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Abstract: In many scenarios, edge devices perform computations for applications such as target
detection and tracking, multimodal sensor fusion, low-light image enhancement, and image segmen-
tation. There is an increasing trend of deploying and running multiple different network models on
one hardware platform, but there is a lack of generic acceleration architectures that support standard
convolution (CONV), depthwise separable CONV, and deconvolution (DeCONV) layers in such
complex scenarios. In response, this paper proposes a more versatile dynamically reconfigurable
CNN accelerator with a highly unified computing scheme. The proposed design, which is compatible
with standard CNNs, lightweight CNNs, and CNNs with DeCONV layers, further improves the
resource utilization and reduces the gap of efficiency when deploying different models. Thus, the
hardware balance during the alternating execution of multiple models is enhanced. Compared to a
state-of-the-art CNN accelerator, Xilinx DPU B4096, our optimized architecture achieves resource
utilization improvements of 1.08× for VGG16 and 1.77× for MobileNetV1 in inference tasks on the
Xilinx ZCU102 platform. The resource utilization and efficiency degradation between these two
models are reduced to 59.6% and 63.7%, respectively. Furthermore, the proposed architecture can
properly run DeCONV layers and demonstrates good performance.

Keywords: hardware accelerator; convolutional neural network; depthwise separable convolution;
deconvolution; dynamically reconfigurable; on-chip computing scheme; resource utilization; high balance

1. Introduction

Nowadays, with the rapid development of technologies such as autonomous driv-
ing [1] and the Advanced Driver Assistance System (ADAS), there is a high demand for
real-time performance in computer vision applications. Cloud computing is unable to
meet the low-latency requirements, necessitating inference computations at the edge or
on terminal devices. To meet diverse application requirements, an increasing number of
new models are being iterated and proposed. Traditional convolutional neural networks
(CNNs), while achieving high accuracy through complex convolution (CONV) layers,
are resource-intensive and consume significant energy. This makes them challenging to
be deployed on resource-constrained edge platforms. As a result, lightweight networks
designed for edge and terminal devices, such as MobileNet [2,3], have been proposed.
These networks leverage depthwise separable CONV layers to significantly reduce the
system burden in scenarios where extremely high accuracy is not required. On the other
hand, standard CNNs lose spatial information during the iterative computation process.
However, deconvolutional neural networks (DCNNs) [4,5], such as FCN [6] and GAN [7],
preserve the spatial information of the image. They can maintain the same resolution as the
original image in the output and perform pixel-level classification of objects in the image.

The use of multiple types of CNN models in application scenarios has become a major
trend in future development. For example, in applications such as pedestrian and vehicle
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recognition and tracking, as well as multimodal sensor fusion [8], it is necessary to simulta-
neously or sequentially run multiple network models of different scales. Applications like
image semantic segmentation and low-light image enhancement [9] utilize network models
that include deconvolution (DeCONV) layers. This significantly increases the demand
for a single hardware system to handle multiple computational tasks. Switching between
different network models leads to significant fluctuations in the system workload. This is
due to the differences in runtime and resource utilization. Fixed hardware architectures
are prone to redundancy or insufficient performance, resulting in bottlenecks with low
acceleration efficiency for certain algorithms. Additionally, the alternating deployment
of network models may involve unconventional operators such as depthwise separable
CONV and DeCONV. Given the complexity of current application scenarios, the key lies in
improving the adaptability of CNN accelerators to dynamically changing applications.

Some excellent designs of CNN accelerators, such as Eyeriss [10–12] and TPU [13],
have been efficient enough to accelerate standard CNN networks. However, they are
not the optimal designs for lightweight networks. This is because lightweight CNNs
have significant differences in data volumes and computation patterns compared to tra-
ditional CNNs. Therefore, it is necessary to make specialized and efficient improvements
to the acceleration architectures for lightweight CNNs. Su et al. [14], Wu et al. [15], Zhao
et al. [16], Xie et al. [17], Bai et al. [18], and Yu et al. [19] have gradually improved the
frame rates of MobileNet inference tasks from 127.4 FPS to 325.7 FPS via implementing
FPGA-based dedicated accelerators for lightweight CNNs. These studies focus on devel-
oping specialized accelerators and on-chip dataflows for lightweight CNNs, primarily
targeting the unique computation pattern of depthwise separable CONV layers. How-
ever, for CONV computations, these dedicated designs lack parallel dimensions between
channels, so they are significantly less efficient and performant. Additionally, accelerators
specifically targeting the DeCONV layers of DCNNs are scarce. Zhang et al. [20] pro-
posed the design of a DeCONV accelerator using reverse looping and stride hole skipping
methods, and Yan et al. [21] introduced input-oriented mapping (IOM) for DeCONV, both
to eliminate redundancy in memory access and zero value calculations. However, these
specialized computation patterns inevitably require additional compute units, buffers,
and specific hardware resources. This makes them unsuitable for general DCNNs and
increasing hardware overheads and control system complexity. Another research study [22]
proposed a method called transforming deconvolution into convolution (TDC), which
partially mitigates redundancy issues by designing a load balancing scheme. However, the
computational imbalance and space for the improvement of performance still exist.

In conclusion, existing research has shown that accelerator designs optimized for
CONV layers often cannot efficiently handle depthwise separable CONV layers. Secondly,
lightweight CNN accelerator designs are typically focused solely on processing depthwise
separable CONV layers. Furthermore, DeCONV layers either require additional hardware
resources or suffer from low resource balance. State-of-the-art commercial accelerator
designs like the Xilinx DPU [23] exhibit significant differences in energy efficiency and
resource utilization between the CONV layers and depthwise separable CONV layers.
They often need additional hardware units for depthwise separable CONV layers. Current
complex applications require the deployment of multiple models to address various needs.
However, there is a lack of general-purpose accelerator architectures that can simultane-
ously handle standard CNN models, lightweight CNN models, and models involving
DeCONV layers. To address this issue and improve the compatibility and energy efficiency
balance between different models during edge inference hardware system deployment, this
paper proposes a dynamically reconfigurable CNN accelerator architecture with high bal-
ance in complex applications. The work in this paper is divided into the following aspects:

1. Based on the prevalent processing element (PE) array structure in CNN accelerators,
a versatile dynamic reconfigurable FPGA accelerator hardware architecture in high
resource reuse is designed. A tiling computation flow that is highly compatible with
the architecture is also proposed.
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2. Considering the computational characteristics of depthwise separable CONV com-
putation, our design dynamically configures the mapping of the computation in
sub-arrays of PEs and optimize the on-chip dataflow for depthwise separable CONV.
This allows the proposed computing engine to alternate between depthwise CONV
and pointwise CONV while minimizing the redundant memory access operations
between the two computations. The proposed accelerator hardware architecture
achieves compatibility with depthwise separable CONV layers and exhibits higher
resource utilization.

3. Considering the characteristics of DeCONV computation, this design splits the ker-
nels into parts and maps them to sub-arrays of PEs for separate computation. This
transforms a DeCONV computation into multiple CONV computations without zero-
padding, enabling generalization between the CONV layers and DeCONV layers
in terms of computational resources. This eliminates redundant zero-value multi-
plies and accumulates as well as unnecessary storage operations, thereby achieving
compatibility with DeCONV layers and improving resource utilization.

2. Background and Analysis of CNN Acceleration
2.1. Standard CONV and Acceleration Design
2.1.1. On-Chip Parallel Computation for CONV

The key to a neural network accelerator lies in maximizing the parallel computing
capability of the hardware platform to improve the parallelism during CONV computations.
CONV layers are arranged sequentially. Computations within a single CONV layer are
shown in Figure 1. Due to the corresponding relationship between the kernels and input
feature maps, the continuously looping computations across dimensions can be fully
parallelized for high acceleration efficiency at the cost of hardware resources.
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Therefore, a major focus in accelerator design is striking a balance between hardware
resources and acceleration performance. Parallel dimensions depend on the computing mode
of the CNN model. Parallel computations mainly involve the following three dimensions:

1. Sliding window parallelism: Within the sliding window corresponding to a kernel,
K × K multiplications can be executed in parallel. Each channel of a kernel uses K × K
multipliers, enabling the calculation of one sliding window in a single cycle for that
channel. This means that by increasing the number of multipliers used to K × K
times, the computation time can be reduced to 1/(K × K) of the original time. The
sliding window parallelism strategy is suitable for networks with relatively uniform
kernel sizes.
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2. Input channel parallelism: Since the convolutions of different channels in the input
feature map are independent, the pixels at the same position in different channels
can be convolved in the same cycle. When the number of parallel channels is C, the
computation time becomes 1/C of the original time.

3. Output channel parallelism: The number of output feature map channels in a CONV
layer depends on the number of kernels. Each channel of the input feature map is
convolved with the corresponding channel of each kernel, and the feature data are reused.
Performing convolution with multiple kernels simultaneously reduces the number of
data reads and improves the throughput of the computational units. This parallelization
method has the highest requirement for computational and buffer resources.

2.1.2. Conventional Accelerator Design for CONV

The mainstream hardware acceleration method for CONV utilizes a PE array, which is
composed of interconnected PE units, to perform CONV computations. Each PE is only
responsible for one or some multiply–accumulate (MAC) operations. After transferring
data between regularly arranged PEs, CONV can be completed by the PE array. This
design also can achieve a very high degree of parallelism, because the PEs are computing
the MACs simultaneously. The separate MAC unit design is currently used in various
FPGA designs, such as CNN accelerators [10,13], and hardware implementation of other
algorithms [24].

The row stationary (RS) dataflow [10] introduced by Eyeriss is efficient for CONV. The
computing engine of Eyeriss, which is a PE array consisting of a 12 × 14 grid of PEs, can be
divided into multiple sub-arrays to map computations of different parallelisms. In the RS
dataflow, the movement of input features, weights, and MAC results in the PE array taking
three different approaches. As shown in Figure 2, the weight values are sent to each PE
using a horizontal mapping approach. PEs on the same row simultaneously hold the same
weight values, mapping a row of a kernel. The input feature values are sent to each PE
using a diagonal mapping approach. PEs on the same diagonal line simultaneously hold
the same feature values, mapping a row of feature elements. The partial sums (psums) in
a sliding window are vertically accumulated. This dataflow concentrates data reuse and
accumulation in the PE array. It reduces power consumption and time consumption by
reducing burst data access to the buffer and off-chip DRAM.
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2.2. Depthwise Separable CONV and Challenges in Acceleration

Depthwise separable CONV splits the CONV process into two steps: depthwise CONV
and pointwise CONV. By separating the accumulation within sliding windows and the
accumulation across channels, it significantly reduces the number of parameters and com-
putational complexity. The characteristics of depthwise CONV involve using a single kernel
with the same number of channels as the input feature map to independently convolve
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each channel, resulting in an output with the same number of channels. Pointwise CONV
mainly utilizes multiple 1 × 1 kernels to compute the results obtained from depthwise
CONV in the same manner as standard CONV. Although depthwise separable CONV has
lower computational requirements, its efficiency is often lower in hardware accelerators.

There are two main reasons for this. Firstly, depthwise convolution has low computa-
tional intensity, leading to more time spent on memory access in hardware implementation.
Two performance evaluation metrics need to be considered in the network model: com-
putational load and memory access load. The computational load (Lcomp) represents the
number of MAC operations required during the forward propagation of the network. The
majority of the computational load in CNNs is concentrated in the CONV layers. The
computational load of a CONV layer can be calculated as follows:

Lcomp = M2·K2·IC·OC, (1)

The memory access load (Lmem) represents the amount of data exchanged in the
memory during inference calculations. Assuming that the on-chip buffer is large enough
and each CONV layer operation only requires reading the memory once, the memory
access load of a CONV layer can be calculated as follows:

Lmem =
(

K2·IC·OC + M2·OC
)
·4, (2)

The computational intensity (I) quantifies how many floating-point operations are
performed per byte of memory exchange during the model’s computation, as measured in
FLOPs/Byte. It is a quantifiable indicator of the efficiency of the model’s memory usage,
which is calculated as follows:

I = Lcomp/Lmem, (3)

For standard CONV, taking VGG16 [25] as an example, the floating-point compu-
tational load for a single inference task is approximately 15 GFLOPs, and the memory
access load is around 600 MB. Therefore, its computational intensity is 25 FLOPs/Byte. In
the case of MobileNet, which uses depthwise separable CONV, the computational load
is approximately 0.5 GFLOPs, and the memory access load is 74 MB. Compared to the
memory access load, the computational load has been significantly reduced, resulting in
a lower computational intensity of only 7 FLOPs/Byte. The low computational intensity
leads to lower acceleration efficiency for MobileNet, making it suitable for hardware plat-
forms with limited computational resources and low parallelism. It cannot fully utilize the
computational resources of large-scale parallel computing platforms.

Secondly, due to the lack of output channel parallelism during depthwise CONV,
deploying it in highly parallel accelerators can lead to a decrease in acceleration efficiency.
When computing standard CONV on hardware accelerators, the input is typically fetched
once and then reused by multiple kernels to minimize memory access. In lightweight
networks, each output of depthwise CONV is the result of a single-channel MAC operation.
Therefore, there is no parallel dimension among different kernels. Deploying lightweight
networks on traditional accelerators results in a lack of computational parallelism, directly
reducing efficiency. Taking the mapping of standard CONV on TPU [13] as an example,
as shown in Figure 3, in the architecture based on the weight-stationary (WS) dataflow,
each column of the PE array processes the computation of a single output channel (a single
kernel). The weights are preloaded into the PEs, and the input feature map is loaded from
the global buffer into the input buffer, which is then sent to all the columns in the PE array
to perform convolutions with different kernels. Unlike standard CONV, which performs
parallel computations with multiple columns of PEs, depthwise CONV only uses a single
kernel. Therefore, there is only one column in the PE array needed to map the computation
of the only kernel, while the other columns remain unused.
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2.3. DeCONV and Challenges in Acceleration

DeCONV is primarily used to increase the resolution of input images to obtain more
detailed features. During computation, zero values are inserted around the boundaries
of the feature map and between every two pixels. This allows convolution operations
to generate feature maps larger than the original size. Consequently, when running the
DeCONV layer, a significant portion of the accelerator’s resources is allocated to performing
MAC operations involving zero values. These unnecessary computations result in the
wastage of hardware resources. Therefore, to avoid allocating resources to zero value
computations, optimization of the dataflow of DeCONV is necessary.

The IOM computation scheme [21] evenly distributes the computation tasks of the
input feature map pixels to each PE unit, while avoiding the process of padding the input
feature map with zero values. The computation can be described as follows. (1) The weights
of the kernel are flipped vertically and horizontally. (2) Each individual pixel of the input
image is multiplied element-wise with the flipped 3 × 3 kernel. (3) The resulting 3 × 3
outputs are arranged as shown in Figure 4. The overlapping pixels are accumulated, while
the edge pixels are discarded in the final output. (4) Repeat the above steps for all the input
feature map pixels until the final output is obtained.

The challenge with this novel computation scheme lies in the need to design a special-
ized dataflow to accommodate the kernel-flipping operation, element-wise multiplications
of a single feature pixel and the arrangement of the output image. It is difficult for accelera-
tors designed for standard CONV and depthwise separable CONV to efficiently support
such a different computation scheme. DeCONV has higher computational complexity
compared to CONV, and designing a dedicated DeCONV computing engine can result in
low resource utilization. In complex application scenarios, it is common to encounter situa-
tions involving both CONV layers and DeCONV layers within the same model or across
different models. Hence, it is crucial to propose a DeCONV dataflow that is compatible
with the CONV computation mode, without the need for a specialized DeCONV engine.
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3. System Architecture of the Proposed Accelerator
3.1. Top-Level Architecture

The primary objective of the proposed design of the versatile dynamic reconfigurable
accelerator is to dynamically adjust the hardware accelerator’s computational capabilities
based on the characteristics of different CONV layers while addressing the trade-off be-
tween resource utilization and efficiency. This paper proposes a resource-oriented tiling
computation flow to maximize the computational parallelism. Specifically, data from the
off-chip memory (DRAM) are divided into blocks and enter the on-chip buffer (BRAM),
where the content is further divided and fed into the PE array for computation. The block
size of the data is adapted to the size of the PE array. This design achieves parallelism
between memory access and computation while reducing the amount of data transferred in
each intra-chip communication. It also eliminates the memory access bandwidth bottleneck
issue and reduces the size of the on-chip buffers. Meanwhile, in order to improve the
balance between the accuracy and efficiency of the CNN inference tasks, quantized 8-bit
fixed point (INT8) parameters instead of 32-bit floating point (FP32) parameters are used
to compress the implemented CNN models. After quantization, the hardware resources
for computation and memory units are further reduced with little degradation of accuracy.
The details of the quantized models are shown in Section 5.

The tiling computation flow and top hardware modules are illustrated in Figure 5. All
the weight data, input images, and intermediate output results are stored in the off-chip
DRAM. The on-chip buffer consists of a total of 1164 KB of BRAM, and a fixed number of
blocks of data are stored in it at a time. The data entering buffer are continuously reused
and further divided into PEs. After a fixed computation cycle, the psums of the output are
accumulated in the output buffer. Once the computation is completed, the resulting output
feature map is returned to the corresponding address in DRAM as the input data for the
next layer.

The hardware architecture of the designed accelerator in this paper is depicted in
Figure 6. The accelerator comprises several key modules, including the on-chip buffer,
control unit, address generate unit (AGU), data allocation unit (DAU), PE array, and post-
process modules. The on-chip buffer consists of the input buffer (INF_BUF), weight buffer
(OUTF_BUF), and output buffer. These buffers are respectively responsible for storing the
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tiled input feature map data, weight data, and results from the computation units. The
AGU generates addresses for reading and writing for the buffers. The DAU handles the
transmission of 128-bit data to the corresponding registers in the PEs. The PE array is an
array of interconnected PEs that perform MACs and data flowing. The output of the PE
array is connected to an adder tree, which outputs the final convolutional results. The
post-process units encompass operations such as quantization, dequantization, pooling,
and ReLU, performing necessary computations beyond convolutions.
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3.2. Design of the PE Array and Dataflow

The designed computing engine is implemented using a PE array architecture. A
strategy of sliding window parallelism and input channel parallelism is adopted for the
mapping of the CONV operations. This is to avoid the lack of output channel parallelism,
which leads to low resource utilization in computing depthwise CONV. This design decom-
poses and partitions the input feature map into the PE array for mapping along the channel,
row, and pixel dimensions, achieving load-balancing and efficient on-chip dataflow with
a simple control. For the efficiency of accelerating standard CONV, the design of the PE
array size and the flow of different types of input data in the array in this paper refers
to the idea of an RS dataflow. Based on this, a dynamically reconfigurable design for the
internal structure of the PE unit and the data mapping method on the array is proposed.
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Compared to Eyeriss, which focuses only on accelerating CONV computations, our solution
can dynamically support multiple types of CONV.

In the 12 × 14 PE array, this design maps the computations of each sliding window to
the PEs in the same column of a sub-array, with each PE responsible for calculating a row
in the sliding window. Since most CONV layers in computer vision applications currently
use small 3 × 3 kernels, three PEs are required to calculate one sliding window when each
PE calculates one row. Therefore, the size of the sub-array is designed to be 3 rows. The
14 columns of PEs are designed to perform parallel MACs of 14 sliding windows per cycle.
Four 3× 14 sub-arrays parallelize the convolution calculations for four input channels. Each
PE is responsible for calculating the MAC of one row (1 × 3 elements) within the sliding
window. Therefore, each PE is internally designed with three sets of INT8 fixed-point MAC
logic, as shown in Figure 7. By adding the results of the three PEs in the same column, the
computation of one sliding window can be completed. Each PE contains three registers
for temporary storage of weights and feature values. Since the kernel size is small, the WS
dataflow can be used to map the weight values. The movement of the sliding window
is achieved via the flow of feature values inside the PE. Specifically, the weights remain
stationary in the internal registers, while the feature values are element-wise shifted in the
registers, accomplishing the horizontal sliding of the kernel on the input feature map.
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After the buffered data are tiled, they are distributed to various PEs through data
buses. The designed dataflow in the PE array, which is shown in Figure 8, follows and
optimizes the data movement of the RS dataflow. When a CONV layer is initialized, each
row of the kernel is uniformly sent to the registers of all the PEs in the corresponding row
and stored. The PEs in the same row hold the same weight values, allowing a complete
kernel to be fixedly mapped to the three PEs in a column without the need for movement.
The input feature values are sent to each PE array diagonally. As the sliding window
moves horizontally, the feature registers inside a PE perform shifting and updating in each
cycle. Therefore, within a single cycle, a 3 × 14 sub-array can perform the convolution
computation between a 16 × 3 input feature matrix and a 3 × 3 kernel. In N cycles, the
convolution computation for a 16× N region can be completed (the initialization of weights
and features requires 2-cycle shifting in the PE registers). After completing the internal
computation, the PE sends the results to the adder tree at the bottom of each column to
accumulate the results of the three rows in the sliding window.
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After the computation starts in each PE unit, each valid MAC result needs to be further
accumulated across the rows and channels within the sliding window to obtain the output
feature values. This is achieved through a two-stage adder tree structure that performs
data accumulation within the columns of the PE array, as shown in Figure 9. The sub-array
completes the accumulation of the MAC results for the three rows of the sliding window.
The second stage of the adder tree completes the accumulation of results between different
channels, computed by four sub-arrays. The accumulated data are then sent to output
buffer and await further accumulation with results from other channels that are yet to be
computed. The output buffer consists of 14 FIFOs with a depth of 512, and it receives and
accumulates the corresponding psums from different sub-arrays. Since the data output
from the array follows a sequential order, the use of FIFO efficiently reduces the cost of the
BRAM resources.
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4. The Proposed Unified Computing Scheme

Based on the designed reconfigurable accelerator architecture mentioned above, the
key to improving the balance and resource utilization among various CONVs lies in
implementing on-chip computations with minimal heterogeneity. Therefore, in conjunction
with the designed reconfigurable accelerator, our proposed computing strategy mainly
focuses on maximizing the similarity among the three types of CONV operations to unify
the dataflows and hardware designs.

4.1. The Applied Computing Scheme of the CONV

For the computation of standard CONVs, after the data are loaded into the on-chip
buffer in block format, a further tiling strategy is adopted to input the data into the PE
array for computation, as shown in Figure 10. The PE array can process a 16 × 3 × 4 feature
map convolved with a 3 × 3 × 4 kernel per cycle. Therefore, the size of the input data block
entering the array each time is 16 × 3 × 4 for the input image block and 3 × 3 × 4 for the
weight block. The computation follows a sequential order in four dimensions, and the
computation pattern for CONV is as follows:

1. Initially, the array will process the convolution between 16 × M × 4 features and a
kernel of 4 channels in pipeline, as indicated by arrow a in Figure 10. Due to the
2-cycle initialization for features and weights in PE registers, thus requiring M cycles.

2. After M cycles, the subsequent convolutions for the remaining channels are performed
in a batch-wise manner, where each batch consists of 4 channels. This operation is
repeated C/4 times, as indicated by arrow b.

3. The tiled convolution operation above needs to be repeated (M − 16)/14 + 1 times
to complete all the convolutions of a single kernel with the input feature map, as
indicated by arrow c.

4. For a CONV layer with N kernels, the above 3-step tiling scheme needs to be repeated
N times to obtain the final output map with a channel number of N.
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Therefore, for a 3 × 3 CONV, the theoretical number of cycles required for the PE array
to compute a single CONV layer is M × (IC/4)× ((M − 16)/14 + 1)× N.

4.2. The Unified Computing Scheme of the Depthwise Separable CONV
4.2.1. The Designed Computing Strategy of the Depthwise Separable CONV

Instead of writing data back to the off-chip DRAM after completing the depthwise
CONV and then reading for the pointwise CONV, treating these two processes as separate
layers, the intermediate data are stored in the on-chip BRAM in this proposed design. Due
to the absence of parallel accumulation between channels in depthwise CONV and its
immediate follow-up by pointwise CONV, additional data allocation logic and buffers
are needed. For depthwise CONV, the designed architecture can satisfy the convolution
operations for each channel. However, instead of accumulating the convolution results
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of each sub-array in the adder tree, the results are stored in 12 buffers corresponding to
12 channels, each with a size of 14 × 1. The purpose of these buffers is to temporarily store
the depthwise CONV outputs in 3 cycles (each cycle outputs 4 channels with 14 convolution
results) as inputs for the following pointwise CONV.

During pointwise CONV, the buffered depthwise CONV results of 12 channels are
used as input data. As shown in Figure 11, a data block of the size 14 × 1 × 12 is sent to
PE array. In this way, the amount of feature values for pointwise CONV is smaller than
the total weight values of the point kernels. Therefore, the dataflow in the PE array can
be changed to the input stationary (IS) dataflow. The 14 × 1 × 12 data block of the feature
values is stored in the corresponding PEs, and different point kernels are kernel-wise shifted
in registers, maximizing the reuse of the depthwise CONV results.
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Only after the pointwise CONV is completed, is the accumulation performed through
an adder tree, and the results are stored in the output buffer. This design of the dataflow
maximizes the utilization of the PE array resources for depthwise CONV and pointwise
CONV, minimizing idle resources.

Existing generic accelerators require depthwise CONV and pointwise CONV to be
performed on separate hardware modules, which inevitably results in additional resource
and power consumption. Our design computes these two CONV steps in the same engine
so that the resource utilization and power consumption are further optimized. This ensures
computational efficiency, improves resource utilization, balances the computational load
between these two CONVs, and performs seamless integration. It only requires a smaller in-
termediate data buffer space to connect the two CONVs, avoiding off-chip communication
while efficiently utilizing on-chip BRAM resources.

4.2.2. Reconfigurations of the Pointwise CONV

During the pointwise CONV process of depthwise separable CONV, the kernel size
becomes 1 × 1. Since the 1 × 1 sliding window does not involve the overlapping of feature
elements during sliding, the feature values are not updated in a diagonal flow anymore.
Instead, it is channel-wise mapped to each row of PEs, as shown in Figure 12, and the
feature value is assigned to the corresponding column of PEs according to the row order of
the input feature map.
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of features.

Parallel computations of three MACs are not required within the PE when computing
pointwise CONV. Therefore, the other two groups of registers and MAC units inside a
PE do not need to be enabled during pointwise CONV. Also, the data-shifting operation
is transferred from the feature register to the weight register. The structure of the PEs
is reconfigured as shown in Figure 13. When calculating depthwise separable CONV, a
group of control signals will be generated to control the reconfiguration of the PEs and
dataflow. The finite-state machine of computation will also be configured into two phases
of depthwise CONV and pointwise CONV. Compared with standard CONV, the depthwise
CONV phase removes the logic of accumulation in the adder tree. The results are directly
stored to the middle buffer instead. The pointwise CONV phase changes the PEs into one
set of MAC logic and the dataflow into an IS dataflow by control signals.
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The process above is the reconfiguration strategy for the depthwise separable CONV.
Through the phase switching of the control signal, it can maximize the utilization of
power consumption to perform computations. By disabling unnecessary computing units,
redundant power consumption can be avoided. Thus, the efficiency of acceleration is
further improved.
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4.3. The Unified Computing Scheme of the DeCONV
4.3.1. Optimization of the DeCONV

The computation of the DeCONV, after zero-padding, is consistent with CONV and
can be adapted to traditional architectures. Therefore, the acceleration focus lies in handling
redundant zero value computations. The positions where zero values are inserted into
feature maps have a fixed pattern. Consequently, the valid MACs follow this pattern as
well during convolutions in DeCONV. This property can be leveraged to optimize the
dataflow of DeCONV. Drawing upon the TDC method, the proposed DeCONV method in
this paper also avoids zero value computations and calculation overlaps by partitioning
the original kernel into several sub-kernels. However, our method does not require the
insertion of zero values into the sub-kernels to accommodate the computing engine instead.
This is because our designed hardware architecture can dynamically adjust the internal
registers of the PE, enable/disable MAC operations, and allocate data buffers to adapt to
convolutions of different kernel sizes.

The designed DeCONV method is illustrated here using an example of 4 × 4 kernels.
As shown in Figure 14, when the stride is 2, zero values are inserted around each element
of the input feature map. Thus, when the kernel slides over the feature map for convolu-
tion, only four corresponding cases occur, as represented by the four colors in Figure 14.
Accordingly, the kernel can be divided into four 2 × 2 sub-kernels, with each sub-kernel
corresponding to a specific case. The positions of the sub-kernel elements after splitting are
also distinguished by the corresponding colors in the original kernel.
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After splitting the kernel, convolutions can be directly performed using the four
sub-kernels, eliminating the zero-padding process and making DeCONV perfectly fit the
dataflow of CONV. As shown in Figure 15, each new sub-kernel performs convolution
with a stride of 1 on the original input feature map, and the results obtained by each
sub-kernel are rearranged according to a fixed rule. Therefore, compared to CONV, this
optimized DeCONV dataflow only requires additional logic for kernel-splitting and result
rearrangement. This enables the universality of both the CONV and DeCONV dataflows in
terms of the hardware resources and operating modes.
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The DeCONV method for kernels of other sizes follows a similar principle, but the
difference lies in the sizes of the sub-kernels. For example, when the kernel size is 5 × 5,
sub-kernels of different sizes are generated, as shown in Figure 16.
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When new sizes of kernel are detected, reconfigurable control signals can be generated
to selectively enable the registers and MAC logic in the PEs. Meanwhile, the sub-array can
also shut down unnecessary PE rows via control signals. The rearrangement of the results
follows the same pattern as described for the 4 × 4 kernel. Therefore, different types of
DeCONV can be adapted to the proposed computing method above and mostly utilize the
same hardware resources as CONV.

This design avoids unnecessary zero value computations and extra DeCONV module.
It can perform highly parallel DeCONV with minimized dataflow and hardware hetero-
geneity. For different sizes of sub-kernels, the reconfigurable design also minimizes the
power consumption and resource redundancy. In detail, the corresponding control signals
are generated for different sizes of sub-kernels. Then, they dynamically configure the PEs
and sub-arrays in the way shown in Figure 17.
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Furthermore, the kernel-splitting can bring optimization benefits to hardware plat-
forms that do not support large kernel sizes or have low performances. This is because
the size of the kernel directly affects the number of MACs required in one sliding window.
For the same performance, larger kernel sizes require more computational resources in the
PE array.

4.3.2. The Designed Computing Strategy for the DeCONV

Four convolutions of four sub-kernels are performed during DeCONV. Therefore,
each 3 × 14 sub-array can correspond to one sub-kernel. When the sub-kernel size is 2 × 2,
the last row of each sub-array does not need to be enabled, and only 2 sets of registers
and MAC units need to be enabled within the PE. When the sub-kernel has a different
size, the enablement of the array can be dynamically adjusted accordingly. Although this
mapping strategy sacrifices the input channel parallelism, for DeCONV, the convolution
of the four sub-kernels is computed simultaneously, and the results can be combined and
rearranged into one output map. This effectively utilizes the unique parallel dimension
of DeCONV, further enhancing the sliding window parallelism. Additionally, computing
the four sub-kernels simultaneously also facilitates data rearrangement. Therefore, in this
accelerator design, DeCONV exhibits the same level of computational parallelism.

Since the results of the four sub-arrays correspond to different sub-kernels, the output
buffer used during CONV cannot be used for accumulating the results between sub-arrays.
Therefore, a special design is required. During DeCONV, four sets of independent FIFO
buffers are used for accumulation. Each set contains 14 FIFOs with a depth of 128, which are
responsible for accumulating the results between different channels of the four sub-kernels.
Since each sub-array performs the accumulation of its own output, the amount of data that
need to be accumulated in the FIFOs is relatively small. So, this additional buffer design
for DeCONV computation occupies minimal BRAM resources. The proposed computing
strategy for the DeCONV is shown in Figure 18.
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A data rearrangement module is needed. This module rearranges the outputs from
the four sub-arrays according to a certain pattern to form the complete output feature map.
Due to the regularity of the data rearrangement, it only requires specific address allocation
for the outputs. The rearranged data are then outputted and stored in the off-chip DRAM
according to the generated addresses.

5. Experiment and Analysis

The proposed accelerator design primarily addresses the issues of incompatibility or
low resource utilization and energy efficiency (performance per watt) exhibited by current
mainstream designs when handling CONV, depthwise separable CONV, and DeCONV
layers. To evaluate the optimization of this designed accelerator, the representative CNN
models encompassing these three types of CONV layers were selected for experimental
testing. The main focus was on resource utilization, performance (total latency), and
power consumption during the execution of the CNN models. A comparative analysis was
conducted against related state-of-the-art designs.

5.1. Implementation and Experimental Environment

For the experiment, CNN models were used to perform the deployment and operation
of the proposed accelerator design. The designed hardware architecture was implemented
using Xilinx Vivado 2022.1. After functional verification, synthesis and building constraints,
the design was deployed on the Xilinx ZCU102 [26].

The trained and quantized parameter data of CNN models were loaded into the DDR4
memory included in the board. The PE array of this accelerator supports computation for a
single CONV layer, and top control logics were designed for inter-layer data scheduling.
The detail implementation on the FPGA experiment board is shown in Figure 19. The
implemented accelerator can achieve a working frequency of 200 MHz and successfully
perform CNN inference tasks. The utilization of basic resources in the FPGA platform for
the proposed accelerator is shown in Table 1.

Table 1. Resources of the designed accelerator.

Resources Usage (Our Design) Usage (B1024/B4096)

LUT 32,130 33,796/51,351
DFF 35,214 48,144/98,818
DSP 896 230/710

BRAM 322 104/255

For CONV and depthwise separable CONV, this experiment conducted the deploy-
ment of two CNN models, VGG16 and MobileNetV1, as they mainly consist of CONV
layers and depthwise separable CONV layers, respectively. The training of the required
models was performed using the PyTorch framework and the ImageNet [27] dataset on
an Nvidia RTX 2080Ti GPU platform. Weight data of the trained models were in FP32
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format and were then quantized to obtain the INT8 data. The accuracy of the models was
revalidated. The information of the used CNN models is shown in Table 2. As can be seen
in the table, the parameters are effectively reduced with acceptable degradation of accuracy.
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Table 2. Quantized CNN models for deployment.

Models TOP-1/TOP-5 Accuracy
(FP32)

Parameters
(FP32)

TOP-1/TOP-5 Accuracy
(INT8)

Parameters
(INT8)

VGG16 0.704/0.887 56.12 MB 0.590/0.881 14.03 MB
MobileNetV1 0.702/0.879 12.16 MB 0.686/0.875 3.04 MB

5.2. Comparison and Results

The Xilinx DPU [23] was chosen, as a state-of-the-art generic CNN accelerator design,
as a comparison. In the DPU acceleration platform, both depthwise separable CONV and
DeCONV require additional hardware modules to be deployed on top of the acceleration
architecture for standard CONV. For instance, in the B4096 DPU, handling depthwise
separable CONV necessitates the addition of a depthwise CONV module composed of
an extra 48 DSPs. The proposed architecture in this paper is able to perform depthwise
separable CONV and DeCONV without the need for additional dedicated processing
engines, thereby enhancing the compatibility of acceleration.

As shown in Figure 20, when running models primarily composed of depthwise
separable CONV, the performance per watt of the DPU is noticeably lower compared to
models dominated by standard CONV. Moreover, the performance disparity becomes
larger with the increase in the DPU scale and parallelism. In the B4096 DPU, which has the
highest resource usage and parallelism, the performance per watt of the YOLOv3 network
is approximately 3.3 times that of the MobileNetV2. The performance per watt of depthwise
separable CONV in DPUs of different parallelism consistently remains at a lower level, and
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the resource utilization decreases as the usage of resources increases. This indicates that
there is a resource utilization bottleneck for depthwise separable CONV in the DPU.
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The experiment focused on comparing the resource utilization and energy efficiency
between standard CONV and depthwise separable CONV, emphasizing the efficiency
variation of the system when switching between different models. The experiment mea-
sured the resource utilization and the performance per watt of the single-core B1024 DPU
and B4096 DPU when running VGG16 and MobileNetV1, serving as a comparison with
the proposed hardware architecture. Because that DPU uses the same INT8 quantization
method, our design can achieve the same accuracy when deploying the same CNN models.
The details of the experimental results are shown in Table 3.

Table 3. Comparative results when operating VGG16 and MobilenetV1.

Accelerators Resource Utilization
(VGG16/MobilenetV1)

Runtime (ms)
(VGG16/MobilenetV1)

Performance per Watt (GOPS/W)
(VGG16/MobilenetV1)

B1024 0.837/0.249 163.4/7.9 81.1/28.4
B4096 0.869/0.213 41.8/5.2 88.1/27.2
Ours 0.936/0.378 177.1/9.0 36.4/13.2

As the DPU is a commercial IP from Xilinx and incorporates unique enhancements
such as the double data rate of the DSP and channel augmentation to improve performance,
it outperforms our designed accelerator in terms of energy efficiency.

As shown in Table 3, when running VGG16, the resource utilization and energy
efficiency of B1024 are lower than those of B4096. This is because the VGG16 is a CNN
model with a high computational load. Thus, B4096 performs better with a higher degree
of parallelism. When running MobilenetV1, the resource utilization and energy efficiency
of B1024 are higher instead. This is because the computational load of light-weight CNN
models is lower, a lot of resources of B4096 are redundant.

Our design has a smaller energy efficiency gap when running VGG16 and MobilenetV1
compared with the DPU. The parallelism and computational resources in the DPU are
very large. Furthermore, depthwise CONV needs to be computed in a dedicated module,
while pointwise CONV is computed in the main CONV engine. When running a standard
CNN module such as VGG16, only the main CONV engine is used. But when running
light-weight models, it is necessary to obtain the same high frequency in the dedicated
module for depthwise CONV at the same time. This leads to additional power consumption
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and a large gap when switching between these two scenarios. Instead, our design uses the
same computation engine for depthwise CONV and standard CONV (pointwise CONV),
which avoids the extra power consumption and improves the balance of energy efficiency.

From the comparative graph in Figure 21, it can be observed that our design achieved
resource utilization optimizations of 1.08 times and 1.77 times when running VGG16
and MobileNetV1, respectively. When transitioning from VGG16 to MobileNetV1, the
DPU experienced a 75% decrease in resource utilization and a 69% decrease in energy
efficiency. In contrast, the proposed hardware architecture exhibited a lower decrease of
60% in resource utilization and a lower decrease of 64% in energy efficiency between these
two network models. Therefore, combined with the advanced design and the low-power
methods of Xilinx DPU, our architecture can further improve the efficiency of generic
accelerators in complex scenarios.
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To demonstrate the correct and efficient computation of the DCNN models without
requiring additional hardware design, this paper selected three DeCONV layers with
different parameters from Refinedet [28] for validation. The parameters of the DeCONV1,
DeCONV2, and DeCONV3 layers in Refinedet are presented in Table 4. All three DeCONV
layers upscale the original output image by a factor of two, and the output channels are
all 256. For the proposed DeCONV dataflow in this paper, the total number of MACs is
reduced to 25% of the original. The processing latencies for the three DeCONV layers
are 0.031 ms, 0.11 ms, and 0.46 ms, respectively. The corresponding performance of the
accelerator, which is evaluated by throughput, is 12.7 GOPS, 14.3 GOPS, and 13.7 GOPS.
We also deploy these three DeCONV layers on B1024 as a comparison because of the similar
resource usage. The comparative results are shown in Table 4. Although there is a gap in
the runtime due to the difference of maximum frequency and design techniques, our work
achieves higher resource utilization.

Table 4. Comparative results when operating DeCONV layers.

Layers Input Size Output Size Kernel Size Stride Runtime (ms)
(Ours/B1024)

Resource Utilization
(Ours/B1024)

DeCONV1 6 × 8 × 4 12 × 16 × 256 2 2 0.031/0.017 0.821/0.783
DeCONV2 12 × 16 × 4 24 × 32 × 256 2 2 0.11/0.08 0.867/0.809
DeCONV3 24 × 32 × 4 48 × 64 × 256 2 2 0.46/0.31 0.872/0.820
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6. Conclusions

Based on the existing complex scenarios and limited compatible accelerators, this
study designs a reconfigurable generic accelerator architecture, a tiling computational
dataflow, and a unified computing scheme on the basis of conventional acceleration designs.
This design allows dynamic reconfiguration when standard CONV, depthwise separable
CONV, and DeCONV layers are operated, minimizing the resource and power redundancy
of hardware platforms. Compared to the state-of-the-art DPU B4096 accelerator, this
study achieves higher resource utilization and lower utilization and energy efficiency gap
between a standard CNN and lightweight CNN. For tasks involving multiple CNN models
in complex scenarios, this design ensures a higher balance, allowing better utilization of
the hardware resources in edge devices and lower power fluctuations while maintaining
certain performance. In complex tasks such as multimodal sensor fusion, low-light image
enhancement, object recognition, and tracking, where CNN models need to be deployed
alternately, the designed partial reconfiguration minimizes the fluctuations in the hardware
resource allocation and power, avoiding resource redundancy and performance bottlenecks.

By combining advanced on-chip design, the performance per watt can be further
improved, ensuring a high balance while achieving excellent acceleration efficiency and
performance. Moreover, complex scenarios not only involve alternating between different
types of CNN models but also switching between CNN models with different compu-
tational and storage loads. Based on this design, a set of configurations with different
computational parallelism can be introduced. Referring to the configuration division of
the DPU, multiple configurations with different parallelism and performance can be de-
signed. Different types of accelerators can be configured in the scalability of the number
of MACs, size of the PE array and number of sub-arrays. So, there is a set of different
accelerators. Meanwhile, since the DPU cannot multi-core match different configurations,
designs can optimize the dataflow allocating logics to make it possible to match different
PE computing arrays together. For more complex and larger scenarios, combinations of
different configurations in the accelerator set provide a very high degree of flexibility and
the most efficient hardware deployment. The use of Xilinx’s dynamic function exchange
(dfx) [29] technology allows more flexible and rapid hardware dynamic reconfiguration.
Combined with software prediction [30] for CNN task loads and optimal configuration
selection, the balance and flexibility of the accelerator in complex CNN applications can
be further enhanced, achieving greater resource utilization and performance per watt on
edge platforms.
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Abbreviations
The following abbreviations are used in this article:

CNN Convolutional Neural Network
ADAS Advanced Driver Assistance System
CONV Convolution
DCNN Deconvolutional Neural Network
DeCONV Deconvolution
FPS Frame Per Second
IOM Input-Oriented Method
TDC Transforming Deconvolution into Convolution
GOPS Giga Operations Per Second
FPGA Field Programmable Gate Array
DPU Deep-Learning Processing Unit
WS Weight Stationary
IS Input Stationary
FLOP Floating Point Operations
PE Processing Element
MAC Multiply–Accumulate
Psum Partial Sum
IP Intellectual Property
BRAM Block Random Access Memory
DRAM Dynamic Random Access Memory
DDR Double Data Rate
LUT Lookup Table
DFF D-Flip-Flop
DSP Digital Signal Processor
FP32 32-bit Floating Point
INT8 8-bit Fixed Point
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