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Abstract: In the intricate field of legal studies, the analysis of court decisions is a cornerstone for
the effective functioning of the judicial system. The ability to predict court outcomes helps judges
during the decision-making process and equips lawyers with invaluable insights, enhancing their
strategic approaches to cases. Despite its significance, the domain of Arabic court analysis remains
under-explored. This paper pioneers a comprehensive predictive analysis of Arabic court decisions
on a dataset of 10,813 commercial court real cases, leveraging the advanced capabilities of the current
state-of-the-art large language models. Through a systematic exploration, we evaluate three prevalent
foundational models (LLaMA-7b, JAIS-13b, and GPT-3.5-turbo) and three training paradigms: zero-
shot, one-shot, and tailored fine-tuning. In addition, we assess the benefit of summarizing and/or
translating the original Arabic input texts. This leads to a spectrum of 14 model variants, for which
we offer a granular performance assessment with a series of different metrics (human assessment,
GPT evaluation, ROUGE, and BLEU scores). We show that all variants of LLaMA models yield
limited performance, whereas GPT-3.5-based models outperform all other models by a wide margin,
surpassing the average score of the dedicated Arabic-centric JAIS model by 50%. Furthermore,
we show that all scores except human evaluation are inconsistent and unreliable for assessing the
performance of large language models on court decision predictions. This study paves the way for
future research, bridging the gap between computational linguistics and Arabic legal analytics.

Keywords: large language models; Arabic court analysis; foundation models; natural language
processing; transformers

1. Introduction

The fusion of law, artificial intelligence (AI), and natural language processing (NLP)
stands as a groundbreaking frontier in contemporary research. The legal domain, with its in-
tricate statutes, precedents, and interpretations, offers a unique challenge for computational
models. Yet, the potential implications of successfully navigating this domain are profound.
If legal decisions can be predicted with high precision using machine learning models, a set
of invaluable insights would be given to the judicial system. Such advancements could
advance legal research, case preparation, and help judges and lawyers with deeper insights
that they may not take into consideration during the cases’ analysis.

Predicting court decisions is challenging, especially for under-represented languages
in NLP studies, such as Arabic [1]. The inherent complexity of case description texts,
combined with the nuances of the Arabic language, compounds the difficulty. Arabic,
with its rich morphological structure and myriad dialects, has been a challenging landscape
for NLP tasks [2,3]. Moreover, case description texts in Arabic are characterized by their
detailed rhetoric, extensive use of precedents, and domain-specific terminologies [4].

1.1. Context

The effectiveness of language model pretraining has been demonstrated in enhancing
various tasks within the realm of natural language processing. This approach has proven
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successful in elevating the performance of a wide range of tasks related to processing and
understanding human language [5,6].

In the area of AI applied to the legal domain, there have been significant advancements [7].
The rise of machine learning has brought in a new wave of research, with scholars exploring
the potential of statistical models for legal prediction [8]. The recent advancements in large
language models, especially transformer-based models, have further expanded the horizons
in this domain [9]. These models have demonstrated exceptional capabilities in a range of NLP
tasks from machine translation [10,11] to sentiment analysis [12–14], making their application
to legal area an exciting avenue of exploration.

This paper embarks on an exploration of predicting Arabic court decisions using large
language models (LLMs). By leveraging the latest in NLP and deep learning, we aim to
test different approaches to using LLMs to maximize the predictive capability.

1.2. Related Works

Language models (LMs) serve as the basis for various language technologies, but an
understanding of their capabilities, limitations, and risks is still lacking. Several bench-
marks were built to bridge this gap. The objective of a benchmark is to set a standard
by which the performance of systems can be evaluated across a variety of tasks. Ku-
mar et al. [15] introduced the Holistic Evaluation of Language Models (HELM) to enhance
the transparency of language models. Initially, they created a taxonomy to categorize the
wide range of possible scenarios and metrics relevant to language models. Subsequently,
a comprehensive subset of scenarios and metrics was selected based on coverage and
feasibility, while also identifying any gaps or underrepresentation. Finally, a multi-metric
approach was adopted to evaluate language models.

The Beyond the Imitation Game benchmark (BIG-bench) was introduced by Srivas-
tava et al. [16], featuring 204 tasks contributed by 444 authors from 132 institutions. These
tasks covered diverse topics and aimed to test the limits of current language models.
The performance of various model architectures, including OpenAI’s GPT models and
Google’s dense and sparse transformers, was evaluated on BIG-bench across a wide range
of model sizes. Human expert raters also participated to establish a strong baseline.
The findings revealed that model performance and calibration improved with larger model
sizes, but they still fell short compared to human performance. Interestingly, performance
was similar across different model classes, with some advantages observed for sparse
transformers. Tasks that showed gradual improvement often required extensive knowl-
edge or memorization, while tasks with breakthrough behavior involved multiple steps or
components. In settings with ambiguous context, social bias tended to increase with scale,
but it could be mitigated through prompting techniques.

Elmadany et al. [17] presented ORCA, which is an openly accessible benchmark aimed
at evaluating Arabic language comprehension. ORCA was meticulously developed to
encompass various Arabic dialects and a wide range of complex comprehension tasks. It
leveraged 60 distinct datasets across seven clusters of natural language understanding
(NLU) tasks. To assess the current advancements in Arabic NLU, ORCA was employed to
conduct a thorough comparison of 18 multilingual and Arabic language models. Further-
more, a public leaderboard was provided, featuring a unified evaluation metric (ORCA
score). This score represents the macro-average of the individual scores across all tasks and
task clusters.

Abdelali et al. [18] evaluated the performance of Foundation Models (FMs) in various
text and speech tasks related to Modern Standard Arabic (MSA) and Dialectal Arabic (DA),
including sequence tagging and content classification, across different domains. ChatGPT
(OpenAI’s GPT-3.5-turbo), Whisper (OpenAI) [19], and USM (Google) [20] were used to
conduct zero-shot learning and address 33 distinct tasks using 59 publicly available datasets,
resulting in 96 test setups. They found out that LLMs performed worse compared to state-
of-the-art (SOTA) models across most tasks, dialects, and domains, although they achieved
comparable or superior performance in a few specific tasks. The study emphasized the
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importance of prompt strategies and post-processing for enhancing the performance of
FMs and provided in-depth insights and findings.

On the other hand, the field of prompt engineering [21] has gained prominence in
developing and refining inputs for language models. It provides a user-friendly and
intuitive interface for human interaction with LLMs. Given the sensitivity of models to
even minor changes in input, prompt engineering focuses on creating tools and techniques
to identify robust prompts that yield high-performance outcomes. Various automatic
optimization approaches [22,23] have been suggested to determine the optimal prompt for
a particular task or a range of tasks. These methods aim to find the most suitable prompt
that yields the best performance outcome.

More specifically, numerous studies have ventured into predicting court decisions
across different jurisdictions. In the US, machine learning has been used to anticipate the
outcomes of Supreme Court decisions [24]. In Europe, deep learning models have been
employed to predict the decisions of the European Court of Human Rights [25]. Concerning
the Arabic legal domain, a pioneering model named AraLegal-BERT [26], inspired by the
English-based LEGAL-BERT [27], was proposed. It is a bidirectional encoder transformer-
based model (BERT [28]) fine-tuned for the Arabic legal domain. The model was evaluated
against three BERT variations for Arabic across three natural language understanding (NLU)
tasks, showcasing superior accuracy over the general and original BERT models on legal
text. This work exemplifies how domain-specific customization can significantly improve
language model performance in narrow domains, advancing the field’s understanding of
model adaptation for specialized use-cases. However, the tasks targeted in the study were
specifically legal text classification tasks, named entity recognition tasks, and keyword
extraction tasks. These tasks are different from the scope of our paper targeting the
prediction of Arabic legal rulings, which is more challenging and complex. Moreover,
AraLegal-BERT is trained from scratch on specific Arabic datasets. This approach is
different from the current study, where we tried first to profit from the LLMs advanced
linguistic capabilities. Then, we tried to enhance the eliciting performance of these LLMs
on Arabic legal ruling prediction using zero-shot and few-shot learning. To our knowledge,
the application of the aforementioned approach to the Arabic legal system remains a new
field, with an attractive potential. This paper aims to bridge this gap by presenting a
systematic investigation into predictive analysis of Arabic court decisions via an array of
cutting-edge large language models tested on a dataset of real commercial cases.

1.3. Contributions

Given the aforementioned context and the gap identified in Arabic legal system
analysis, our research offers the following novel contributions:

• Comprehensive Model Evaluation: This study conducted a predictive analysis of Ara-
bic court decisions by leveraging three prominent large language models, LLaMA-7b,
JAIS-13b, and GPT-3.5-turbo, applied to a dataset comprising 10,813 real commercial
court cases.

• Significance of Text Preprocessing: The study thoroughly investigated the potential
benefits derived from summarizing and translating the original Arabic input texts,
culminating in the creation of 14 distinct model variations.

• Highlighting LLaMA’s Limitations: LLaMA models have been touted as almost equiv-
alent to GPT models [29]. Nevertheless, the findings of this paper reveal the intrinsic
reduced performance of all LLaMA model variants compared to JAIS and GPT-3.5 on
our dataset of Arabic court decisions.

• Insights into Evaluation Metrics: The paper offers a detailed evaluation of model per-
formance using diverse metrics, namely human assessment; GPT evaluation; ROUGE
(1, 2, and L); and BLEU scores. Importantly, the research underscored the unreliability
of all metrics, barring human assessment.



Electronics 2024, 13, 764 4 of 21

• Bridging Research Domains : This pivotal study bridges the gap between computa-
tional linguistics and Arabic legal analytics, laying a foundation for future scholarly
endeavors in this interdisciplinary realm.

2. Materials and Methods
2.1. Base Large Language Models

LLaMA-7b [29] (designed by Meta AI), JAIS-13b-chat [30] (MBZUAI University),
and GPT-3.5-turbo [31–34] (OpenAI) are three recent representatives of a frontier of ad-
vancements in large language model (LLM) technology, each hailing from different origins
with distinct architectural innovations. LLaMA-7b, an open-source LLM emanating from
Meta AI, showcases a unique architectural approach with a range of models tailored for
various applications. On the other hand, JAIS-13b-chat, with its focus on bilingual (Arabic
and English) capabilities, offers a novel solution to Arabic-centric language processing tasks.
GPT-3.5-turbo, a product of OpenAI, stands out for its optimization for chat-based applica-
tions, demonstrating a balance between performance and cost-effectiveness. Table 1 sum-
marizes the main characteristics of these three models, providing a comparative glimpse
into their architectural underpinnings, language and domain proficiency, training data,
and use cases. Only JAIS was trained on a sizeable proportion (29%) of Arabic texts. In con-
trast, Arabic language represented 0.03% of GPT3’s training dataset by word and character
count, and 0.01% by document count [35]. Similar figures are assumed for GPT-3.5-turbo.
Meta AI did not disclose the proportion of tokens per language in LLaMA models’ training
datasets, but the description of the sources of their pretraining datasets reveals that it is
overwhelmingly in English [29].

Another important element in a large language model is the tokenizer. Tokenization
consists in subdiving words into sub-word tokens in order to learn vocabulary that encom-
passes sub-word units such as prefixes, suffixes, and root components, enabling effective
handling of diverse word morphologies. Each of the three base models considered use
tailored pretrained tokenizers that are based on byte-pair encoding (BPE). BPE is a data
compression algorithm initially designed to reduce the size of files by replacing frequent
sequences of bytes with shorter representations [36]. In recent years, it has been adopted in
NLP to tokenize text into subwords or characters in a way that strikes a balance between
the flexibility of character-level representations and the efficiency of word-level representa-
tions [37]. Nevertheless, we noticed that most common tokenizers used in LLMs are not
adapted to Arabic language, as can be seen in an example in Figure 1. In this example,
the LLaMA tokenizer segments a word into individual characters which do not have any
independent meaning. The same occurs with GPT’s Tiktoken tokenizer. By contrast, JAIS
tokenizes the same word in this example into a single token, which conserves the meaning.

Input

Output

sentence = ‘مرحبا’ # means ‘Hello’
tokens = tokenizer.tokenize(sentence)
tokens

 [ ’ ا ‘  , ’ ب ‘  ,  ’ ح ‘  ,  ’ ر ‘  ,  ’ م ‘  ,  ’ _ ‘ ]

Figure 1. Over-Segmented example by LLaMA Tokenizer. The Arabic word means ’Hello’. The
tokenizer segments into individual characters.
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Table 1. Theoretical comparison of LLaMA-7b, JAIS-13b-chat, and GPT-3.5-turbo base models.

Characteristic LLaMA-7b JAIS-13b-chat GPT-3.5-turbo

Model Size and Architecture
Total of 7B parameters,

SwiGLU activation, Rotary
positional embeddings.

Total of 13B parameters,
transformer-based

decoder-only (GPT-3)
architecture, SwiGLU

non-linearity.

Total of 175B parameters,
GPT architecture.

Language and Domain
Proficiency

Outperforms on many
benchmarks including

reasoning, coding, proficiency,
and knowledge tests.

Bilingual (Arabic and
English), state-of-the-art

Arabic-centric performance.

Optimized for chat, capable of
understanding and generating

natural language or code.

Training Data and
Open-source Availability

Trained on 1.4 trillion tokens
from publicly available

datasets, overwhemingly
in English.

Total of 395B tokens (116B
Arabic tokens), pretrained

with an additional 10M
instruction/response pairs.

Total of 300B tokens from
various sources,
overwhemingly

in English.

Tokenizer LLaMA tokenizer (BPE model
based on SentencePiece [38]).

JAIS tokenizer (BPE
custom-built tokenizer that

weighs both
languages equally)

Tiktoken (fast optimized BPE).

Use Cases and Performance
Fine-tuned for dialogue,

optimized versions for chat
(Llama-2-Chat).

Bilingual tasks, outperforms
existing open

Arabic/multilingual chatbots.

Optimized for chat-based
applications, human-like

responses in conversations.

In contrast to LLaMA and GPT-3.5, the JAIS model initially refused to generate predic-
tions concerning court decisions. This refusal reveals the type of precautionary measures
incorporated into the model during its reinforcement learning from human feedback
(RHLF) phase. Nevertheless, we successfully elicited predictions from the model by includ-
ing an explicit instruction, stating that these are experiments that are intended solely for
educational and research purposes.

We employed multiple configurations of the three aforementioned foundational models.
These configurations encompass the zero-shot, single-shot, and fine-tuning training paradigms.
Furthermore, they are implemented on either the original Arabic dataset or on pre-processed
texts that have undergone summarization and/or translation. Cumulatively, these diverse
configurations result in 14 distinctive model variants. A comprehensive description of these
variants is provided in Section 2.4.

2.2. Fine-Tuning Using LLM-Adapters

Engaging in complete fine-tuning has the potential to result in catastrophic forget-
ting [39,40], given that it involves altering all parameters within the model. In contrast,
parameter efficient fine-tuning (PEFT), by exclusively modifying a limited subset of pa-
rameters, as opposed to full-parameter fine tuning, demonstrates greater resilience against
the detrimental impacts of catastrophic forgetting [41]. In this context, LLM adapters offer
a simple and efficient approach to PEFT in large language models [42]. LoRA (low-rank
adaptation) is a method that can significantly reduce the number of trainable parameters re-
quired for fine-tuning large language models. It is a type of LLM adapter that is integrated
into the LLM-adapters framework and supports fine-tuning of LLaMA models among
others [42]. As LoRA has significant motivations for successfully lowering the number of
trainable factors without sacrificing performance, applying it to the LLaMA model aims to
achieve high performance while minimizing computational costs.

With this approach, LoRA follows a strategy that reduces the number of parameters to
be trained during fine-tuning by freezing all of the original model parameters and then
inserting a pair of rank decomposition matrices alongside the original weights. Additionally,
LoRA utilizes the adapter method in such a way of adding a subset of parameters, enabling
a few low-intrinsic adapters in parallel with the attention module without increasing



Electronics 2024, 13, 764 6 of 21

inference latency. In this work, we carry out the fine-tuning of the LLaMA-7b base model
using LoRA approach on Arabic texts, following the implementation of [43]. In fact, LoRA’s
design allows for more flexibility in adding adapters [44], making it efficient for scaling
up to large language models for improved performance on custom datasets and tasks.
Nevertheless, we did not manage to fine-tune the larger JAIS-13b and GPT-3.5-turbo base
models due to resource constraints.

Figure 2 illustrates the integrated mechanism of the LoRa adapter within the LLM
module of the transformer, highlighting the modified forward pass in the network, and the
weight adjustment mechanism. The LoRa method enhances the fine-tuning of large lan-
guage models (LLMs) by decomposing the weight update matrix into a lower-rank represen-
tation instead of updating the original weight matrix directly, leading to fewer parameters
during adaptation. This results in faster training and potentially reduced computational
needs without losing vital information. In conventional fine-tuning, weight changes are
computed via backpropagation based on the loss gradient. LoRa, instead, decomposes
these changes into two smaller, lower-dimensional matrices. Then, it trains these smaller
matrices, enabling effective representation in a lower-dimensional space and reducing the
parameter space.

Figure 2. Operational schematic of LoRa adapters within the transformer.

In the LoRA method, the decomposition of the weight update matrix ∆W into two ma-
trices WA and WB is given by:

∆W = WAWB. (1)
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Assuming WA and WB are of dimensions m × r and r × n, respectively, where r is
the rank, and m and n are the dimensions of the original matrix ∆W, the total number of
parameters to be learned reduces from m × n to m × r + r × n.

Further, if X is the input to a layer and Y is the output, the modified forward pass in
LoRA can be represented as:

Y = (W + WAWB)X + b, (2)

where b is the bias vector.
The error E in approximation can also be analyzed. It is given by

E = ||∆W − WAWB||F, (3)

where ||.||F denotes the Frobenius norm (aka Hilbert–Schmidt norm), which is defined as
the square root of the sum of squares of all the matrix entries.

This mathematical formulation elucidates the reduction in computational complex-
ity and the preservation of essential information for task adaptation achieved by LoRA.
This method preserves the essential information required for task adaptation while re-
ducing the computational burden, showcasing a trade-off between model complexity and
adaptation capacity.

The implementation of LoRa is relatively straightforward, as seen in Figure 2. A modi-
fied forward pass in the network is applied, adjusting the magnitude of weight updates to
balance pretrained knowledge with new task-specific adaptation.

2.3. Dataset

We retrieved the Saudi Ministry of Justice dataset (SMOJ) through a web scraping
from the Saudi Justice Portal (SJP) website [45], focusing on the category of commercial
courts, which contains a series of court decisions about financial and commercial disputes,
all in Arabic language. To facilitate the data retrieval, we used Selenium Python library [46],
which enables programmatic interactions with web pages, essentially simulating user
actions to access and gather data.

The data collection process for SMOJ was structured and systematic, starting with the
iteration through a range of page numbers. This range spans from page 1 to 60,000, a scope
determined based on the expected volume of data available on the website. Before any
data extraction occurs, each page’s availability is verified by checking for the presence of
the text ‘Page not found.’ This precautionary measure ensures that only existing pages are
processed, minimizing potential errors and preventing unnecessary resource consumption.

Once page availability is confirmed, the data extraction process is initiated using
the Beautiful Soup Python package [47] which is tailored for HTML and XML parsing
and is employed to dissect the HTML structure of the web pages. This allows for the
extraction of specific elements, focusing on critical legal information contained within
the SJP website. The data extraction process focuses on three primary categories: case
description, justification, and court decision. We used the case description as the input
(prompt) to the LLM models and the court decision as output (completion). There is no
strictly pre-defined format or ordering for the case description and court decision, which
complicates the data processing by the LLMs, because of the greater challenge represented
by unstructured texts. We decided to ignore the justification field and not include it in the
input, seeing that it often unveils the inclination of the court decision.

After removing duplicates and excessively long cases (more than 4096 tokens), we
randomly subdivided the SMOJ dataset into a training dataset containing 10,713 cases and
a testing dataset containing 100 cases. We opted for a reduced testing dataset to be able to
manually evaluate the outputs of each LLM model. In fact, we will show in Section 3 that
all other automatic evaluations were unreliable and inconsistent.

Figure 3 depicts the histogram of the number of words in the prompts (case descrip-
tions) and completions (court decisions) in the SMOJ training dataset. The total number
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of words in the training set is 5M, and the average number of words in the prompts and
completions are 422 and 52, respectively. The large size of the prompts is a real challenge,
which motivated us to test LLM models on summarized prompts, as will be detailed in
Section 2.4.

Figure 3. Histogram of the number of words in the prompts (case descriptions) and completions
(court decisions) in the SMOJ training dataset.

2.4. LLM Model Variants

For each of the three base pretrained models described in Section 2.1 (LLaMA-7b,
GPT-3.5-turbo, and JAIS-13b-chat), we implemented different variants. Figure 4 illustrates
the main steps for evaluating the 8 LLaMA variant models on the SMOJ dataset. The base
pretrained LLaMA-7b model is the core of all these models. They differ by the inclusion or
not of single-shot or fine-tuning learning and the addition or not of summarizing and/or
translation steps:

• Model L0 is a zero-shot model. It is the mere application of the base pretrained
LLaMA-7b model on each prompt of the Arabic testing dataset without any pre-
processing or learning steps.

• Model L1 is a single-shot variant, where a single prompt/completion pair from the
original Arabic training dataset is provided in the instruction to act as an example
to follow.

• Model LT0 is a zero-shot model applied to an English testing dataset. This dataset
was obtained using the Google Translate API through Python translators package [48].
The translation of the original Arabic dataset into English can be beneficial to enhance
the prediction for LLaMA and GPT-3.5 models, since they are overwhelmingly pre-
trained on English texts, as explained in Section 2.1. The assessment of the usefulness
of this pre-processing step will be discussed in Section 3.2.

• Model LT1 is a single-shot model applied to the translated English testing dataset. It
includes a single translated prompt/completion pair from the training dataset in its
instructions.

• Model LF is obtained by fine-tuning the base model on the original Arabic training
dataset for 200 epochs.

• Model LFT is obtained by fine-tuning the base model on the translated English train-
ing dataset for 200 epochs.
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• Model LFS is obtained by fine-tuning the base model on a subset of the Arabic training
dataset after summarizing the prompts through GPT-3.5-turbo API. We selected only a
subset of 1000 prompt and completion pairs due to budget limitations, since requests
to the GPT API are costly.

• Model LFST is obtained by fine-tuning the base model on a subset of 1000 prompt and
completion pairs from the Arabic training dataset after summarizing and translating
them through GPT-3.5-turbo API.

Single-shot

Provide 1 Arabic
example in the

instruction

Pre-trained
LLaMA-7b A
rabic Testing dataset

Model L0

Model L1

Arabic
Predicted

rulings

Google
Translate

Translated Testing
dataset

Model LT1

Model LT0

Arabic
Fine-

Tuning
Dataset

Arabic
GT rulings

Comparison

Metrics
  Human Evaluation
  GPT-3.5 Evaluation
  ROUGE score (1,2,L)
  BLEU score

English
Predicted

rulings

English GT
rulings

Comparison

Fi
ne

 tu
ni

ng

Model LF

Google
Translate

English
Fine-Tuning

Dataset Model LFT

Single-shot

Provide 1 English
example in the

instruction

GPT-3.5 API

Text
Summarizing Translation

Summarized
Arabic

Fine-Tuning
Dataset

Fi
ne

 tu
ni

ng

Sum
m

arized &
 Translated

Testing dataset

Sum
m

arized
Testing dataset

Summarized
English

Fine-Tuning
Dataset

Model LFSTModel LFS

 Predicted
rulings

 GT rulings

Comparison
 Predicted

rulings

 GT rulings

Comparison

Figure 4. Diagram of the main steps for evaluating the 8 LLaMA variant models on the SMOJ dataset.

Figure 5 showcases the instructions fed to GPT-3.5-turbo API to summarize and/or
translate the original SMOJ dataset, for fine-tuning the LFS and LFST models.

Similarly, models G0, G1, GT0, and GT1 are obtained in the same way as L0, L1, LT0,
and LT1, respectively, but using GPT-3.5-turbo as a base model, instead of LLaMA-7b.
Likewise, J0 and J1 are zero-shot and single-shot variants of JAIS-13b-chat model.
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Figure 5. Instructions used to summarize and translate the SMOJ dataset through GPT-3.5-turbo API.
The Arabic summarization instruction is translated between square brackets.

Due to limited resources, we could not fine-tune the GPT and JAIS models in the
same way that we did for the LLaMA models. In addition, it is pointless to apply JAIS
on translated text, since it was pretrained with a special focus on the Arabic language.
Furthermore, multi-shot variants were not examined in our research. This is due to the
extensive input size present in our dataset and the inherent limited context length associated
with the models (4096 tokens).

For each model, we employ a suite of metrics, as detailed in Section 2.5, to evaluate
their performance by comparing the predicted rulings to the suitable version of the ground-
truth (GT) rulings from the test dataset. Specifically:

• Models L0, L1, LF, J0, J1, G0, and G1 are evaluated against the original Arabic version
of the GT rulings.

• Model LFS is gauged against the summarized Arabic version.
• Models LT1, LT0, LFT, GT0, and GT1 are assessed based on the translated form of the

GT rulings.
• Model LFST is measured against the GT rulings that have been both summarized

and translated.

2.5. Metrics

The following metrics were applied to evaluate each of the LLM models described in
Section 2.4:

• Human score: A human evaluator was tasked with assessing the accuracy of the
predicted rulings generated by each model in relation to the ground-truth rulings of
the test dataset. This evaluation was conducted on a scale ranging from 0 to 5. A score
of 0 indicated that the predicted ruling was either nonsensical or wholly incorrect,
while a score of 5 signified a flawless prediction, mirroring the decisions encapsulated
in the ground-truth ruling, regardless of the actual wording. If the model predicts
a decision close to the ground truth (e.g., ‘The defendant should pay an amount of
X to the plaintiff’) but does not guess the exact amount to be paid, the human score
will be strictly between 0 and 5, and its value will depend on how close the predicted
amount is to the real amount. To ensure a uniform evaluation standard and minimize
variability in scoring, all model outputs were reviewed by the same evaluator, with a
background on Arabic legal decisions.

• GPT score: We used GPT-3.5-turbo API to automatically and systematically compare
all the predicted rulings generated by each model to the ground-truth rulings of the
test dataset. To guide this assessment, we provided the GPT model with the follow-
ing instruction: “Compare the following two court decisions (predicted: ‘Decision
(predicted)’ and ground-truth: ‘Decision (GT)’) and assign a score from 0 to 5 to the
predicted decision. 0 means: Non sense. 5: means perfect answer. Format the response
as: Score; Justification. For example: 0; Non sense.”

• BLEU score: BLEU [49,50], an acronym for bilingual evaluation understudy, was
designed as a metric for assessing the quality of machine-translated text between two
natural languages. The BLEU score is computed using a weighted geometric mean
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of modified n-gram precision. This is further adjusted by the brevity penalty, which
diminishes the score if the machine translation is notably shorter than the reference
translation. The utilization of the weighted geometric mean ensures a preference for
translations that consistently perform well across different n-gram precision levels.
More specifically, the BLEU score is given by

BLEU = BP × exp

(
N

∑
n=1

wn log pn

)
(4)

where:

- pn is the n-gram precision.
- wn are the weights for each precision (typically w1 = w2 = w3 = w4 = 0.25

for BLEU-4).
- BP is the brevity penalty:

BP =

{
1 if c > r
exp

(
1 − r

c
)

if c ≤ r
(5)

with c as the predicted output length and r as the ground-truth length.

We calculated the BLEU metric using the nltk.translate.bleu_score Python module [51].

• ROUGE score : ROUGE [52] is an acronym for recall-oriented understudy for gist-
ing evaluation. Its primary purpose is to evaluate the performance of automatic
summarization tools and machine translation systems within the realm of natural
language processing (NLP). The fundamental idea behind ROUGE is to juxtapose an
algorithmically generated summary or translation with one or multiple human-crafted
reference summaries or translations. This comparison helps to determine how well
the machine-generated output aligns with the human standard. We apply it here to
the comparison between predicted and GT rulings in the SMOJ testing dataset. We
specifically used three variants of the ROUGE score:

– ROUGE-1 : This metric gauges the overlap of unigrams (individual words) be-
tween the predicted output and the GT ruling. By examining the matching single
words between both texts, ROUGE-1 provides insights into the basic lexical simi-
larity.

– ROUGE-2 : Stepping beyond individual words, ROUGE-2 considers bigrams
(pairs of adjacent words). By comparing the overlap of these word pairs between
the predicted and GT outputs, ROUGE-2 offers a deeper understanding of the
phrasal and structural alignment. The general formula for the ROUGE-N score is

ROUGE-N =
∑s∈GT ∑N-gram∈s Countmatch(N-gram)

∑s∈GT ∑N-gram∈s Count(N-gram)
(6)

where

* Countmatch(N-gram) is the maximum number of times an n-gram is found
in both the predicted and GT outputs.

* Count(N-gram) is the count of the n-gram in the GT output.

– ROUGE-L : This metric employs the concept of the longest common subsequence
(LCS). LCS is the maximum sequence of tokens that appear in both the machine-
produced and reference texts. This metric offers a more holistic perspective on
similarity as it naturally considers sentence-level structures and automatically
identifies the co-occurring n-gram sequences.

For each of these three metrics, we compute the precision (P), recall (R), and F1-score (F):



Electronics 2024, 13, 764 12 of 21

Precision =
True Positives

True Positives + False Positives
(7)

Recall =
True Positives

True Positives + False Negatives
(8)

F1-Score = 2 × Precision × Recall
Precision + Recall

(9)

We calculated the ROUGE metrics using the ROUGE 1.0.1 Python library [53].

While the BLEU and ROUGE metrics were primarily conceived for tasks related to
translation and summarization, they can potentially serve as indicative tools for evaluating
the alignment between predicted and GT rulings in the SMOJ dataset. We will assess the
correctness of this hypothesis in Section 3.

3. Results

Within this section, we undertake a comprehensive evaluation of the implemented
models, encompassing both qualitative and quantitative assessments. In Section 3.1, we
present a qualitative comparison between human and GPT scores on a small sample,
exemplifying scenarios where predictions align with or deviate from expectations. We
also discuss the challenges and nuances of employing GPT-3.5 as an evaluation metric.
In Section 3.2, we delve into the performance evaluation of the 14 models using diverse
metrics, shedding light on the impact of zero-shot, single-shot, and fine-tuning approaches,
as well as the prompt summarization and/or translation pre-processing steps. We further
discuss the reliability of GPT, BLEU, and ROUGE scores. This holistic evaluation provides
insights into the strengths and limitations of LLMs for the prediction of court decisions.

3.1. Qualitative Evaluation

Figure 6 provides a qualitative comparison between human and GPT scores on a small
sample of predicted and GT rulings from the testing dataset. This sample is representative
of most of the encountered cases. The first row shows an example in Arabic. The predicted
output contains a correct decision briefly expressed with implicit reference to the amount
mentioned in the input (case description), while the GT ruling explicitly mentions the
names of the plaintiff and defendant and the amount of money that the latter should pay
to the former. Because of the difference in formulation, the GPT API gave the prediction a
score of only 2/5, whereas the human evaluator took into account the semantic matching
and assigned a higher score of 4/5.

In the second example, the LLM model issues a perfect ruling matching the same
amount to be paid by the plaintiff as in the GT decision. Even though the identities of the
plaintiff and defendant are not explicitly mentioned, this is not important, since they are
already mentioned in the case description. In this case, both the human evaluator and
GPT-3.5 assigned a perfect score of 5/5.

In the third example, the predicted output is a series of nonsensical words and sym-
bols. This happens often with LLaMA models, especially when the input size is large.
As expected, the human score in this case is 0. However, GPT-3.5 oddly assigns a score
of 2/5 to this prediction. This example also reveals the poor Google translation in the
GT output, especially for the last sentence where the Arabic word Al-hādı̄ (’guide’) was
mistaken for its homonym: ’pacific’. Such translation shortcomings can affect the quality of
LLM training.

The fourth prediction example in Figure 6 is similar in terms of meaningless predicted
output and poor GT translation, but in this case, both the human and GPT scores are rightly
equal to 0.

In the fifth and last example, the LLM model just rehashed the instruction and part
of the input that was fed to it, without adding any prediction. This also often happens
with LLaMA models. As expected, the human score in this case is 0. However, GPT-3.5
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surprisingly assigns a score of 4/5 to this prediction, which showcases its unreliability as
en evaluation metric. This will be discussed more precisely using quantitative analysis in
the next section.

Figure 6. Human- and GPT-assigned scores on sample predicted and GT rulings from the test-
ing dataset.

3.2. Quantitative Evaluation

Table 2 presents the performance evaluation of the eight LLaMA-7b variant models
on the test datasets, measured using different metrics. The LFST model, which underwent
both summarization and translation processes using GPT-3.5-turbo, consistently delivered
the top performance across nearly all evaluation metrics. In stark contrast, the other LLaMA
variants displayed significantly subpar results. Their human evaluation scores were under
0.5 out of 5, and their GPT scores did not surpass 2 out of 5. Furthermore, both the ROUGE
and BLEU scores for all models were notably low. This underperformance was particularly
pronounced for Arabic language models. L1 receives a score of 0 for all metrics except GPT
score. This performance degradation compared to L0 can be explained by the increase in
the input size due to adding an example of prompt/completion in the instruction, which
often makes the total input size exceed the model’s maximum context length.



Electronics 2024, 13, 764 14 of 21

Table 2. Results of the evaluation of the 8 LLaMA-7b variant models on the testing datasets using
various metrics.

LLaMA-7b
Model

Zero-Shot Single Shot Fine-Tuned

Arabic
(L0)

Translated
(LT0)

Arabic
(L1)

Translated
(LT1)

Arabic
Original

(LF)

Arabic
Summarized

(LFS)

Translated
(LFT)

Summarized
and

Translated
(LFST)

Fine-tuning
epochs 0 0 0 0 200 200 200 200

Human score 0.24 0.38 0 0.40 0.10 0.021 0.062 1.2

GPT score 1.3 0.91 0.60 0.93 1.5 1.35 1.8 2.8

BLEU score 0.0016 0.035 0 0.050 0.058 0.053 0.22 0.25

ROUGE-1

R 0.00032 0.064 0 0.075 0.018 0.018 0.19 0.27

P 0.0010 0.32 0 0.29 0.029 0.036 0.23 0.20

F 0.00049 0.097 0 0.096 0.020 0.021 0.17 0.21

ROUGE-2

R 0.0 0.0060 0 0.0077 0.0044 0.0052 0.044 0.065

P 0.0 0.015 0 0.0072 0.0084 0.0084 0.043 0.048

F 0.0 0.008 0 0.0066 0.0055 0.0061 0.038 0.048

ROUGE-L

R 0.00032 0.062 0 0.070 0.018 0.017 0.17 0.25

P 0.0010 0.31 0 0.29 0.029 0.033 0.21 0.18

F 0.00049 0.094 0 0.092 0.019 0.019 0.15 0.19

The primary reason for summarizing prompts in the LFS and LFST models stems
from our observation that the LLaMA models frequently produce low-quality responses
to longer prompts. This observation finds some validation in Figure 7, which showcases
scatter plots correlating input size (measured by word count) with human evaluation scores
for the LT1 and LFST models. Notably, for the LT1 model, prompts exceeding 1000 words
invariably receive a score of zero. However, the overall correlation remains relatively weak,
at –0.3. In contrast, upon summarizing the prompts for the LFST model, the correlation
between input size and evaluation score vanishes. This suggests that the modified LLaMA
model can handle moderately sized inputs in an equal manner.

Table 3 presents the outcomes of applying the same metrics to the four GPT-3.5-
turbo variant models. Both G0 and GT1 demonstrate closely aligned performance when
evaluated using human scores. This suggests that the integration of translation and single-
shot training did not significantly enhance performance for GPT-based models. However,
when we consider the BLEU and ROUGE scores, the translated models, GT0 and GT1,
consistently outperform their counterparts. Interestingly, there is a noticeable discrepancy
between the GPT score and the human judgment. A more detailed examination of specific
prediction instances confirms that the GPT score can be unreliable in several scenarios.

Table 4 shows the performance of the two JAIS-13b-chat models. Only Arabic-based
models were tested in this scenario since the JAIS base model is specifically tailored for
Arabic language. We observe a slight improvement when moving form zero-shot (J0) to
single-shot (J1) according to all metrics, except for the GPT score. This further highlights
the unreliability of the GPT score for this task. Even though JAIS was pretrained with
special focus on Arabic language, it falls short in comparison with all GPT-based models
(Table 3). This confirms the superiority of GPT-based models for a wide range of tasks even
for under-represented languages in its learning dataset, such as Arabic.
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Figure 7. Scatter plot between the input size (in terms of number of words) and the human score
obtained for LT1 (left) and LFST (right) models.

Table 3. Results of the evaluation of the four GPT-3.5-turbo variant models on the testing datasets,
using various metrics.

GPT-3.5-turbo
Model

Original Arabic Translated

Zero Shot
(G0)

Single Shot
(G1)

Zero Shot
(GT0)

Single Shot
(GT1)

Human score 2.4 1.9 2.0 2.4

GPT score 2.7 2.7 2.3 2.1

BLEU score 0.19 0.21 0.18 0.25

ROUGE-1

R 0.13 0.13 0.30 0.26

P 0.081 0.095 0.13 0.18

F 0.086 0.096 0.16 0.19

ROUGE-2

R 0.031 0.036 0.083 0.069

P 0.025 0.035 0.033 0.050

F 0.025 0.032 0.043 0.051

ROUGE-L

R 0.12 0.12 0.27 0.23

P 0.075 0.091 0.12 0.16

F 0.081 0.093 0.15 0.17

Figure 8 maps out the 14 implemented models in the (human score, GPT score)
space. This visualization underscores the dominance of the GPT-based models and the
underperformance of the LLaMA-based counterparts. Among the LLaMA models, only the
LFST variant comes close to the performance of JAIS and GPT models in terms of human
evaluation. Notably, LFST is not a pure LLaMA model as it leverages the summarizing
and translation capabilities of GPT-3.5. On the other hand, while JAIS models outpace
LLaMA models, they lag behind the GPT models. A striking feature of Figure 8 is the
evident discrepancy between GPT and human scores. For instance, despite LFST achieving
the highest GPT score across all models, it secures a merely moderate human score. In a
similar vein, LFT showcases a higher GPT score than both LT0 and LT1, even though the
latter pair surpass it in human evaluations. This incongruence is especially pronounced in
English-based models.
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Table 4. Results of the evaluation of the two JAIS variant models on the testing datasets using
various metrics.

JAIS-13b-chat
Original Arabic

Zero Shot
(J0)

Single Shot
(J1)

Fine-tuning epochs 0 0

Human score 1.4 1.6

GPT score 2.1 2.0

BLEU score 0.16 0.2

ROUGE-1

R 0.072 0.11

P 0.077 0.086

F 0.057 0.081

ROUGE-2

R 0.016 0.028

P 0.013 0.021

F 0.014 0.020

ROUGE-L

R 0.068 0.097

P 0.074 0.079

F 0.054 0.074

Figure 8. Human score versus GPT score for each tested large language model. Arabic-based models
are represented as circles, while English-based models are represented as squares, with a different
color code for each base model (LLaMA, JAIS, GPT-3.5).

This observation is further confirmed in Figure 9 where we notice that the correlation
between the human score and GPT score is much higher for Arabic-based models (0.92)
than for English-based models (0.60). A plausible explanation for this divergence is that the
process of translating from Arabic to English may introduce errors, omission or misrepre-
sentation of key details, which makes score evaluation by GPT-3.5 more challenging. This
observation extends to the BLEU and ROUGE scores, which consistently display a lower
alignment with human scores for English models. Most notably, ROUGE-1 precision and
ROUGE-L precision exhibit negative correlations with human scores, standing at –0.79 and
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–0.77, respectively. All these results suggest that the GPT, BLEU, and ROUGE scores are
unreliable for performance evaluation in the considered task.

Figure 9. Heatmap of the correlation coefficient between the values of the metrics used for evaluating
Arabic (top) and translated (bottom) language models.
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3.3. Summary of the Results

The results presented in Section 3 provide several important insights in the context of
legal ruling prediction using large language models:

• Performance of GPT-3.5-based Models: The GPT-3.5-based models outperform all
other models by a wide margin, surpassing even the dedicated Arabic-centric JAIS
model’s average score by 50%. This is surprising since the proportion of Arabic
language in JAIS’s pretraining dataset is around 1000 times larger than in GPT3’s
pretraining dataset, and JAIS’s tokenizer is a priori more adapted to Arabic than GPT’s
(see Section 2.1).

• Reliability of the Human Score: The human score serves as the gold standard, high-
lighting the nuanced comprehension humans have over automated metrics in assess-
ing the quality of legal ruling prediction. This confirms the superiority of human skills
over LLMs in certain domains that require careful reasoning [54].

• GPT Score Limitations: The GPT score, though indicative, showcases its limitations
in several instances, rendering it potentially misleading. Moreover, the significant
divergence between GPT scores and human evaluations, especially on translated
datasets, underscores potential translation errors or inherent metric limitations.

• Inefficiency of ROUGE and BLEU: The ROUGE and BLEU scores, originally designed
for translation and summarization tasks, exhibit their unsuitability for the task at hand.
The low scores of these two metrics across all models can be attributed, in part, to the
absence of stemming or punctuation filtering preprocessing steps applied to the data.
Given the morphologically rich and highly inflectional nature of the Arabic language,
exact matching—upon which the ROUGE and BLEU scores rely—is anticipated to
yield lower values.

4. Conclusions

This study represents a pioneering effort in the realm of Arabic court decision anal-
ysis, shedding light on the efficacy of advanced language models in predicting legal
outcomes. The findings underscore the remarkable out-performance of GPT-3.5-based
models, surpassing even domain-specific models tailored for Arabic language. This un-
expected outcome challenges conventional assumptions about the importance of domain
specificity and dataset size in model performance. Nevertheless, in spite of the relative
superiority of GPT-3.5-based models, their absolute performance on predicting Arabic legal
rulings is still unsatisfactory, with an average human score of 2.4 out of 5. Better models
fine-tuned on larger Arabic legal datasets need to be developed before LLMs can act as
useful legal assistants.

However, it is crucial to acknowledge the limitations of this research. Firstly, the study
may be constrained by the availability and quality of the dataset used, which could affect
the generalizability of the findings. Additionally, the reliance on automated metrics such as
GPT scores, ROUGE, and BLEU highlights the need for caution, as these metrics may not
fully capture the complexity of legal language and decision-making processes. Moreover,
while human evaluation serves as the gold standard, the subjectivity inherent in human
judgment introduces its own set of challenges, potentially impacting the reliability of the
evaluations conducted. Ideally, several human evaluators should grade the model outputs,
and their evaluations should be compared to detect any possible bias or outlier scores.

On the other hand, it is important to acknowledge that the court decisions used in the
study are not anonymized. Consequently, it is possible that some sensitive court decisions
may not have been published on the SMOJ website, potentially introducing bias into the
training dataset. This bias could impact the performance of prediction models, particularly
if certain types of cases or courts are overrepresented or underrepresented in the dataset.
To address this limitation and ensure the robustness of future research in this area, several
potential solutions could be considered. Firstly, efforts could be made to obtain a more
comprehensive and diverse dataset by collaborating with judicial authorities to access
anonymized court decisions from a wider range of sources. Additionally, techniques such



Electronics 2024, 13, 764 19 of 21

as data augmentation or bias correction methods could be applied to mitigate the effects of
any existing biases in the dataset. Finally, transparent reporting of dataset limitations and
biases in research publications is essential for fostering a clear understanding of the study’s
scope and implications.

Furthermore, the study emphasizes the indispensable role of human evaluation as
the gold standard for assessing the quality of legal ruling predictions. While automated
metrics like GPT scores, ROUGE, and BLEU can provide valuable indications in some
cases, they exhibit limitations in capturing the nuanced and context-dependent nature of
legal language. The inefficacy of ROUGE and BLEU scores in this context underscores
the need for tailored evaluation metrics when applying advanced language models to
legal analysis tasks. Future research in this domain should focus on developing more
contextually relevant evaluation measures to better reflect the accuracy and relevance of
predictions in the legal context.

Overall, this study serves as a foundation for future research at the intersection of
computational linguistics and Arabic legal analytics. It encourages further exploration
into the potential of large language models in assisting legal professionals and policy-
makers, ultimately contributing to the effective functioning of the judicial system and the
enhancement of legal decision-making processes.
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