus packets offer various details.
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3.9. Analysis Techniques

Data classification and generation using deep neural networks are the primary topics
of this study. Common metrics for ICS identification of anomalies studies include precision,
accuracy, recollection, F1-score, and the false-positive rate, all of which we examined. The
generated network is a crucial component of our study. The generative network first
generates samples of data based on its learned distribution of the probability of the original
dataset. The next step is to assess the degree of similarity between the generated data and
the source data.

We will compare the produced and original datasets using statistical measures like
mean and variance. This is because, during model training, the mean serves as the loss
function for the generator. A zero-mean, one-variance Gaussian noise was utilized to
generate the dataset. The second method involves taking a random sample of 5000 data
points and plotting them against 5000 original datasets. This will provide a visual summary
of the created data’s resemblance to the original data [64].

This report focuses on major industries, including the electric power industry and
water storage facilities. These fields rely substantially on ICS for their operations, and
they are vital parts of society’s crucial infrastructure. This study prioritizes the protection
of critical services by tackling cybersecurity concerns within these domains while also
minimizing potential risks. A dedication to using cutting-edge technologies to deal with
ICS risks is also reflected in the emphasis on developing and deploying neural systems
in cybersecurity, in particular, residual neural networks. The detection of anomalies and
breaches in ICS settings can benefit from residual neural networks’ superior performance
in deep learning tasks. This exemplifies the authors’ commitment to leading the field of
cybersecurity and using cutting-edge methods to safeguard vital networks and systems.
Overall, this paper’s emphasis on key sectors and the utilization of cutting-edge technology
like neural networks demonstrate a proactive approach to protecting ICS, which is essential
in the face of constantly shifting cyber threats.

4. Results

Studies will compare the actual information set to the created dataset in terms of
average and variance (with the exception of the MNIST data). It is assumed that the
average variation comparing the actual data and the data that are generated will be small,
as the mean is Wasserstein, which was utilized for distance training during the creation
of the network. A selected number of 5000 records was plotted alongside the original
and simulated datasets. All of the experimental findings are discussed here. The set of
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data will determine the divisions and segments. The data shown here are the product of
454 separate trials. Class imbalance can alter the model’s accuracy, which is problematic for
industrial control systems because some risks may be much more uncommon than others.
Different methods were used to try and lessen the impact of this problem. The dataset was
made more equitable with the aid of oversampling methods like the synthetic minority
over-sampling technique (SMOTE), which artificially increased the size of the minority
class samples. Also, the model’s performance was judged using a wider range of measures,
such as the F1-score and area under the receiver operating property curve (AUC-ROC),
to account for situations in which classes are not equally represented. Collectively, these
techniques improved the model’s capacity to identify and categorize dangers in ICS and
SCADA environments [65].

4.1. Outcomes of the Power System

Table 1 displays the outcomes of experiments conducted using binary non-time-
sequence information from the electric power system. Adding the produced data to the
starting point data during the testing process increases the accuracy of the model. The
created data seem to contribute less than the actual information. Nevertheless, models can
reach 71% correctness. Table 2 displays the experimental outcomes of the binary time-series
data gathered from the power systems. The created data enhanced the model’s effectiveness
in all cases. The produced data can boost accuracy by 17%. However, the original data
improved efficiency the most. Table 3 displays the outcomes of studies conducted using
data from power systems that include many classes but no time series. Adding new data
usually enhances the network’s accuracy, but it raises the percentage of false positives in
this dataset. Similar to Table 1, the neural network looks to have a 71% precision limit.
Table 4 shows the multi-class time series of power system database trial outcomes. Padding
the initial information with the produced data regularly increases network speed. The
generated data helped the network attain 99% accuracy continuously [66].

Table 1. Results for binary non-time-series power systems data.

Cutoff Numbers Precision Recall F1-Score Accuracy FP

0.1

0 0.55 0.53 0.34 0.36 0.48
10,000 0.63 0.70 0.62 0.70 0.36
20,000 0.62 0.66 0.63 0.66 0.41
30,000 0.64 0.71 0.61 0.71 0.32
40,000 0.61 0.67 0.62 0.67 0.44
50,000 0.64 0.70 0.62 0.70 0.34

0.2

0 0.64 0.64 0.64 0.64 0.40
10,000 0.64 0.69 0.65 0.69 0.35
20,000 0.65 0.71 0.64 0.71 0.31
30,000 0.67 0.71 0.64 0.71 0.25
40,000 0.66 0.71 0.61 0.71 0.28
50,000 0.66 0.71 0.63 0.71 0.27

0.3

0 0.64 0.65 0.65 0.65 0.39
10,000 0.67 0.71 0.62 0.71 0.24
20,000 0.66 0.71 0.64 0.71 0.30
30,000 0.67 0.71 0.65 0.71 0.27
40,000 0.64 0.69 0.65 0.69 0.35
50,000 0.66 0.71 0.63 0.71 0.27

0.4

0 0.64 0.64 0.64 0.64 0.40
10,000 0.67 0.71 0.65 0.71 0.27
20,000 0.67 0.71 0.63 0.71 0.25
30,000 0.65 0.70 0.65 0.70 0.33
40,000 0.66 0.71 0.65 0.71 0.30
50,000 0.67 0.71 0.61 0.70 0.24
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Table 1. Cont.

Cutoff Numbers Precision Recall F1-Score Accuracy FP

0.5

0 0.65 0.69 0.66 0.69 0.34
10,000 0.65 0.63 0.64 0.62 0.39
20,000 0.66 0.71 0.65 0.71 0.28
30,000 0.65 0.69 0.65 0.69 0.34
40,000 0.65 0.69 0.66 0.69 0.33
50,000 0.65 0.69 0.65 0.69 0.35

0.6

0 0.66 0.53 0.54 0.53 0.43
10,000 0.65 0.66 0.65 0.66 0.37
20,000 0.67 0.71 0.65 0.71 0.26
30,000 0.67 0.71 0.65 0.71 0.26
40,000 0.66 0.71 0.64 0.71 0.28
50,000 0.67 0.72 0.64 0.71 0.25

0.7

0 0.64 0.65 0.65 0.65 0.39
10,000 0.65 0.66 0.66 0.66 0.37
20,000 0.67 0.71 0.65 0.71 0.27
30,000 0.67 0.71 0.64 0.71 0.26
40,000 0.66 0.69 0.66 0.68 0.34
50,000 0.66 0.71 0.65 0.71 0.29

0.8

0 0.68 0.45 0.44 0.45 0.45
10,000 0.65 0.66 0.65 0.66 0.37
20,000 0.65 0.64 0.64 0.63 0.38
30,000 0.66 0.70 0.66 0.70 0.31
40,000 0.67 0.71 0.66 0.70 0.30
50,000 0.66 0.70 0.66 0.70 0.31

Table 2. Results for binary time-series power systems data.

Cutoff Numbers Precision Recall F1-Score Accuracy FP

0.1

0 0.84 0.82 0.83 0.82 0.17
10,000 0.88 0.87 0.87 0.87 0.12
20,000 0.87 0.87 0.87 0.86 0.11
25,000 0.84 0.85 0.84 0.85 0.09

0.2

0 0.86 0.75 0.77 0.75 0.25
10,000 0.92 0.92 0.92 0.92 0.04
20,000 0.89 0.89 0.89 0.89 0.08
25,000 0.91 0.91 0.91 0.91 0.06

0.3

0 0.88 0.87 0.88 0.87 0.12
10,000 0.94 0.94 0.94 0.94 0.05
20,000 0.91 0.91 0.90 0.91 0.03
25,000 0.92 0.91 0.91 0.91 0.07

0.4

0 0.90 0.86 0.86 0.86 0.16
10,000 0.96 0.96 0.96 0.96 0.03
20,000 0.90 0.86 0.86 0.86 0.16
25,000 0.96 0.96 0.96 0.96 0.03

0.5

0 0.92 0.92 0.92 0.92 0.07
10,000 0.95 0.95 0.95 0.95 0.05
20,000 0.96 0.96 0.96 0.96 0.02
25,000 0.98 0.97 0.97 0.97 0.02

0.6

0 0.96 0.96 0.96 0.96 0.04
10,000 0.92 0.88 0.89 0.88 0.14
20,000 0.97 0.97 0.97 0.97 0.02
25,000 0.98 0.97 0.97 0.97 0.01

0.7

0 0.96 0.96 0.96 0.96 0.04
10,000 0.97 0.97 0.97 0.97 0.03
20,000 0.98 0.98 0.98 0.98 0.01
25,000 0.97 0.97 0.97 0.97 0.01

0.8

0 0.94 0.93 0.93 0.93 0.08
10,000 0.98 0.98 0.98 0.98 0.02
20,000 0.99 0.99 0.99 0.99 0.008
25,000 0.97 0.97 0.97 0.97 0.03
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Table 3. Results for multi-class non-time-series power system data.

Cutoff Number Precision Recall F1-Score Accuracy FP

0.1

0 0.62 0.50 0.52 0.50 0.46
10,000 0.63 0.69 0.62 0.69 0.56
20,000 0.64 0.70 0.63 0.70 0.49
30,000 0.62 0.68 0.62 0.68 0.55
40,000 0.60 0.68 0.61 0.67 0.60
50,000 0.63 0.67 0.61 0.67 0.64

0.2

0 0.63 0.64 0.63 0.64 0.43
10,000 0.65 0.71 0.61 0.71 0.60
20,000 0.68 0.71 0.62 0.71 0.57
30,000 0.66 0.71 0.62 0.70 0.57
40,000 0.66 0.71 0.63 0.71 0.51
50,000 0.66 0.71 0.62 0.70 0.53

0.3

0 0.62 0.65 0.63 0.65 0.43
10,000 0.66 0.71 0.63 0.71 0.47
20,000 0.66 0.71 0.64 0.71 0.46
30,000 0.65 0.71 0.64 0.71 0.46
40,000 0.66 0.70 0.64 0.70 0.51
50,000 0.67 0.71 0.62 0.71 0.52

0.4

0 0.63 0.53 0.56 0.53 0.46
10,000 0.65 0.70 0.65 0.70 0.44
20,000 0.66 0.71 0.64 0.71 0.45
30,000 0.66 0.71 0.63 0.71 0.49
40,000 0.68 0.71 0.61 0.71 0.64
50,000 0.66 0.71 0.63 0.71 0.47

0.5

0 0.65 0.70 0.65 0.70 0.42
10,000 0.64 0.70 0.63 0.70 0.50
20,000 0.57 0.37 0.36 0.71 0.47
30,000 0.66 0.70 0.64 0.69 0.49
40,000 0.67 0.71 0.64 0.71 0.44
50,000 0.66 0.71 0.64 0.71 0.46

0.6

0 0.64 0.55 0.57 0.54 0.45
10,000 0.65 0.70 0.64 0.70 0.46
20,000 0.66 0.71 0.64 0.71 0.44
30,000 0.66 0.71 0.63 0.71 0.49
40,000 0.65 0.70 0.65 0.70 0.42
50,000 0.70 0.71 0.61 0.71 0.63

0.7

0 0.64 0.61 0.62 0.60 0.42
10,000 0.65 0.71 0.64 0.71 0.45
20,000 0.65 0.70 0.65 0.69 0.45
30,000 0.67 0.72 0.64 0.71 0.43
40,000 0.66 0.71 0.65 0.71 0.44
50,000 0.66 0.70 0.64 0.70 0.44

0.8

0 0.64 0.54 0.56 0.54 0.43
10,000 0.65 0.69 0.66 0.69 0.41
20,000 0.65 0.70 0.65 0.70 0.44
30,000 0.67 0.72 0.63 0.71 0.48
40,000 0.68 0.72 0.63 0.71 0.48
50,000 0.68 0.71 0.64 0.71 0.44

Table 4. Results for multi-class time-series power system data.

Cutoff Numbers Precision Recall F1-Score Accuracy FP

0.1

0 0.87 0.81 0.82 0.81 0.19
10,000 0.87 0.87 0.86 0.87 0.07
20,000 0.76 0.78 0.76 0.77 0.20
25,000 0.88 0.88 0.87 0.88 0.10
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Table 4. Cont.

Cutoff Numbers Precision Recall F1-Score Accuracy FP

0.2

0 0.93 0.92 0.92 0.92 0.08
10,000 0.92 0.92 0.92 0.92 0.07
20,000 0.95 0.95 0.95 0.95 0.04
25,000 0.90 0.90 0.90 0.90 0.06

0.3

0 0.95 0.94 0.94 0.94 0.07
10,000 0.99 0.96 0.98 0.96 0.04
20,000 0.99 0.93 0.96 0.93 0.07
25,000 0.96 0.96 0.96 0.96 0.02

0.4

0 0.95 0.94 0.94 0.94 0.07
10,000 0.97 0.97 0.97 0.97 0.02
20,000 0.97 0.97 0.97 0.97 0.02
25,000 0.99 0.95 0.97 0.95 0.05

0.5

0 0.97 0.97 0.97 0.97 0.03
10,000 0.98 0.98 0.98 0.98 0.01
20,000 0.98 0.98 0.98 0.98 0.01
25,000 0.98 0.98 0.98 0.98 0.02

0.6

0 0.98 0.98 0.98 0.98 0.02
10,000 0.98 0.98 0.98 0.98 0.02
20,000 0.98 0.98 0.98 0.98 0.01
25,000 0.98 0.98 0.98 0.98 0.01

0.7

0 0.99 0.98 0.98 0.98 0.02
10,000 0.98 0.98 0.98 0.98 0.02
20,000 0.97 0.97 0.97 0.97 0.03
25,000 0.99 0.99 0.99 0.99 0.01

0.8

0 0.97 0.97 0.97 0.97 0.03
10,000 0.98 0.98 0.98 0.98 0.01
20,000 0.98 0.98 0.98 0.98 0.01
25,000 0.99 0.99 0.99 0.99 0.01

Figure 4 shows genuine data in blue and created statistics in green. The original data
were obtained from the power system initial test. All results have decreased variance.
Both the initial and produced data have similar means. The graph indicates that the initial
dataset is more “random” than the created data, despite the fact that the average of the
time period dataset is similar.

Electronics 2023, 12, x FOR PEER REVIEW 17 of 29 
 

 

dataset is more “random” than the created data, despite the fact that the average of the 
time period dataset is similar. 

 
Figure 4. Graphs comparing real data and generated data for the power system. 

4.2. Outcomes of the Water Storage Reservoir 
Table 5 displays the test outcomes of the binary non-time-sequence water holding 

tank database. When compared with data from power systems, the outcome is incon-
sistent with expectations. However, the numbers demonstrate that the network consist-
ently returns results within a 90% confidence interval. Table 6 displays the experimental 
results of binary time-series data from water holding tanks. The outcomes are consistent 
with those shown in the case of binary, non-time-series data. The data generation does not 
help the system in any way. Table 7 displays the results of an eight-class classification of 
data from water storage tanks. Again, the created data do not boost the efficiency of the 
model, as demonstrated by the results. All of the preceding results are consistent with the 
data from water storage tanks. The incorporation of the generated data does not result in 
any appreciable performance boost. 

Table 5. Results for binary non-time-series water storage tank data. 

Cutoff Numbers Precision Recall F1-Score Accuracy FP 

0.1 
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30,000 0.89 0.87 0.86 0.87 0.0 
40,000 0.92 0.90 0.90 0.90 0.0004 
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Figure 4. Graphs comparing real data and generated data for the power system.
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4.2. Outcomes of the Water Storage Reservoir

Table 5 displays the test outcomes of the binary non-time-sequence water holding tank
database. When compared with data from power systems, the outcome is inconsistent with
expectations. However, the numbers demonstrate that the network consistently returns
results within a 90% confidence interval. Table 6 displays the experimental results of
binary time-series data from water holding tanks. The outcomes are consistent with those
shown in the case of binary, non-time-series data. The data generation does not help the
system in any way. Table 7 displays the results of an eight-class classification of data from
water storage tanks. Again, the created data do not boost the efficiency of the model,
as demonstrated by the results. All of the preceding results are consistent with the data
from water storage tanks. The incorporation of the generated data does not result in any
appreciable performance boost.

Table 5. Results for binary non-time-series water storage tank data.

Cutoff Numbers Precision Recall F1-Score Accuracy FP

0.1

0 0.92 0.90 0.90 0.90 0.0004
10,000 0.89 0.87 0.86 0.87 0.00
20,000 0.91 0.90 0.89 0.90 0.0004
30,000 0.91 0.90 0.89 0.90 0.0003
40,000 0.91 0.90 0.89 0.90 0.0004
50,000 0.91 0.90 0.89 0.90 0.0004

0.2

0 0.92 0.91 0.90 0.90 0.0004
10,000 0.89 0.87 0.86 0.87 0.0
20,000 0.89 0.87 0.86 0.87 0.0
30,000 0.89 0.87 0.86 0.87 0.0
40,000 0.92 0.90 0.90 0.90 0.0004
50,000 0.89 0.87 0.86 0.87 0.0

0.3

0 0.92 0.90 0.90 0.90 0.0004
10,000 0.89 0.87 0.86 0.87 0.0
20,000 0.91 0.90 0.90 0.90 0.0003
30,000 0.92 0.91 0.90 0.90 0.0005
40,000 0.92 0.90 0.90 0.90 0.0004
50,000 0.91 0.90 0.90 0.90 0.0004

0.4

0 0.91 0.90 0.90 0.90 0.0004
10,000 0.90 0.88 0.86 0.88 0.0
20,000 0.91 0.90 0.90 0.90 0.0005
30,000 0.92 0.91 0.90 0.90 0.0005
40,000 0.92 0.90 0.90 0.90 0.0005
50,000 0.92 0.91 0.90 0.90 0.0004

0.5

0 0.89 0.87 0.86 0.87 0.0
10,000 0.89 0.87 0.86 0.87 0.0
20,000 0.89 0.87 0.86 0.87 0.0
30,000 0.92 0.90 0.90 0.90 0.0006
40,000 0.92 0.90 0.90 0.90 0.0007
50,000 0.92 0.91 0.90 0.90 0.0005

0.6

0 0.92 0.90 0.90 0.90 0.0006
10,000 0.89 0.87 0.86 0.87 0.0
20,000 0.91 0.90 0.90 0.90 0.0004
30,000 0.92 0.90 0.90 0.90 0.0006
40,000 0.91 0.90 0.90 0.90 0.0004
50,000 0.92 0.90 0.90 0.90 0.0005
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Table 5. Cont.

Cutoff Numbers Precision Recall F1-Score Accuracy FP

0.7

0 0.89 0.87 0.86 0.87 0.0
10,000 0.92 0.90 0.90 0.90 0.0005
20,000 0.92 0.90 0.90 0.90 0.0003
30,000 0.91 0.90 0.90 0.90 0.0003
40,000 0.92 0.91 0.90 0.91 0.0004
50,000 0.92 0.90 0.90 0.90 0.001

0.8

0 0.92 0.91 0.90 0.90 0.0005
10,000 0.90 0.88 0.87 0.88 0.0
20,000 0.91 0.90 0.89 0.90 0.0001
30,000 0.89 0.89 0.88 0.89 0.08
40,000 0.91 0.90 0.89 0.90 0.0002
50,000 0.87 0.87 0.87 0.87 0.18

Table 6. Results for binary time-series water storage tank data.

Cutoff Numbers Precision Recall F1-Score Accuracy FP

0.1

0 0.77 0.63 0.65 0.63 0.39
10,000 0.78 0.79 0.78 0.79 0.30
20,000 0.78 0.79 0.78 0.79 0.30
25,000 0.78 0.79 0.78 0.79 0.30

0.2

0 0.78 0.79 0.78 0.79 0.30
10,000 0.78 0.79 0.78 0.79 0.30
20,000 0.78 0.79 0.78 0.79 0.30
25,000 0.78 0.79 0.78 0.79 0.30

0.3

0 0.78 0.79 0.78 0.79 0.30
10,000 0.76 0.68 0.69 0.68 0.38
20,000 0.78 0.79 0.78 0.79 0.30
25,000 0.77 0.78 0.78 0.78 0.32

0.4

0 0.78 0.79 0.78 0.79 0.30
10,000 0.76 0.75 0.75 0.75 0.35
20,000 0.77 0.78 0.78 0.78 0.31
25,000 0.78 0.79 0.78 0.79 0.30

0.5

0 0.78 0.79 0.78 0.79 0.30
10,000 0.78 0.79 0.78 0.79 0.30
20,000 0.78 0.79 0.78 0.79 0.30
25,000 0.77 0.78 0.77 0.78 0.32

0.6

0 0.78 0.79 0.78 0.79 0.30
10,000 0.76 0.76 0.76 0.76 0.34
20,000 0.77 0.77 0.77 0.77 0.32
25,000 0.76 0.76 0.76 0.76 0.35

0.7

0 0.78 0.79 0.78 0.79 0.30
10,000 0.78 0.79 0.78 0.79 0.30
20,000 0.78 0.79 0.78 0.79 0.30
25,000 0.78 0.79 0.78 0.79 0.31

0.8

0 0.78 0.63 0.65 0.63 0.39
10,000 0.78 0.79 0.78 0.79 0.30
20,000 0.78 0.79 0.78 0.79 0.30
25,000 0.78 0.79 0.78 0.79 0.30
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Table 7. Results for 8-class non-time-series water storage tank data.

Cutoff Numbers Precision Recall F1-Score Accuracy FP

0.1

0 0.82 0.91 0.86 0.90 0.002
10,000 0.85 0.72 0.77 0.72 0.38
20,000 0.84 0.75 0.79 0.75 0.36
30,000 0.71 0.56 0.61 0.56 0.50
40,000 0.69 0.62 0.65 0.62 0.50
50,000 0.69 0.57 0.62 0.57 0.50

0.2

0 0.82 0.90 0.86 0.90 0.002
10,000 0.83 0.76 0.79 0.76 0.35
20,000 0.84 0.76 0.79 0.75 0.36
30,000 0.84 0.66 0.73 0.66 0.40
40,000 0.83 0.66 0.72 0.66 0.40
50,000 0.70 0.60 0.63 0.60 0.50

0.3

0 0.82 0.90 0.86 0.90 0.002
10,000 0.84 0.81 0.82 0.81 0.31
20,000 0.85 0.75 0.78 0.74 0.36
30,000 0.84 0.79 0.81 0.79 0.33
40,000 0.85 0.69 0.75 0.69 0.39
50,000 0.84 0.74 0.78 0.74 0.36

0.4

0 0.82 0.90 0.86 0.90 0.006
10,000 0.84 0.75 0.78 0.75 0.36
20,000 0.84 0.75 0.79 0.75 0.36
30,000 0.84 0.77 0.79 0.77 0.35
40,000 0.84 0.79 0.81 0.79 0.33
50,000 0.85 0.73 0.77 0.73 0.37

0.5

0 0.82 0.90 0.86 0.90 0.002
10,000 0.84 0.77 0.80 0.77 0.34
20,000 0.84 0.76 0.79 0.76 0.35
30,000 0.83 0.83 0.83 0.83 0.27
40,000 0.85 0.72 0.77 0.72 0.38
50,000 0.85 0.73 0.78 0.73 0.37

0.6

0 0.82 0.90 0.86 0.90 0.006
10,000 0.84 0.78 0.81 0.78 0.33
20,000 0.83 0.89 0.85 0.89 0.09
30,000 0.84 0.82 0.82 0.82 0.30
40,000 0.84 0.76 0.79 0.76 0.35
50,000 0.83 0.78 0.80 0.77 0.35

0.7

0 0.82 0.90 0.86 0.90 0.002
10,000 0.83 0.84 0.83 0.84 0.25
20,000 0.84 0.75 0.79 0.75 0.36
30,000 0.85 0.73 0.78 0.73 0.37
40,000 0.84 0.79 0.81 0.79 0.32
50,000 0.85 0.75 0.79 0.75 0.36

0.8

0 0.82 0.90 0.86 0.90 0.002
10,000 0.84 0.76 0.79 0.76 0.35
20,000 0.84 0.78 0.80 0.77 0.34
30,000 0.84 0.80 0.81 0.80 0.31
40,000 0.84 0.76 0.79 0.75 0.36
50,000 0.85 0.75 0.78 0.74 0.36

Figure 5 indicates that the data produced differs greatly from the first dataset. Figure 6
illustrates this numerical similarity but graphical and visual disparity. Figure 6 graphs
the whole water-holding tank dataset. Similar to the additional datasets, the data are
inconsistent. Figure 7 shows the electric power system dataset for comparison. Figure 6
resembles time-series data, in contrast to Figure 7. Thus, the data collection’s shape makes
it visually distinct despite its understandable mean and variance.
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4.3. Outcomes of the Gas Pipeline

Table 8 shows the binary non-time-sequence gas pipeline data outcomes from ex-
periments. Attaching data improved efficiency. The network usually outperforms the
original dataset. Table 9 shows binary periods in the gas pipeline dataset’s outcomes from
experiments. If the network performs poorly on the initial dataset, adding the produced
data does not improve performance. The generated data do not help network performance.
Table 10 shows eight-class non-time-sequence gas pipeline data test outcomes. Data scarcity
improves the original dataset. However, 10,000 generated data points work best when
the threshold for data collection is greater than 0.5. Increasing the original data quality
increases the data quality. Thus, performance improves with more original data. The study
has to be confined to 0.1, 0.5, and then 0.8 cutoffs, 0, and 25,000 appended numbers. Table 11
shows eight-class time-series gas piping data and experimental outcomes. The initial and
produced data scored poorly in all scenarios. Computational and memory limitations
shortened the testing period. This experiment’s storage and computation requirements
are unrealistic.

Reliability was poor, and the majority of the networks aggregated with 90% precision.
The data collection structure explains this. The average, variance, and general variations
visually display how neural network algorithms distinguish groups. Since each class is
unique, the machine learning system is able to distinguish with roughly 90% accuracy in
most trials in this section of this paper.

Table 8. Results for 8-class time-series water storage tank data.

Cutoff Numbers Precision Recall F1-Score Accuracy FP

0.1

0 0.70 0.79 0.74 0.78 0.31
10,000 0.70 0.79 0.74 0.79 0.30
20,000 0.70 0.79 0.74 0.79 0.30
25,000 0.70 0.79 0.74 0.79 0.30

0.2

0 0.70 0.78 0.74 0.78 0.31
10,000 0.70 0.79 0.74 0.79 0.30
20,000 0.70 0.79 0.74 0.79 0.30
25,000 0.70 0.79 0.74 0.79 0.30

0.3

0 0.70 0.77 0.73 0.77 0.32
10,000 0.70 0.79 0.74 0.79 0.30
20,000 0.70 0.79 0.74 0.79 0.30
25,000 0.70 0.79 0.74 0.79 0.30

0.4

0 0.70 0.78 0.74 0.78 0.31
10,000 0.70 0.79 0.74 0.79 0.30
20,000 0.71 0.79 0.74 0.79 0.30
25,000 0.70 0.79 0.74 0.79 0.30

0.5

0 0.70 0.79 0.74 0.78 0.31
10,000 0.70 0.79 0.74 0.79 0.30
20,000 0.70 0.79 0.74 0.79 0.30
25,000 0.70 0.79 0.74 0.79 0.30

0.6

0 0.70 0.77 0.73 0.77 0.33
10,000 0.79 0.79 0.74 0.79 0.30
20,000 0.70 0.79 0.74 0.79 0.30
25,000 0.70 0.79 0.74 0.79 0.29

0.7

0 0.70 0.78 0.73 0.77 0.32
10,000 0.75 0.79 0.74 0.78 0.31
20,000 0.70 0.79 0.74 0.79 0.30
25,000 0.71 0.79 0.74 0.79 0.30

0.8

0 0.71 0.79 0.74 0.79 0.31
10,000 0.74 0.79 0.75 0.79 0.30
20,000 0.70 0.79 0.74 0.79 0.30
25,000 0.71 0.79 0.74 0.79 0.30
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Table 9. Results for binary non-time-series gas pipeline data.

Cutoff Numbers Precision Recall F1-Score Accuracy FP

0.1

0 0.82 0.61 0.64 0.60 0.40
10,000 0.86 0.83 0.79 0.83 0.04
20,000 0.79 0.74 0.76 0.74 0.38
30,000 0.83 0.62 0.65 0.62 0.40
40,000 0.76 0.37 0.36 0.37 0.45
50,000 0.82 0.62 0.65 0.61 0.40

0.2

0 0.82 0.62 0.65 0.62 0.40
10,000 0.86 0.83 0.78 0.83 0.005
20,000 0.83 0.62 0.65 0.62 0.40
30,000 0.85 0.83 0.80 0.83 0.07
40,000 0.83 0.62 0.65 0.62 0.40
50,000 0.82 0.61 0.64 0.61 0.40

0.3

0 0.83 0.62 0.65 0.62 0.40
10,000 0.83 0.62 0.65 0.61 0.40
20,000 0.82 0.62 0.65 0.62 0.40
30,000 0.74 0.71 0.72 0.71 0.43
40,000 0.82 0.62 0.65 0.62 0.40
50,000 0.77 0.38 0.37 0.38 0.45

0.4

0 0.84 0.82 0.76 0.82 0.08
10,000 0.83 0.62 0.65 0.62 0.40
20,000 0.83 0.62 0.65 0.62 0.40
30,000 0.83 0.63 0.66 0.62 0.40
40,000 0.86 0.83 0.79 0.83 0.03
50,000 0.78 0.37 0.36 0.37 0.44

0.5

0 0.83 0.61 0.64 0.61 0.40
10,000 0.05 0.22 0.08 0.21 -
20,000 0.83 0.82 0.76 0.81 0.10
30,000 0.86 0.83 0.78 0.83 0.006
40,000 0.78 0.74 0.75 0.74 0.39
50,000 0.78 0.37 0.35 0.37 0.44

0.6

0 0.81 0.62 0.65 0.61 0.41
10,000 0.85 0.83 0.79 0.83 0.04
20,000 0.83 0.62 0.65 0.62 0.40
30,000 0.77 0.77 0.77 0.77 0.37
40,000 0.82 0.62 0.65 0.62 0.40
50,000 0.83 0.61 0.64 0.61 0.40

0.7

0 0.83 0.63 0.66 0.63 0.39
10,000 0.83 0.63 0.66 0.62 0.39
20,000 0.83 0.62 0.65 0.62 0.39
30,000 0.85 0.83 0.79 0.83 0.05
40,000 0.83 0.63 0.66 0.63 0.39
50,000 0.85 0.83 0.79 0.83 0.07

0.8

0 0.77 0.72 0.74 0.72 0.40
10,000 0.78 0.74 0.75 0.74 0.39
20,000 0.81 0.82 0.79 0.82 0.22
30,000 0.80 0.75 0.77 0.75 0.38
40,000 0.83 0.63 0.66 0.62 0.39
50,000 0.83 0.62 0.65 0.62 0.39

Table 10. Results for binary time-series gas pipeline data.

Cutoff Numbers Precision Recall F1-Score Accuracy FP

0.1

0 0.74 0.61 0.65 0.61 0.44
10,000 0.72 0.68 0.70 0.68 0.44
20,000 0.74 0.64 0.67 0.64 0.43
25,000 0.71 0.70 0.71 0.70 0.45
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Table 10. Cont.

Cutoff Numbers Precision Recall F1-Score Accuracy FP

0.2

0 0.74 0.64 0.67 0.64 0.44
10,000 0.73 0.66 0.68 0.65 0.44
20,000 0.74 0.67 0.69 0.66 0.43
25,000 0.73 0.65 0.68 0.65 0.44

0.3

0 0.74 0.65 0.68 0.65 0.44
10,000 0.74 0.58 0.62 0.58 0.44
20,000 0.74 0.63 0.66 0.44 0.44
25,000 0.72 0.70 0.71 0.69 0.44

0.4

0 0.73 0.68 0.70 0.67 0.44
10,000 0.72 0.70 0.71 0.70 0.43
20,000 0.75 0.64 0.67 0.64 0.43
25,000 0.73 0.67 0.69 0.67 0.44

0.5

0 0.75 0.65 0.68 0.65 0.43
10,000 0.74 0.68 0.70 0.67 0.43
20,000 0.74 0.67 0.69 0.67 0.43
25,000 0.73 0.67 0.69 0.66 0.44

0.6

0 0.75 0.65 0.68 0.65 0.43
10,000 0.74 0.67 0.69 0.67 0.43
20,000 0.74 0.68 0.70 0.68 0.43
25,000 0.74 0.69 0.71 0.69 0.43

0.7

0 0.75 0.67 0.69 0.66 0.42
10,000 0.75 0.67 0.70 0.67 0.43
20,000 0.74 0.69 0.71 0.68 0.43
25,000 0.75 0.63 0.67 0.63 0.43

0.8

0 0.74 0.68 0.70 0.67 0.43
10,000 0.74 0.68 0.70 0.67 0.43
20,000 0.76 0.61 0.64 0.60 0.43
25,000 0.75 0.67 0.69 0.66 0.42

Table 11. Results for 8-class time-series gas pipeline data.

Cutoff Numbers Precision Recall F1-Score Accuracy FP

0.1
0 0.66 0.72 0.69 0.72 0.50

25,000 0.70 0.71 0.70 0.71 0.47

0.5
0 0.66 0.71 0.68 0.71 0.51

25,000 0.62 0.31 0.40 0.30 0.54

0.8
0 0.65 0.72 0.68 0.72 0.52

25,000 0.67 0.70 0.68 0.70 0.50

The generated network can produce samples that are aesthetically comparable to
the actual dataset, as demonstrated in Figure 8. In contrast with the previous datasets,
however, the averages and variance here are not as close to their initial values. While
the results show promise for the water reservoir and gas pipeline datasets, this study’s
credibility has to be bolstered by integrating strong model validation methods. Cross-
validation or testing on a separate dataset would be invaluable to validate the model’s
generalization capabilities, notwithstanding the claimed accuracy of 71% in the water-
based reservoir industry. In order to determine if the accuracy of the model is stable across
datasets and scenarios, these validation techniques can be used. Furthermore, this study
found discrepancies when comparing results to data from power systems, underscoring
the necessity for thorough validation to comprehend the model’s behavior in various
real-world settings. It is also important for honesty’s sake to note that the testing time
was impacted by computational and memory constraints. In conclusion, including model
validation metrics would strengthen the trustworthiness of this study and offer a more
in-depth assessment of the model’s efficacy.
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There are substantial real-world applications of the findings reported in this study.
The precision could be useful in detecting anomalies in water storage tanks at an early
stage, avoiding problems with water quality or costly infrastructure failures. However,
the requirement for sector-specific fine-tuning is highlighted by the observed discrepancy
when comparing data from power systems. The results raise concerns that the model’s
efficacy may fall short of expectations in the context of gas pipeline observation, where
dependability is of the utmost significance. Critical gas pipeline observation scenarios
call for robust contingency plans and human involvement due to the low reliability and
difficulties in generating exact results. In addition, the testing showed that there is a need
to optimize resource utilization for real-world deployments due to computational and
memory limits. To ensure the model can function efficiently in a business environment, real-
world applications must think about how to work around these limitations. In conclusion,
while the models show promise, their practical influence in water storage tank and gas
pipeline tracking will depend on rigorous adaptation to the individual industry, addressing
dependability concerns, and optimizing computing needs to suit practical requirements.

In computer security, a zero-day security hole is a flaw that is discovered by cyber-
criminals before the vendor is aware of it. Until the flaw is fixed, malicious actors can take
advantage of it to compromise sensitive data or software. A zero-day attack is an exploit
that targets a vulnerability with no known solution. Criminals conceal their actions by
switching up the attack vector to foil traditional antivirus software. A zero-day exploit
is a flaw in software that has not been made public and can be used by hackers to cause
harm [67,68]. A security strategy must be implemented to protect against zero-day ran-
somware attacks, which is why safeguarding systems against such assaults is so crucial.
The vicious circle of needing to rebuild the defense system only continues. Defenders can
construct defense systems using data they already possess, which has not been requested
or provided by attackers. For example, an adaptive defense system could be constructed
as a means for detecting potential zero-day attacks. This system would involve gathering
data to identify critical assets, monitoring processes (system calls), and making decisions to
catch malicious behaviors associated with using the critical assets, which would check the
security system’s load time and make it OS-independent [69].
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5. Conclusions

This research concluded that the manufacturing industry’s essential area of controlling
processes is increasingly at risk due to the widespread adoption of low-power sensors and
Internet of Things (IoT) solutions. Cyberattacks on these industries have been highlighted,
as has the lack of effective security systems, which leaves our electronic gadgets and
infrastructure open to assault. Our approach combined data from three databases that track
critically important infrastructure: those that keep track of power plants, water reservoirs,
and gas lines. Key discoveries arose as we analyzed the collected dataset and performed
preliminary statistical evaluations. In the scenario of electric power systems, where time-
series information is unavailable, one of the important discoveries is that supplementing
the dataset cannot always enhance the efficiency of systems already battling difficulties
in the initial dataset. In addition, this study used information about water reservoirs
to emphasize the significance of information accuracy when using more recent types of
systems to generate samples. The fact that the created data replicated inconsistencies
found in the original water reservoir dataset brought attention to the need for precise and
reliable data. Finally, this study proved that feeding more data into neural networks greatly
improved the effectiveness of the dataset. Overall performance often improves after being
exposed to a wider variety of scenarios, including edge cases.

However, the scope of this endeavor has limitations that must be taken into account.
For example, the study’s conclusions may not be readily transferable to other sectors due
to its narrow focus on infrastructure. More research is needed on this important subject
because this study did not even touch on the topic of implementing particular security
mechanisms against cyberattacks. The goal of future research in this area should be to
create and evaluate effective cybersecurity solutions that address the specific threats posed
by low-power sensing and Internet of Things technologies in industrial settings.
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