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Abstract: For text big data analysis, we preprocessed text data and constructed a document–keyword
matrix. The elements of this matrix represent the frequencies of keywords occurring in a document.
The matrix has a zero-inflation problem because many elements are zero values. Also, in the process
of preprocessing, the data size of the document–keyword matrix is reduced. However, various
machine learning algorithms require a large amount of data, so to solve the problems of data shortage
and zero inflation, we propose the use of generative models based on statistics and machine learning.
In our experimental tests, we compared the performance of the models using simulation and practical
data sets. Thus, we verified the validity and contribution of our research for keyword data analysis.
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1. Introduction

Keyword data analysis has been actively performed in various big data fields [1–3].
This is because a significant portion of big data consists of text-based data. To carry out
a text data analysis, we preprocess the text data, such as a document, and extract the
keywords from the preprocessed text data by text mining techniques [4,5]. In general, we
construct a document–keyword matrix, with documents and keywords corresponding
to its rows and columns [1,5–7]. Each element of the matrix is the frequency value of a
keyword occurring in a document. Figure 1 shows a document–keyword matrix [7].
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Figure 1. A document–keyword matrix.

Even if a large amount of text big data is collected, the size of the data set is reduced
through preprocessing to build structured data which can be analyzed by statistics and ma-
chine learning. Additionally, as can be seen in Figure 1, the preprocessed text data contain
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many zero values because a keyword that is included only once among all documents is
assigned to one column in the document–keyword data.

In the previous research attempting to overcome the zero-inflation problem in text
data analysis, Uhm and Jun (2022) proposed a generative model based on statistics by
synthpop to address the zero-inflation problem in patent data analysis [6]. Jun (2023)
studied generative adversarial network (GAN) and statistical modeling [1]. He compared
the performance of GAN with the statistical model without GAN. Park and Jun (2023) used
compound Poisson models to perform zero-inflation patent data analysis [7]. This was
not a generative model but an exponential dispersion model. In this paper, to solve the
problems of zero inflation as well as data shortage, we propose a keyword data analysis
using generative models based on statistics and machine learning. Using these generative
models, we generate synthetic data from the original data, and add the synthetic data to the
original training and test data sets for keyword data analysis by various machine learning
algorithms such as deep learning, linear modeling, Bayesian neural networks, etc.

Our paper consists of the following sections. In Section 2, we outline the background
to our research, such as keyword data analysis and generative modeling. We propose the
generative models based on statistics and machine learning for keyword data analysis in
Section 3. In the next section, we carry out the experiments using simulation and patent
document data to show the performance results for the compared models. We explain the
conclusions and contributions of our paper in the last section.

2. Research Background
2.1. Keyword Data Analysis

In this paper, we employ keyword data analysis to find the relationship between the
keywords extracted from various text documents. Generally, we can extract the keywords
from documents using term frequency (tf), inverse document frequency (idf) and domain
experts’ knowledge and analyze them [4,5]. Figure 2 shows the process of keyword data
analysis [4,5].
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Figure 2. Process of keyword data analysis.

In the process of keyword data analysis, we first collect text documents to be analyzed.
Using text mining techniques, we create a text corpus, carry out parsing and construct a
text database [5]. Next, we build a document–term matrix to serve as structured data for
statistical analysis and machine learning. Finally, we extract keywords from the document–
term matrix for keyword data analysis. In general, the data size of the document–keyword
matrix constructed from collected text documents is reduced as it goes through prepro-
cessing for text mining. Therefore, we need new methods to solve the data shortage
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problem. In this paper, we study the use of generative models to increase the data size of a
document–keyword matrix.

2.2. Generative Modeling

A generative model is a probabilistic and machine learning model to generate synthetic
data that resemble given original data [8–10]. Figure 3 illustrate the process of generative
modeling [8].
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By learning from the original data, we can construct generative models. To generate
the synthetic data, we sample new data from the generative models with random noise [11].
The generative models use a probability distribution such as normal with mean (µ) and
variance (σ2) [12,13]. That is, the generative models are not deterministic and they generate
different data every time. Therefore, we have to estimate the parameters of the probability
distribution to explain the original data well. In the generative modeling, we estimate the
density p(x) of the observed data (x) [14,15]. Currently, various studies are being actively
conducted on generative models based on statistics and machine learning [16–22]. In the field
of biology, single-cell genomic data also take the form of large count matrices characterized
by a high occurrence of zeros. This presents the same issue as zero inflation in our study.
Therefore, various tailored analysis methods have been investigated to address the unique
challenges posed by such data [23,24]. The following two studies focus on generative
models to solve the zero-inflation problem that arises in the analysis of single-cell genomic
data. The first, by Liu et al. (2021), introduced one of the most widely adopted approaches
to this problem [24]. The second, by Ji et al. (2023), detailed a method that employs a
generative model in the single-cell genomic data analysis [23]. These references serve as
a valuable entry point for extensive research on the analysis of single-cell genomic data
using generative models. Most studies on generative models focus on image data, but in
this study, we deal with generative models for count data because the document–keyword
matrix consists of the frequency values of keywords occurring in documents.

2.3. Zero-Inflation Problems in Keyword Data Analysis

For keyword data analysis, we construct the document–keyword matrix according to
the process of keyword data analysis illustrated in Figure 2. As we explained in Figure 1,
there is a zero-inflation problem in the matrix. Many previous works have been conducted
to solve the problem. Most of them were based on statistical methods. The zero-inflated
count model is a popular method to analyze keyword data with zero inflation. This is
defined as follows [25]:

P(X = x) =
{

π + (1 − π) f (0) , x = 0
(1 − π) f (x) , x > 0

(1)

where π is the probability of zero. In Equation (1), the zero-inflated model P(X = x)
consists of two components, zero and non-zero parts. Also, f (x) is a base model of
probability mass function (pmf). In the zero-inflated count model, we use Poisson and
negative binomial distributions for the pmf, and we call them zero-inflated Poisson (ZIP)
and zero-inflated negative binomial (ZINB) models [26]. To improve the models based on
ZIP and ZINB, Bayesian inference has been applied to the zero-inflated count model [27,28].
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Neelon and Chung (2017) used the Bayesian latent factor model for the ZIP, and called
this LZIP. They compared the LZIP with ZIP, and verified the improved performance of
LZIP in the illustrative examples [27]. Moriña et al. (2021) proposed a method to analyze
zero-inflated binomial data using Bayesian inference [28]. Seo and Hwang (2022) studied
a Bayesian inference for ZINB regression model [29]. Another approach to overcome
the zero-inflation problem is methods based on machine learning, such as classification
and regression trees or generative models [1,6]. In this paper, we conduct research on
generative models based on statistics and machine learning algorithms to solve the zero-
inflation problem that occurs during keyword data analysis. Also, in our experiments,
we compare the performance between models with synthetic data generation using the
generative models based on statistical methods and machine learning algorithms.

3. Proposed Method

Much big data is in text form. Therefore, we have to extract the keywords from text
data and analyze them by methods such as constructing document–keyword matrices,
N-grams and correlation analysis between keywords, sentiment analysis, topic modeling,
etc. [4,5]. The first task to be performed in keyword data analysis is to collect text documents
on a given topic. As explained in Figure 2, the collected document data are preprocessed
using text mining and natural language processing techniques. The preprocessed text
document data set has a frequency matrix structure in which the rows and columns
are documents and terms, respectively, as shown in Figure 1. This matrix is called the
document–term matrix [5]. Next, we extract the keywords from the document–term matrix
and construct the document–keyword matrix, as shown in Table 1.

Table 1. Document–keyword matrix and frequency element.

Data Matrix Keyword1 Keyword2 · · · Keywordp

Document1 Frequency11 Frequency12 · · · Frequency1p

Document2 Frequency21 Frequency22 · · · Frequency2p

...
...

...
. . .

...

Documentn Frequencyn1 Frequencyn2 · · · Frequencynp

In Table 1, the Frequencyij is the frequency value of Keywordj occurring in Documenti.
Through the data preprocessing, the size of the initially collected document data set gradu-
ally decreases, and when the document–keyword matrix is finally constructed, the data set
sometimes becomes so small that it is difficult to analyze. In addition, many elements of
the matrix are zero values, as shown in Figure 1. Not only the data shortage but also the
zero-inflation problem must be solved in keyword data analysis [1,6,7,25,26,28,30]. To solve
these problems, we use generative models based on statistics and machine learning. First,
we consider the synthpop package of R data language to generate synthetic data [31,32].
This is a generative model based on statistics. In the synthpop modeling, the original input
data are represented as follows.

Xi =
(
Xi1, Xi2, . . . , Xip

)
, i = 1, 2, . . . , n (2)

In the data of (2), p is the number of input variables. The synthpop model uses
classification and regression trees (CART) to generate the synthetic data [16,31]. We generate
the synthetic data for the current variable using the previous variables as follows: We start
with the second variable and exclude the first variable [31]. We generate Xj by running(

X1, X2, . . . , Xj−1
)

using CART growth. That is, we sample Xj from the CART model,
P
(
Xj

∣∣X1, X2, . . . , Xj−1
)

[16]. Figure 4 explains the method of synthetic data generation by
the synthpop in our keyword data analysis.
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In Figure 4, we fit statistical models of the keywords to the original data and generate
synthetic data that is completely new data of the keywords. We denote original and

synthetic data as Frequencyj and
∼

Frequencyj. Using the original data, we find the joint
probability distribution of keywords. We represent the probability distribution of Keywordj
as Equation (3).

P
(

Keywordj

∣∣∣Keyword1, Keyword2, . . . , Keywordj−1

)
(3)

In Equation (3), we generate the Keywordj from the conditional probability distribution

of Keywordj given
(

Keyword1, Keyword2, . . . , Keywordj−1

)
. The synthpop begins by esti-

mating the probability distribution of the first keyword, P(Keyword1). Next, we generate
new data Keyword1 (synthetic) that resembles Keyword1 (original) by P(Keyword1). That is,

the synthetic data
∼

Frequency1 represent the original data Frequency1. Using this result, we
build the conditional distribution P

(
Keyword2|Keyword 1

)
and generate the synthetic data

Frequency2 for Keyword2 by the conditional distribution. In this way, we generate the final

synthetic data
∼

Frequencyp.
Unlike the synthpop, the generative model based on machine learning is performed

by deep neural networks [9,33]. In this paper, we use GAN for the generative model for
document–keyword data generation. GAN is a machine learning model which generates
new synthetic data that resemble the given original data [9,11–13,17]. GAN performs an
adversarial training process, involving two neural networks, a generator and discriminator.
The formula of GAN is defined as follows [9].

V(D, G) = Ep(x)(logD(x)) + Eq(z)(log(1 − D(G(z)))) (4)

where D and G represent the generator and discriminator respectively. x and z are input
data and random noise, which follow a normal distribution. In Equation (4), z also is the
latent representation of x. p(x) and q(z) are the generative and latent models. The discrim-
inator wants to maximize V(D, G), and on the other side, the generator tries to minimize
V(D, G). In this paper, the document–keyword matrix is used as x in Equation (4). Figure 5
illustrates the process of generating a synthetic document–keyword matrix using GAN.
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In Figure 5, the generator creates a new synthetic document–keyword matrix from
latent space and random noise. Also, the generator tries to make the synthetic data as
similar as possible to the original data. The latent space is a learning space representing
sample data with low dimension. Sample data that are similar to each other are located
close to each other in the latent space. We select the initial data point from the latent space
and add random noise to the data. Thus, we generate the synthetic document–keyword
matrix from the latent space and random noise. The discriminator predicts whether the
input data are real (original) or fake (not original). Sampling the document–keyword
data randomly from original and synthetic data sets, and combining the sample data, the
discriminator uses this data to learn to accurately classify real and fake. The generator
is trained so that the discriminator can judge the synthetic data as original. Ultimately,
the generator aims to generate synthetic data to the extent that the discriminator cannot
distinguish whether the synthetic data are original or not. When training the entire model,
only the weights of generator should be updated and the weights of discriminator should
not be updated so that the synthetic data with good performance are generated. Next, we
combine the results of synthpop and GAN. Figure 6 shows the synthetic data generation.
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Our third generative model combines the two data sets generated by synthpop and
GAN. In Figure 6, synthpop and GAN generate synthetic document–keyword data sets
based on statistics and machine learning, respectively. Therefore, we use the three genera-
tive models to analyze the keyword data. In our keyword data analysis, we build the linear
model shown in Equation (5).

KeywordY = b0 + b1Keyword1 + b2Keyword2 + · · ·+ bkKeywordk (5)
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where (Keyword1, Keyword2, . . . , Keywordk) are k explanatory keywords and KeywordY is a
response keyword. Each variable of (5) represents the frequency value of a keyword. To
evaluate the performance between generative models, in this paper, we divide the given
data into training (70%) and test (30%) data sets. Using the training data, we calculate the
Akaike information criterion (AIC) and use this value to compare the explanatory power of
the linear model [34]. AIC is a measure used in predictive modeling to verify the goodness
of fit of a model, as shown in Equation (6) [35,36].

AIC = −2ln(argmaxL(θ; X)) + 2p (6)

where θ and X represent the model parameter and data, respectively. p is the number of
model parameters. argmaxL(θ; X) is maximum likelihood estimator of θ. The better the
fitting performance of model, the smaller the AIC value. We use another measure, mean
squared error (MSE), to evaluate performance of the compared models. MSE is defined as
shown in Equation (7) [34–37].

MSE =
1
n∑n

i=1(yi − ŷi)
2 (7)

where yi and ŷi are real and predicted values, respectively, and n is the size of the given
data. We calculate MSE value of each model using the test data. The smaller the MSE
value of the model, the better its predictive performance. In the next section, we perform a
performance comparison between the compared generative models using MSE and AIC.

4. Experimental Results
4.1. Simulation Data Analysis

In keyword data analysis, each element of a document–keyword matrix is the fre-
quency value of keyword occurring in document. This count data follows a Poisson
distribution [7,38]. Thus, we generated the random numbers from the multivariate gen-
eralized Poisson distribution [39,40]. We used the R data language and R package for
generating simulation data and data analysis [32,40]. For our simulation data for keyword
data analysis, we considered the mixture of Poisson distributions with two parameters,
rate and dispersion [39–41]. In our simulation study, we consider a linear model with six
variables (keywords), as shown in Equation (8).

Y = b0 + b1X1 + b2X2 + · · ·+ b5X5 (8)

where Y is the response keyword and (X1, X2, . . . , X5) are explanatory keywords. Each
keyword in (Y, X1, X2, . . . , X5) follows a Poisson distribution with different parameters.
Also, they are correlated with each other. Figure 7 shows the correlation structure of the
generated simulation data.
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In Figure 7, we can see that among the explanatory variables, some variables have a
high correlation with the response variable Y, while others have a relatively low correlation.
Also, in Table 2, we illustrate the zero ratio of each variable in the simulation data.
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Table 2. Zero ratio of each variable in a simulation data set.

Variable Y X1 X2 X3 X4 X5

Zero ratio 14.3% 22.7% 57.0% 31.7% 52.6% 39.0%

We can see that the percentage of zeros in X2 and X4 is more than 50%. In this way, we
created simulation data so that the zero-inflation problem could be included in the original
data. Next, we utilized the generative models to create synthetic data and analyze them
based on the linear model in (7). In addition, we calculated the AIC and MSE values of the
constructed models using original and synthetic data sets. We show the AIC values of the
compared models in Table 3.

Table 3. AIC values of compared models: simulation data.

Iteration Original Synthpop GAN SynthGAN

1 1842.19 1324.18 509.89 1815.29
2 1867.63 1350.04 953.32 2100.60
3 1837.09 1341.35 768.61 2264.31
4 1859.86 1343.14 706.52 2080.11
5 1862.00 1356.58 645.50 2201.26
6 1859.98 1345.17 462.33 2061.93
7 1846.71 1330.72 591.87 2071.94
8 1858.55 1334.23 403.80 1920.64
9 1836.82 1329.28 534.35 1794.90
10 1871.46 1340.30 620.48 1993.39
11 1861.15 1356.74 536.33 2006.04
12 1834.99 1326.46 530.13 2474.01
13 1854.99 1317.95 563.45 2332.94
14 1845.23 1337.51 374.92 1690.55
15 1852.55 1349.32 479.86 2029.23
16 1849.44 1353.55 425.15 1866.02
17 1870.77 1336.73 695.17 2102.80
18 1849.38 1334.34 709.39 2183.69
19 1872.85 1358.24 651.02 1930.75
20 1867.92 1314.11 653.04 1832.50
21 1815.57 1329.93 602.27 1839.60
22 1848.14 1345.97 728.53 2044.62
23 1885.86 1356.95 618.60 2343.37
24 1865.49 1339.58 468.00 2270.44
25 1857.93 1337.17 652.76 2059.51
26 1886.26 1334.46 468.81 2074.06
27 1833.16 1347.06 483.89 1991.80
28 1881.45 1374.20 590.23 2248.10
29 1876.67 1358.93 551.00 2093.37
30 1857.03 1307.41 635.69 2003.78

In Table 3, We built the linear model in Equation (7) for the four data sets and calculated
the AIC value for each model. The elements of original data are count data because they
were generated from a generalized Poisson distribution. The synthetic data generated by
synthpop from the original data are also count data because they are created by a joint
distribution of frequency count data. However, the synthetic data set created by GAN
is a continuous data type because the generator of GAN creates the new data from the
latent space of a normal distribution and random noise. In this paper, it is possible to use
continuous data because the constructed linear model of keywords allows such data. Lastly,
we combined the synthetic data sets from synthpop and GAN (SynthGAN). Figure 8 is a
visualization of the AIC values in Table 3.
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The AIC values of the GAN synthetic data are the smallest. The values for the synthpop
synthetic data are also smaller than the original data, but the AIC values for synthGAN
are mostly larger than the original data. Therefore, from the perspective of model fitting,
we were able to confirm the validity of using the synthetic data by synthpop and GAN.
Although the AIC values of the GAN synthetic data are smaller than those of synthpop,
the dispersion of the AIC values is larger than for the original. Also, in Figure 8, we can
see that there is a large variation in the AIC values of the models based on GAN. This is
because random noise was used in the synthetic data generation process using the GAN
model, thereby increasing the variance in the data. Next, we present the MSE results of
models for the comparative data sets in Table 4.

By comparing the MSE values of the models, we can check the prediction performance
between the compared models. We confirmed in Table 4 that the difference in MSE values
for the compared models was not large. Figure 9 shows the MSE plot of compared models
with the original and synthetic data sets.
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Table 4. MSE values of compared models: simulation data.

Iteration Original Synthpop GAN SynthGAN

1 16.47 15.73 14.82 14.54
2 15.22 14.94 14.06 14.04
3 16.29 15.83 19.01 14.60
4 18.21 17.60 21.25 18.15
5 15.11 14.84 18.90 15.92
6 16.98 17.43 15.46 15.46
7 14.23 14.94 14.59 14.42
8 17.87 17.42 24.64 17.01
9 15.10 16.36 15.22 15.04
10 14.52 15.12 18.19 14.12
11 12.57 13.90 18.58 13.05
12 15.26 16.94 24.43 18.20
13 16.67 17.20 25.19 18.12
14 15.35 16.33 13.80 15.04
15 14.11 16.16 13.70 14.98
16 17.73 17.77 15.01 16.31
17 13.85 13.43 21.88 14.48
18 14.09 14.41 12.60 12.89
19 14.29 14.65 11.26 12.50
20 16.43 16.14 14.61 14.39
21 24.38 24.66 22.22 24.21
22 13.54 13.52 10.86 11.39
23 12.81 12.78 12.63 10.21
24 18.45 19.08 18.31 17.74
25 15.80 16.50 22.61 17.89
26 15.35 14.78 15.19 14.82
27 13.75 14.52 11.23 12.86
28 13.76 14.20 19.77 15.80
29 13.89 13.43 18.07 13.18
30 15.04 15.25 12.84 13.81

In many repeated experiments, we confirmed that the MSE values for the GAN
synthetic data were calculated to be larger than those for the remaining three comparison
data sets in Figure 9. Therefore, in terms of the predictive performance, the use of synthetic
data by synthpop is not significantly different from the original data. Thus, we confirmed
the validity of using the synthetic data by synthpop. In addition, we can see that the
MSE values of the GAN model are distributed over a wide range. Similar to the results
in Figure 8, this is because we use random noise from the latent space when we generate
reproduction data using the GAN model. Table 5 shows a summary of the MSE values of
the original and synthetic data sets.

Table 5. Summary of MSE values.

Data Min Q1 Median Mean Q3 Max

Original 12.57 14.10 15.16 15.57 16.46 24.38
Synthpop 12.78 14.55 15.49 15.86 16.83 24.66

GAN 10.86 13.87 15.34 17.03 19.58 25.19
SynthGAN 10.21 13.87 14.71 15.17 16.21 24.21

In Table 5, Q1 and Q3 are the percentiles of 25% and 75%, respectively. The mean
value of the synthetic data from GAN is the largest among the compared models. Also, the
minimum value in the GAN synthetic data is smaller than that of the original and synthpop
data, and the maximum value in the GAN data is larger than those of the other data sets.
Therefore, we can see that the performance of the GAN synthetic data was poor compared
with the other models and that the dispersion of GAN synthetic data was large. Therefore,
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considering the results of simulation data analysis, although the AIC values of the synthetic
data generated by GAN are small compared with those of the other data sets, the MSE
values are large and their dispersion is also large. We found that synthpop synthetic data is
the most appropriate for the linear prediction model for keyword data analysis.

4.2. Practical Data Analysis

To show how the proposed research can be applied to a practical domain, we used
the patent document data related to artificial intelligence (AI) technology for disaster and
security for text data. We searched the patent documents from the United States Patent and
Trademark Office and the Korea Intellectual Property Rights Information Service [42,43].
The collected patent documents were filed until 2022 in patent databases around the world.
We obtained a total of 16,875 valid patents through the patent verification process. Figure 10
shows the valid patent data.
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In this experiment, we selected the title and abstract from the patent data in Figure 10
for keyword data analysis. Using text mining techniques, we constructed the document–
keyword matrix from the valid patent documents, as shown in Figure 11.
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Figure 11 shows the first rows of 162 keywords in a document–keyword matrix. We
carried out a 10% sampling from the matrix with 16,875 rows (documents). To compare
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the performance between the original and synthetic data sets, we used a linear model, as
shown in Equation (9).

Analysis = b0 + b1Data + b2 Image + b3 In f ormation + b4Signal + b5Time (9)

We selected Analysis for the response keyword, and Data, Image, Information, Signal
and Time for the explanatory keywords. We show the AIC values of the compared models
in Table 6.

Table 6. AIC values of compared models: patent data.

Iteration Original Synthpop GAN SynthGAN

1 5820.07 5498.04 1292.23 7796.35
2 5898.53 5663.81 1712.42 7954.24
3 5708.29 5869.78 1180.56 8230.99
4 6023.27 5768.70 950.62 8105.72
5 6052.42 6080.04 479.14 8068.74
6 5562.51 5294.46 72.43 7525.59
7 5749.34 5543.17 1770.41 8002.39
8 6010.72 6118.29 340.51 8382.23
9 5724.70 5803.23 2149.38 8497.16
10 5476.35 5503.69 2076.72 8048.08
11 5969.25 6187.38 2039.60 8526.81
12 5867.03 5894.44 244.00 8061.97
13 5664.92 5917.38 2346.98 8421.98
14 6023.38 5958.67 1092.81 8024.77
15 6124.64 5896.04 133.84 8029.70
16 5837.25 5256.60 2182.39 7843.76
17 6054.10 5787.18 202.72 7933.51
18 6127.58 6033.42 −40.01 8125.56
19 5375.92 5056.72 −401.05 7419.40
20 5680.26 5939.15 1260.75 8036.63

In Table 6, as for the results of the simulation data, the AIC values of the synthetic
data by GAN are the smallest in all data sets, both original and synthetic. In addition, the
AIC values of the original and synthpop synthetic data are similar to each other. The AIC
values of synthetic data by synthGAN are larger than the original and synthpop values.
Therefore, we confirmed that synthpop synthetic data can well replace original data. Next,
we calculated the MSE values of the compared models. We show the experimental results
in Table 7.

Similar to the experimental results using simulated data, we found that the GAN
synthetic data had the largest MSE values in the comparison using practical patent data.
Also, the MSE dispersion of the GAN synthetic data is larger than that of the others. In
comparison to this, the MSE values of the synthpop synthetic data are similar to the results
of the original data. We were able to see that the MSE results for synthGAN were also
similar to the results for the original and synthpop data. Therefore, we confirmed that the
synthpop generative model is the most efficient way to perform synthetic data generation
for keyword data analysis.
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Table 7. MSE values of compared models: patent data.

Iteration Original Synthpop GAN SynthGAN

1 145.43 143.57 21,154.99 141.82
2 140.85 136.58 5080.91 138.63
3 166.23 168.30 8292.04 168.86
4 143.40 145.94 488.06 145.54
5 157.62 158.19 228.39 157.76
6 129.52 129.01 406.02 128.80
7 161.39 161.01 15,904.39 160.53
8 154.98 156.24 1118.97 157.03
9 188.42 189.59 9794.08 188.36
10 171.78 174.88 2378.39 172.65
11 132.72 135.06 15,602.14 133.90
12 144.67 144.91 167.14 142.12
13 131.58 128.93 28,130.54 129.93
14 148.64 148.91 2768.86 147.38
15 165.18 166.39 245.63 165.89
16 139.04 139.93 11,970.70 141.56
17 152.31 153.70 920.31 149.10
18 172.88 174.17 173.62 169.22
19 151.85 153.83 201.37 150.83
20 169.04 171.53 1306.92 169.17

5. Discussion

In this paper, we tried to solve the zero-inflation problem that occurs in the process
of keyword data analysis. We carried out two experiments using simulation and practical
models. From the experimental results, we found that the performances of the synthpop
and GAN models were better than the original model. This means that using the generative
models based on statistics and machine learning is better than not using them. Also, the
performance of the GAN model was better than that of synthpop. For example, all the AIC
values of GAN were smaller than the values of the synthpop model in the simulation data
analysis of Figure 8. This was similar to the results for AIC values when comparing models
in the practical data analysis of Table 6. The GAN model has the best performance due to its
characteristics as a generative model. When we generate the synthetic data using the GAN
model, we generally perform random sampling from a normal distribution representing
the latent space. Thus, most of the generated data values are distributed around the mean.
Because the variance of the synthetic data generated by GAN is relatively small compared
with other generative models, the performance of the compared linear model is stable and
shows excellent explanatory power.

Currently, generative models are actively used in various machine learning domains.
In this study, we used this model to solve the zero-inflation problem that occurs during
the analysis of keyword data extracted from text documents. Of course, generative models
show excellent performance in the image data field, but we showed the utility and improved
performance of generative models in the field of numerical data including zero. We
generated synthetic data from the generative models and analyzed them by statistical
methods such as linear regression. Finally, we overcame the zero-inflation problem using
the generative models for keyword data analysis. We expect that our research will be used
more broadly to solve data sparsity problems, including the zero-inflation problem. Finally,
we found that using simulation data to evaluate the performance of generative models can
lead to over-optimistic conclusions. Therefore, we decided that experiments using more
diverse practical data would be necessary to efficiently evaluate the performance of the
generative model.

6. Conclusions

The aim of our study is to generate synthetic data and analyze it for prediction. Most
studies related to generative models are interested in the generative model itself that
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creates synthetic data, but our focus is on constructing a predictive model by analyzing
data sampled from the constructed generative models. For this reason, AIC and MSE
were used to evaluate the performance of the model in this paper. Thus, we generated
and analyzed more synthetic data. In the process of keyword data analysis, we face the
problems of a lack of data and zero inflation. These problems become factors that degrade
the performance of machine learning models for keyword data analysis. To solve these
problems, we proposed the use of generative models. We considered generative models
based on statistics and machine learning, such as synthpop, GAN and synthGAN, in this
paper. Also, we compared the model performance between the original and synthetic data
sets using the measures of AIC and MSE. From the experimental results using simulation
data and practical patent documents, we verified the better performance of generative
modeling by synthpop compared with the other models. We also found that the AIC values
of the GAN synthetic data were the smallest among the compared models. However, its
MSE values were not the smallest but the largest. Due to these results, we confirmed the
difficulty in analyzing keyword data using the synthetic data by GAN.

In this paper, we conclude that the synthpop generative model is the best method to
generate synthetic data for keyword data analysis. Of course, the generative model using
GAN is also an excellent model from the AIC perspective, but its performance is poor
from the MSE perspective. Therefore, in our future works, we will study new methods to
improve the MSE of GAN synthetic data for keyword data analysis. We will add Bayesian
learning or various probability distributions to traditional GAN to improve the performance
of generative models using GAN in keyword data analysis. Our research contributes a
method for creating new synthetic data in text big data analysis. This is necessary because
the data size is reduced during the preprocessing of text data. In particular, a sufficient
amount of data is required to perform large-scale machine learning such as deep learning.
Therefore, synthetic data from generative models will contribute to solving the lack of
original data to perform machine learning.
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