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Abstract: Underwater acoustic channels often have to face the interference of impulsive noise,
which is usually modeled by α-stable distribution in simulation experiments. To solve the problem
of underwater acoustic channel estimation under impulsive noise, this paper proposes a convex
combination–variable-step-size least mean p-norm algorithm. The algorithm incorporates a convex
combination into the variable-step-size least mean p-norm algorithm and uses the convex combination
of different convergence domains provided by changing the parameters of the Gaussian function
to further improve the effect after convergence. The simulation results of channel estimation show
that the convex combination–variable-step-size least mean p-norm algorithm provides a more stable,
robust, and universal solution than the variable-step-size least mean p-norm algorithm.

Keywords: adaptive filter; variable step size; convex combination; least mean p-norm; impulsive
noise; α-stable distribution

1. Introduction

In comparison to terrestrial communication, underwater acoustic communication
systems often experience greater interference due to the unique characteristics of their
environment [1]. One of the most typical sources of interference is the significant amount of
pulse noise generated by marine biological activities. Pulse interference refers to irregular
pulses or noise peaks that suddenly appear in the communication system, characterized by
their discontinuity, substantial amplitude, and short duration. Typically, pulse interference
is challenging to effectively eliminate or suppress using filters or other signal processing
techniques. This difficulty may lead to signal distortion or difficulty in signal recognition,
thereby severely impacting the reliability and accuracy of the communication system.

The significance of channel estimation lies in mitigating distortions and noise caused
by the channel in received signals, allowing for the accurate demodulation of data and
improving communication performance and spectral efficiency. There are various meth-
ods for channel estimation, primarily categorized into those based on reference signals,
blind/semi-blind methods, time-domain methods, and frequency-domain methods. Each
method has its advantages, drawbacks, and suitable scenarios, requiring selection and
design based on the characteristics of the channel and the requirements of the system.
To address more complex noise interference in channel estimation, Zhang X et al. pro-
posed a filtering gradient search method based on fractional-order derivatives and linear
pre-filtering. The rationality of the proposed algorithm has been demonstrated [2]. In
order to enhance the system’s robustness under pulse interference conditions, Zhu Y et al.
employed the correlation entropy as a cost function to reduce the system’s sensitivity to
pulse interference [3].

Many researchers have integrated deep learning with signal recognition and process-
ing, and empirical evidence has demonstrated the remarkable effectiveness of deep learning
in the field of signal processing [4–6]. However, deep learning technologies impose high
demands on experimental infrastructure, such as a high-quality graphics processing unit,
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making them inconvenient for use in certain specific scenarios. Therefore, this paper opts
for adaptive filtering to process signals.

The most important thing for adaptive algorithms is to choose a cost function, and the
least mean square (LMS) algorithm enjoys widespread adoption in engineering applica-
tions, this algorithm is favored for its straightforwardness and straightforward implementa-
tion [7]. However, using the second-order statistics of the error as the cost function performs
poorly in non-Gaussian noise environments and often requires combining other methods to
achieve better robustness in practical scenarios with impulsive noise [8–10]. There are many
marine organisms, such as snapping shrimp, that can emit impulsive noise [11], which
causes underwater acoustic channels to be frequently affected by impulsive noise. To make
adaptive algorithms more robust under impulsive noise conditions, the least mean p-power
(LMP) algorithm is often used to replace the least mean square algorithm [12–14]. Xiong K
et al., aiming to improve the robustness of adaptive algorithms in the presence of non-linear
interference, utilized the minimum average p-norm as a replacement for the traditional
minimum mean square error algorithm to upgrade the algorithm. In their paper’s appendix,
they provided a comparison of the algorithm’s excess mean square error and mean square
deviation (MSD), demonstrating the algorithm’s steady-state performance [15]. Therefore,
this paper uses the LMP as the cost function when facing underwater acoustic channels
with a lot of non-Gaussian noise.

The variable-step-size algorithm enables the filter to dynamically adjust the step size
in response to variations in the error signal; by doing so, it effectively resolves the trade-off
between the convergence rate and the quality of convergence, thereby enhancing the algo-
rithm’s overall performance [16–18]. Therefore, this paper adopts the variable-step-size
least mean p-norm (VSS-LMP) algorithm to implement the estimation of the underwater
acoustic channel. However, the traditional variable-step-size algorithm determines the
most suitable convergence domain when the variable step-size formula is determined,
and the performance often declines when the channel model is changed. Facing different
underwater acoustic channels, it is generally necessary to adjust the parameters of the
variable-step-size formula to make the algorithm achieve a more satisfactory effect. There-
fore, this paper hopes to build a universal algorithm that can achieve a satisfactory effect
without adjusting the parameters when facing different channel environments.

The convex combination idea is generally used to balance the advantages and disad-
vantages of two algorithms. Shi L et al. utilized the maximum correlation entropy criterion
when combating pulse interference. To overcome the contradiction between convergence
speed and the steady-state mean square, the convex combination concept was employed,
leading to a significant improvement in the algorithm’s robustness against pulse noise
after the modification [19]. In order to reduce the impact of algorithm parameters on the
overall performance, Zhang Y et al. employed the convex combination concept to combine
minimum mean square error filters with different parameters. By comparing the excess
mean square error in the results, it was observed that the improved algorithm exhibited a
noticeable enhancement in performance [20]. In order to address the contradiction between
the convergence speed and steady-state error of adaptive filters, Ferrer et al. resolved this
issue by convexly combining two different types of minimum mean square error algorithms.
They experimentally validated the algorithm’s performance under both steady-state and
non-steady-state conditions. The study demonstrated that convex combination could ef-
fectively enhance the algorithm’s performance [21]. Based on this, this paper proposes a
convex combination–variable-step-size least mean p-norm (CCVSS-LMP) algorithm, which
combines two variable-step-size adaptive algorithms with different convergence domains,
so that the overall algorithm can achieve better convergence effects without adjusting the
parameters when facing different channels. In Section 3 of this paper, the convergence effect
of the algorithm is tested, and by comparing the performance of the algorithm in different
scenarios, it is found that the proposed algorithm can achieve a relatively ideal convergence
effect without changing the parameters when facing different channel environments.
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2. CCVSS-LMP Algorithm

Figure 1 shows the system model of the CCVSS-LMP algorithm, where w1(n) and
w2(n) are two independent least mean p-norm filters, which jointly estimate the unknown
channel w0. In the two filters set in this paper, the update magnitude of w1(n) is larger than
that of w2(n).
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d(n) is the desired signal, as shown in Equation (1), where w0
T is the transpose of w0.

d(n) = wT
0 x(n) + v(n) (1)

The input signal x(n) is as shown in Equation (2), where M is the system length, which
refers to the filter length in this paper.

x(n) = [xn, xn−1, · · · xn−M+1]
T (2)

The errors of the two filters w1(n) and w2(n) are e1(n) and e2(n), respectively, and the
errors are obtained by Equation (3):

ei(n) = d(n)− wT
i (n)x(n), i = 1, 2 (3)

The weight of the whole system w(n) can be seen as Equation (4):

w(n) = λnw1(n) + (1 − λn)w2(n) (4)

In Equation (4), λn is a scalar between 0 and 1, and the idea is that if λn is given a
suitable value each time, the combination will extract the sum of the best attributes of each
filter [22]. Since a large step size is needed at the beginning, the initial value of λn is set to 1.
And the update formula of λn is as shown in Equation (5), where θλ is the change factor of
the λn update formula, which is used to adjust the degree of change each time.

λn+1 =


1, λn+1 ≥ 1
λn + θλ(e2(n)− e1(n))e(n), 0 < λn+1 < 0
0, 0 ≤ λn+1

(5)

Relative to the weight of the whole system w(n), the error of the whole system e(n) is
as shown in Equation (6):

e(n) = d(n)− wTx(n) (6)
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By substituting Equations (3) and (4) into Equation (6), the simplified system error e(n)
and the relationship between the errors of the two filters e1(n) and e2(n) are as shown in
Equation (7):

e(n) = λne1(n) + (1 − λn)e2(n) (7)

To reflect the effect of variable step size, w1(n) and w2(n) adopt the deformed Gaussian
function to update the step size [23]. Compared with other step-size update formulas, the
deformed Gaussian function has the characteristics of simplicity and efficiency, as shown
in Equation (8):

f (x) = α|x|2e−β|x|2 (8)

The method frequently employed for forecasting future values is the weighted moving
average [24]. To make full use of the correlation between step sizes, this paper employs the
moving average technique to adjust the step size and combines the deformed Gaussian
function proposed in Equation (8) to obtain the step-size update formulas µ1 and µ2 for the
filters w1(n) and w2(n), as shown in Equation (9):

µi(ei(n + 1)) = θiµi(ei(n)) + (1 − θi)αiei(n + 1)e−βiei(n+1), i = 1, 2 (9)

where θ1 and θ2 are independent smoothing factors, which are used to maintain the stability
of the algorithm.

The weight update formulas of w1(n) and w2(n) are as shown in Equation (10).

wi(n + 1) = wi(n) + µi(ei(n))|ei(n)|p−2ei(n)x(n), i = 1, 2 (10)

In Equation (10), p is the algorithm norm of LMP.
The algorithm flow of the proposed CCVSS-LMP algorithm is shown in Table 1.

Table 1. The algorithm flow of CCVSS-LMP.

Proposed CCVSS-LMP algorithm

Initialize
w1(n) = w2(n) =

→
0

d(n) = wT
0 x(n) + v(n)

Start the calculation
Iterate for n > k
ei(n) = d(n)− wT

i (n)x(n), i = 1, 2
w(n) = λ(n)w1(n) + (1 − λ(n))w2(n)
µi(ei(n + 1)) = θiµi(ei(n)) + (1 − θi)αiei(n + 1)e−βiei(n+1), i = 1, 2
wi(n + 1) = wi(n) + µi(ei(n))|ei(n)|p−2ei(n)x(n), i = 1, 2
λ(n + 1) = λ(n) + θλ(e2(n)− e1(n))(λ(n)e1(n) + (1 − λ(n))e2(n))
λ(n + 1) = max(0, min(1, λ(n + 1)))
Finish

3. Simulation Analysis of the Proposed Algorithm

To verify the performance of the algorithm, the filter length is set to 256, and the
sampling number is 8 × 104. To verify the robustness of the algorithm when the channel
changes abruptly, the channel changes at 4 × 104, and the change effect is achieved by
inverting the channel in this experiment. The normalized mean square deviation (NMSD)
curve is used to measure the performance of the algorithm in this paper [25], which reflects
the error between the filter estimate and the actual channel and can intuitively show the
convergence effect of the algorithm. The expression is as shown in Equation (11).

NMSD = 10 log10

[
∥w0 − w(n)∥2

∥w0∥2

]
(11)
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The α-stable distribution model is an extension of the Gaussian distribution, applicable
to an infinite number of independent and identically distributed random variables with
potentially infinite variance; their sum will tend to a stable distribution, which is suitable
for modeling the impulsive noise that occurs in underwater acoustic channels [12,26]. The
most prominent feature of the α-stable distribution is that the probability distribution
function has a heavy tail, and the characteristic function is defined as Equation (12).

φ(t) = exp
{

jat − γ|t|α[1 + jβsgn(t)ω(t, α)]
}

(12)

In Equation (12), ω(t, α) is defined as in Equation (13), where α is the characteristic
exponent, and the range of values is (0,2].

ω(t, α) =

{
tan(απ)/2, α ̸= 1
(2/π) log|t| α = 1

(13)

In Equation (12), the sign function sgn(t) is defined as in Equation (14):

sgn(t) =


1, t > 0
0, t = 0
−1, t < 0

(14)

Since the second-order statistics no longer converge under α-stable distribution noise,
the traditional signal–noise ratio function will lose its meaning under α-stable distribution
noise. In order to assess the signal–noise ratio (SNR) of useful signals and pulse noise
effectively, it is imperative to employ new methodologies [27]. This paper employs the
generalized signal–noise ratio (Formula (15)) in evaluating the system’s signal–noise ratio.

SNR = 10 log
(

σ2
s /γ

)
(15)

In Equation (15), σs
2 denotes the variance of x(n), and γ denotes the scale parameter

of the impulsive noise in Equation (12).

3.1. Analysis of Algorithm Parameters

Some parameters are used in this paper, among which the most important one is the
selection of the deformed Gaussian function in Equation (8). The Gaussian function is an
even function, so only the positive half-axis is considered in the analysis. The function is a
unimodal function, and it has output only at the peak position and zero at other positions.
Therefore, the algorithm can update its step size and other parameters according to the
error only in the peak region, which is the best convergence region of the function. The
selection of the variable-step-size parameters α and β in the deformed Gaussian function
determines the best convergence region of the Gaussian function. In this paper, the effects
of different values of α and β on Equation (8) are compared respectively under the initial
values of α = 0.0006 and β = 0.004, as shown in Figures 2 and 3.

As shown in Figure 2, the output increases with an increase in α for the same input,
which means that the filter can provide larger feedback for the same error input. We hope
that the algorithm can produce fast feedback to the error in the initial stage of the filter.
Since w1(n) has a faster update speed by default in this paper, the setting of α for w1(n)
should be larger than that for w2(n).

As shown in Figure 3, the output decreases with an increase in β for the same input,
and the input corresponding to the output peak also decreases continuously, which means
that only small input can affect the output. In order to make w2(n) have a smaller step-size
update and achieve a better steady-state effect, the setting of β for w2(n) should be larger
than that for w1(n).
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Due to the faster step-size update of the filter w1(n) than that of w2(n), θ1 should be
smaller than θ2. Through extensive experiments, we found that the ideal effect can be
obtained when θ1 is between 0.8 and 0.9 and θ2 is between 0.9 and 1.0. In the experiments
of this paper, the smoothing factors are set as θ1 = 0.85 and θ2 = 0.98.

3.2. Simulation Channel Analysis and Analysis of Parameters of the Algorithm

This paper first analyzes the unknown system using simulation. The channel and
the two filters w1(n) and w2(n) of the unknown system follow a Gaussian distribution
with zero mean and unit variance. The parameters of the experiment are set as follows:
α1 = 0.00059, β1 = 0.0049, α2 = 0.00032, β2 = 0.0049, θλ = 0.0004, p = 1.15, and α-stable
distribution parameters α = 1.45 and γ = 0.039. The impulse noise image is shown in
Figure 4; noise signals are introduced into the adaptive algorithm in an additive manner,
and v(n) in Equation (1) represents the impulse noise added to the system. The performance
comparison of CCVSS-LMP and pre-combination algorithm are shown in Figure 5.
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In Figure 5, LMP1 and LMP2 are independent algorithms before convex combination,
where LMP1 and w1(n) have the same parameter settings, and LMP2 and w2(n) have the
same parameter settings. Through simulation experiments, it can be found that under
the same number of iterations, the performance of the proposed CCVSS-LMP algorithm
is significantly better than that of the improved algorithm, and it can still maintain the
convergence effect of the original algorithm after the system undergoes mutation.

Figure 6 shows the curve of the change in λn, and it can be seen that λn starts from 1
initially and always shows a downward trend with a change in the number of iterations and
can still continue to maintain the downward trend from 1 to 0 after the system undergoes
mutation, which is consistent with the expectation for λn.
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In order to balance each experiment and ensure that the experimental results are
not affected by some special cases, 100 independent Monte Carlo simulations are used
to compare the algorithms, and the average values of NMSD and λn are obtained at the
end [28]. The simulation results are shown in Figures 7 and 8. From Figure 7, it can be seen
that after excluding the interference of accidental situations, the proposed algorithm still
outperforms the improved algorithm. From Figure 8, it can be seen that as the algorithm
iterates, λn can always drop to a value close to 0, which is consistent with the overall
expectation for the algorithm.
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The same parameters may not be suitable for all algorithms, and it is easier to compare
the advantages of the proposed algorithm by comparing it with the improved-parameter
algorithm [29]. Under the same simulation conditions, it is compared with the VSS-LMP,
the LMS, and the convex combination–least mean square (CC-LMS) algorithm, where the
step size of LMS is set to 0.005, the step size of CC-LMS is set to 0.001 and 0.0001, and the α,
β, and θ of VSS-LMP are set to 0.0006, 0.004, and 0.98, respectively, and Figure 9 is obtained.
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By analyzing Figure 9, it can be found that under the same simulation environment,
the proposed algorithm can obtain faster convergence speed and lower error after con-
vergence than the ordinary VSS-LMP algorithm by convex combination. By comparing
with the LMS and CC-LMS algorithms, it can be observed that the least mean squares
(LMS) algorithm exhibits suboptimal performance in the context of an underwater acoustic
channel, particularly in the presence of impulse interference. Even if the LMS algorithm
is improved by the convex combination method, it is still difficult to achieve an ideal
convergence effect. And the proposed algorithm has a significant bending curvature when
the iteration number reaches approximately 42,900 after the channel undergoes mutation,
which is consistent with the effect shown in other convex combination algorithms.

To further compare the impact of algorithm parameters on the convergence effect, we
conducted an ablation study on the proposed CCVSS-LMP algorithm. Contrasting the
algorithm under different parameter settings allows for an intuitive demonstration of the
roles played by these parameters in the algorithm.

In this paper, we first compared the impact of different values of θ on the algorithm,
as illustrated in Figures 10 and 11.
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Analysis of Figure 10 reveals that θ1 has a relatively minor impact on the algorithm,
primarily affecting the computational iterations required for the convergence inflection
point of the convex combination, with little influence on the final steady-state convergence
effect. Analysis of Figure 11 indicates that θ2 primarily affects the steady-state error reached
after convergence. When θ2 is less than 1, the steady-state error gradually decreases with
an increase in θ2 in the algorithm.

By analyzing Figures 12 and 13, it is observed that with a gradual increase in α1, at a
low number of iterations, lower NMSD can be achieved at the same iteration count, but
the arrival time of the inflection point becomes earlier. Similarly, for β1, it also affects
the algorithm’s early-stage convergence speed. Both α1 and β1 influence the early-stage
convergence speed, while their impact on the final convergence error can be neglected.
This aligns with the design intention of filter w1 to enhance the convergence speed.



Electronics 2024, 13, 758 11 of 17

Electronics 2024, 13, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 11. The impact of the value of θ2 on the algorithm. 

Analysis of Figure 10 reveals that θ1 has a relatively minor impact on the algorithm, 
primarily affecting the computational iterations required for the convergence inflection 
point of the convex combination, with little influence on the final steady-state convergence 
effect. Analysis of Figure 11 indicates that θ2 primarily affects the steady-state error 
reached after convergence. When θ2 is less than 1, the steady-state error gradually de-
creases with an increase in θ2 in the algorithm.  

By analyzing Figures 12 and 13, it is observed that with a gradual increase in α1, at a 
low number of iterations, lower NMSD can be achieved at the same iteration count, but 
the arrival time of the inflection point becomes earlier. Similarly, for β1, it also affects the 
algorithm’s early-stage convergence speed. Both α1 and β1 influence the early-stage con-
vergence speed, while their impact on the final convergence error can be neglected. This 
aligns with the design intention of filter w1 to enhance the convergence speed. 

 
Figure 12. The impact of the value of α1 on the algorithm. Figure 12. The impact of the value of α1 on the algorithm.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 13. The impact of the value of β1 on the algorithm. 

Through the analysis of Figure 14, it is observed that as the parameter α2 decreases, 
the steady-state error after algorithm convergence increases. Analyzing Figure 15 reveals 
that with a decrease in parameter β2, the NMSD after reaching steady-state becomes 
larger. At β2 = 0.009, when facing channel mutations, the algorithm exhibits suboptimal 
early-stage convergence (spikes appearing between iterations 42,000–44,000). Therefore, 
the value of β2 should not be excessively large. Comparing Figures 14 and 15, it can be 
seen that the impact of α2 and β2 values on early-stage convergence speed is not significant; 
the inflection points of the algorithm occur almost at the same iteration count. However, 
there is a significant correlation between these parameters and the steady-state error after 
algorithm convergence, aligning with the original intent of designing filter w2 to enhance 
the overall reliability of the algorithm. 

 
Figure 14. The impact of the value of α2 on the algorithm. 

Figure 13. The impact of the value of β1 on the algorithm.

Through the analysis of Figure 14, it is observed that as the parameter α2 decreases,
the steady-state error after algorithm convergence increases. Analyzing Figure 15 reveals
that with a decrease in parameter β2, the NMSD after reaching steady-state becomes larger.
At β2 = 0.009, when facing channel mutations, the algorithm exhibits suboptimal early-
stage convergence (spikes appearing between iterations 42,000–44,000). Therefore, the
value of β2 should not be excessively large. Comparing Figures 14 and 15, it can be seen
that the impact of α2 and β2 values on early-stage convergence speed is not significant;
the inflection points of the algorithm occur almost at the same iteration count. However,
there is a significant correlation between these parameters and the steady-state error after
algorithm convergence, aligning with the original intent of designing filter w2 to enhance
the overall reliability of the algorithm.
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3.3. Real Channel Analysis

To investigate the efficacy of the CCVSS-LMP algorithm in an authentic underwater
acoustic channel, this section compares the proposed algorithm with an actual channel.
Under impulse interference, this section uses the measured impulse response of a channel in
the Norwegian sea area at a certain moment as the weight vector w0 for identification [30]
and simulates the estimation performance of each algorithm, where the parameters of
the proposed algorithm are consistent with those in the simulation channel experiment.
Figure 16 shows the impulse response of the authentic underwater acoustic channel.

Figure 17 shows the performance of the CCVSS-LMP algorithm and the improved
algorithm in the authentic underwater acoustic channel, where LMP1 and LMP2 are the two
algorithms before convex combination under the same parameters. Comparing Figure 17, it
can be found that the proposed CCVSS-LMP algorithm can greatly improve the convergence
effect of the algorithm in the authentic underwater acoustic channel environment by the
convex combination improvement.
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The above comparison only compares the convergence effects of filters with the same
parameters. To further assess the proposed algorithm, it is compared with alternative
algorithms in the authentic channel environment, where the step size of CC-LMS is reduced
to 0.0008 and 0.00001 to improve the effect after convergence, as shown in Figure 18.

By analyzing Figure 18, it can be found that CCVSS-LMP still has faster convergence
speed and smaller error after convergence in the real channel environment, facing
impulse interference. When the step size is further reduced, CC-LMS still has difficulty
in obtaining the ideal convergence effect in the authentic underwater environment under
impulsive interference.

By increasing the SNR from 15 dB to 25 dB, Figure 19 was obtained. Through the
analysis of Figure 19, it can be observed that with the improvement in SNR, the steady-state
error achieved by the algorithm after convergence further decreases. Under the same
number of iterations, the proposed algorithm consistently achieves lower steady-state
errors after convergence.
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3.4. Measured Channel Analysis

In order to study the performance of the proposed algorithm in different underwa-
ter acoustic channels, we measured the channel information of a reservoir in Zhenjiang.
Figure 20 shows the measured impulse response of the underwater acoustic channel of the
reservoir. The parameters of CCVSS-LMP remain unchanged. The step size of LMS is set to
0.004, the step size of CC-LMS is set to 0.004 and 0.0001, and the α, β, and θ of VSS-LMP are
set to 0.00045, 0.001, and 0.98 respectively. The comparison results are shown in Figure 21.

As shown in Figure 21, the proposed algorithm can achieve good convergence per-
formance in different channel environments, and compared with other algorithms, the
proposed algorithm does not need to modify the parameters to achieve a good convergence
effect. Due to the impact of impulsive noise, the LMS algorithm and the CC-LMS algorithm
still cannot obtain an ideal convergence effect in the new underwater acoustic channel.

In the practical measurement of the channel, we obtain Figure 22 by increasing the
signal–noise ratio (SNR) from 15 dB to 25 dB. Through the analysis of Figure 22, it can
be observed that with an improvement in SNR, the NMSD after the convergence of the
algorithm decreases by approximately 24 dB. Furthermore, the proposed CCVSS-LMP
algorithm still exhibits faster convergence speed and better convergence performance.
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4. Conclusions

In this paper, in the background of using α-stable noise as impulse interference, in
order to further improve the convergence effect of an existing algorithm for an underwater
acoustic channel, based on the variable VSS-LMP algorithm, the convex combination is used
to improve it, and two sub-filters with different convergence domains are combined; hence,
a novel algorithm is introduced, namely the convex combination–variable-step-size least
mean p-norm algorithm, designed to exhibit resilience against impulsive noise. Through
experiments in a simulation channel, a real channel, and a measured channel, it can be found
that CCVSS-LMP demonstrates accelerated convergence and diminished steady-state error
when facing impulsive noise and can achieve a better convergence effect than VSS-LMP
in different environments without the need to modify the parameters. In summary, the
proposed algorithm in this paper has better stability, robustness, and universality.
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Abbreviations
Many abbreviations are quoted in the paper, and their meanings are explained here.

Abbreviation Full Name
LMS least mean square
LMP least mean p-power
VSS-LMP variable-step-size least mean p-power
CCVSS-LMP convex combination–variable-step-size least mean p-norm
NMSD normalized mean square deviation
CC-LMS convex combination–least mean square

References
1. Chitre, M. A high-frequency warm shallow water acoustic communications channel model and measurements. J. Acoust. Soc. Am.

2007, 122, 2580–2586. [CrossRef]
2. Zhang, X.; Ding, F. Optimal Adaptive Filtering Algorithm by Using the Fractional-Order Derivative. IEEE Signal Process. Lett.

2021, 29, 399–403. [CrossRef]
3. Zhu, Y.; Zhao, H. A Robust Generalized Maximum Correntropy Criterion Algorithm for Active Noise Control. IFAC-PapersOnLine

2019, 52, 299–303. [CrossRef]
4. Wang, H.; Wang, B.; Li, Y. IAFNet: Few-Shot Learning for Modulation Recognition in Underwater Impulsive Noise. IEEE

Commun. Lett. 2022, 26, 1047–1051. [CrossRef]
5. Mustaqeem Ishaq, M.; Kwon, S. A CNN-Assisted deep echo state network using multiple Time-Scale dynamic learning reservoirs

for generating Short-Term solar energy forecasting. Sustain. Energy Technol. Assess. 2022, 52, 102275. [CrossRef]
6. Li, Y.; Wang, B.; Shao, G.; Shao, S.; Pei, X. Blind Detection of Underwater Acoustic Communication Signals Based on Deep

Learning. IEEE Access 2020, 8, 204114–204131. [CrossRef]
7. Al-Sayed, S.; Zoubir, A.M.; Sayed, A.H. Robust Adaptation in Impulsive Noise. IEEE Trans. Signal Process. 2016, 64, 2851–2865.

[CrossRef]
8. Zhang, S.; Zhang, J.; Han, H. Robust Variable Step-Size Decorrelation Normalized Least-Mean-Square Algorithm and Its

Application to Acoustic Echo Cancellation. IEEE/ACM Trans. Audio Speech Lang. Process. 2016, 24, 2368–2376. [CrossRef]
9. Hajiabadi, M.; Radmanesh, H.; Samkan, M. Robust adaptive beamforming in impulsive noise environments. IET Radar Sonar

Navig. 2019, 13, 2145–2150. [CrossRef]
10. Li, L.; Zhao, H. A Robust Total Least Mean M-Estimate Adaptive Algorithm for Impulsive Noise Suppression. IEEE Trans. Circuits

Syst. II 2020, 67, 800–804. [CrossRef]

https://doi.org/10.1121/1.2782884
https://doi.org/10.1109/LSP.2021.3136504
https://doi.org/10.1016/j.ifacol.2019.12.425
https://doi.org/10.1109/LCOMM.2022.3151790
https://doi.org/10.1016/j.seta.2022.102275
https://doi.org/10.1109/ACCESS.2020.3036883
https://doi.org/10.1109/TSP.2016.2535239
https://doi.org/10.1109/TASLP.2016.2556280
https://doi.org/10.1049/iet-rsn.2019.0223
https://doi.org/10.1109/TCSII.2019.2925626


Electronics 2024, 13, 758 17 of 17

11. Au, W.W.L.; Banks, K. The acoustics of the snapping shrimp Synalpheus parneomeris in Kaneohe Bay. J. Acoust. Soc. Am. 1998, 103,
41–47. [CrossRef]

12. Shao, M.; Nikias, C.L. Signal processing with fractional lower order moments: Stable processes and their applications. Proc. IEEE
1993, 81, 986–1010. [CrossRef]

13. Arikan, O.; Enis Cetin, A.; Erzin, E. Adaptive filtering for non-Gaussian stable processes. IEEE Signal Process. Lett. 1994, 1,
163–165. [CrossRef]

14. Luo, Y.; Yang, J.; Zhang, Q.; Wang, C. A Fractional-Order Adaptive Filtering Algorithm in Impulsive Noise Environments. IEEE
Trans. Circuits Syst. II 2021, 68, 3376–3380. [CrossRef]

15. Xiong, K.; Zhang, Y.; Wang, S. Robust variable normalization least mean p-power algorithm. Sci. China Inf. Sci. 2020, 63, 199204.
[CrossRef]

16. Harris, R.; Chabries, D.; Bishop, F. A variable step (VS) adaptive filter algorithm. IEEE Trans. Acoust. Speech Signal Process. 1986,
34, 309–316. [CrossRef]

17. Vega, L.R.; Rey, H.; Benesty, J.; Tressens, S. A New Robust Variable Step-Size NLMS Algorithm. Trans. Signal Process. 2008, 56,
1878–1893. [CrossRef]

18. Paleologu, C.; Ciochina, S.; Benesty, J. Variable Step-Size NLMS Algorithm for Under-Modeling Acoustic Echo Cancellation. IEEE
Signal Process. Lett. 2008, 15, 5–8. [CrossRef]

19. Shi, L.; Lin, Y. Convex Combination of Adaptive Filters under the Maximum Correntropy Criterion in Impulsive Interference.
IEEE Signal Process. Lett. 2014, 21, 1385–1388. [CrossRef]

20. Zhang, Y.; Chambers, J.A. Convex Combination of Adaptive Filters for a Variable Tap-Length LMS Algorithm. IEEE Signal Process.
Lett. 2006, 13, 628–631. [CrossRef]

21. Ferrer, M.; Gonzalez, A.; De Diego, M.; Pinero, G. Convex Combination Filtered-X Algorithms for Active Noise Control Systems.
IEEE Trans. Audio Speech Lang. Process. 2013, 21, 156–167. [CrossRef]

22. Arenas-García, J.; Figueiras-Vidal, A.; Sayed, A. Mean-square performance of a convex combination of two adaptive filters. IEEE
Trans. Signal Process. 2006, 54, 1078–1090. [CrossRef]

23. Biao, W.; Hanqiong, L.I.; Gao, S.; Mingliang, Z.; Chen, X.U. A Variable Step Size Least Mean p-Power Adaptive Filtering
Algorithm. JEIT 2022, 44, 661–667.

24. Hansun, S. A new approach of moving average method in time series analysis. In Proceedings of the 2013 Conference on New
Media Studies (CoNMedia), Tangerang, Indonesia, 27–28 November 2013; pp. 1–4.

25. Lee, M.; Park, T.; Park, P. Variable Step-Size l0-Norm Constraint NLMS Algorithms Based on Novel Mean Square Deviation
Analyses. IEEE Trans. Signal Process. 2022, 70, 5926–5939. [CrossRef]

26. Qiu, T.S.; Yang, Z.C.; Li, X.B.; Chen, Y.X. A weighted average least p-norm algorithm under alpha stable noise conditions. J.
Electron. Inf. 2007, 29, 410–413.

27. Li, J.; Feng, D.Z.; Li, B. A robust adaptive weighted constant modulus algorithm for blind equalization of wireless communications
systems under impulsive noise environment. AEU—Int. J. Electron. Commun. 2018, 83, 150–155. [CrossRef]

28. Zhu, L.; Song, C.; Pan, L.; Li, J. Adaptive Filtering Under the Maximum Correntropy Criterion with Variable Center. IEEE Access
2019, 7, 105902–105908. [CrossRef]

29. Zhu, B.; Wang, B.; Cai, B.; Zhu, Y.; Chao, P.; Fang, Z. A variable step size least mean p-power adaptive filtering algorithm based
on multi-moment error fusion. EURASIP J. Adv. Signal Process. 2023, 2023, 77. [CrossRef]

30. van Walree, P.; Otnes, R.; Jenserud, T. Watermark: A realistic benchmark for underwater acoustic modems. In Proceedings of the
2016 IEEE Third Underwater Communications and Networking Conference (UComms), Lerici, Italy, 30 August–1 September
2016; pp. 1–4. Available online: https://ieeexplore.ieee.org/document/7583423 (accessed on 16 December 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1121/1.423234
https://doi.org/10.1109/5.231338
https://doi.org/10.1109/97.335063
https://doi.org/10.1109/TCSII.2021.3073961
https://doi.org/10.1007/s11432-018-9888-0
https://doi.org/10.1109/TASSP.1986.1164814
https://doi.org/10.1109/TSP.2007.913142
https://doi.org/10.1109/LSP.2007.910276
https://doi.org/10.1109/LSP.2014.2337899
https://doi.org/10.1109/LSP.2006.879457
https://doi.org/10.1109/TASL.2012.2215595
https://doi.org/10.1109/TSP.2005.863126
https://doi.org/10.1109/TSP.2022.3231187
https://doi.org/10.1016/j.aeue.2017.08.036
https://doi.org/10.1109/ACCESS.2019.2932201
https://doi.org/10.1186/s13634-023-01042-x
https://ieeexplore.ieee.org/document/7583423

	Introduction 
	CCVSS-LMP Algorithm 
	Simulation Analysis of the Proposed Algorithm 
	Analysis of Algorithm Parameters 
	Simulation Channel Analysis and Analysis of Parameters of the Algorithm 
	Real Channel Analysis 
	Measured Channel Analysis 

	Conclusions 
	References

