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Abstract: Monitoring the correct operation of airport video surveillance systems is of great importance
in terms of the image quality provided by the cameras. Performing this task using human resources
is time-consuming and usually associated with a delay in diagnosis. For this reason, in this article,
an automatic system for image quality assessment (IQA) in airport surveillance systems using deep
learning techniques is presented. The proposed method monitors the video surveillance system
based on the two goals of “quality assessment” and “anomaly detection in images”. This model
uses a 3D convolutional neural network (CNN) for detecting anomalies such as jitter, occlusion,
and malfunction in frame sequences. Also, the feature maps of this 3D CNN are concatenated with
feature maps of a separate 2D CNN for image quality assessment. This combination can be useful
in improving the concurrence of correlation coefficients for IQA. The performance of the proposed
model was evaluated both in terms of quality assessment and anomaly detection. The results show
that the proposed 3D CNN model could correctly detect anomalies in surveillance videos with an
average accuracy of 96.48% which is at least 3.39% higher than the compared methods. Also, the
proposed hybrid CNN model could assess image quality with an average correlation of 0.9014, which
proves the efficiency of the proposed method.

Keywords: quality assessment; airport video surveillance; deep learning; convolutional neural network

1. Introduction

An airport terminal monitoring system comprises a digital distributed network infras-
tructure, encompassing management servers, storage servers, digital cameras, and other
essential equipment [1]. At present, the monitoring and management systems used in
the airports can realize the monitoring of video loss, disconnection of encoder equipment,
server failure, hard disk failure, and other equipment status, but cannot realize the moni-
toring of some soft faults such as video image quality problems [2,3]. Because the network
digital camera in the video acquisition, coding, transmission and decoding, and other
conventional video information processing processes, often produces video data damage,
resulting in video image quality decline, hindering people from obtaining information
from the video image, serious distortion will also affect the monitoring effect, resulting in
monitoring failure [4]. The soft failure of the system caused by video quality is the main
component of the system failure, which will also have a bad impact on the normal use of
the system and reduce the efficiency of airport air defense security [5]. However, in terms
of surveillance video quality monitoring, airport operation and maintenance personnel still
use manual inspection. With the increasing number of terminal surveillance cameras and
the continuous improvement in surveillance video quality requirements, the traditional
manual inspection method has several disadvantages.

In addition to being time-consuming, laborious, and inefficient, manual inspection
is not good in terms of failure response speed, and surveillance video signals in various
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failures often cannot be found in time by operation and maintenance personnel, which
results in a loss of data or loss of video quality [6]. Also, manual inspection has certain
limitations and instabilities caused by people’s lack of concentration, fatigue or other
factors, so that such manual inspection results are not objective [7]. On the other hand, due
to the limited number of displays, maintenance personnel often monitor multiple cameras
at the same time in a monitor screen or randomly extract the camera display, resulting in
some monitoring points being missed or ignored [8].

In the face of thousands of front-end cameras, the operation and maintenance mode of
manual video quality analysis and detection has long been difficult to sustain, and manual
maintenance generally adopts periodic sampling inspection, which makes it difficult to
achieve the purpose of 24 h real-time monitoring [9]. Therefore, to improve the inspection
efficiency of the monitoring system and realize real-time monitoring of monitoring quality,
it is of great significance to design a system based on video image quality assessment.

The mentioned challenges in the manual inspection of airport video surveillance
systems have motivated the current research. The main objective of this research is to
design a video quality assessment system based on video analysis technology to achieve
real-time monitoring of security monitoring in airport areas, which can evaluate the quality
of a surveillance video and automatically record it in the database for later statistics and
queries. This research separates this main objective into two minor goals. First, to introduce
an automatic model for detecting anomalies such as malfunctioning, jitter or malicious
occlusion in videos. Second, to describe the quality of recorded videos as a quantitative
metric. The strategies resulting from the fulfillment of these two goals are utilized for the
formation of a warning system that is activated in case of anomaly/quality degrading
detection in surveillance videos. The current research uses a combination of deep learning
models to meet the mentioned goals. In the proposed method, a new combination of
CNN models is presented for detecting anomalies and assessing the quality of monitoring
data simultaneously. This model includes a 3D CNN for detecting anomalies in video
frame sequences. In the proposed hybrid model, the concatenation of feature maps of the
aforementioned 3D CNN model with a 2D CNN model is used for video quality assessment.
In the architecture of these CNN models, hybrid pooling layers are used, based on which
the generality of learning models can be improved. The contributions of this paper is
twofold: First, this paper presents a new 3D CNN model based on hybrid pooing layers for
detecting anomalies in airport video surveillance systems. Second, this article presents a
novel parallel model based on 2D and 3D CNNs for quality assessment in airport video
surveillance systems. The remainder of this section is dedicated to review of the related
works.

1.1. Related Works

The current research includes the two research fields of image quality assessment and
video anomaly detection. Each of these research fields includes a detailed background, and
we will continue to review some of the recent efforts in each one.

1.1.1. Image Quality Assessment

Image quality assessment involves extracting features related to image quality through
subjective and objective means, and then assessing the degree of image distortion using
statistical learning techniques. There are two types of evaluation methods: subjective and
objective. Subjective evaluation involves a group of raters assessing image quality, usually
represented by mean opinion score (MOS) or difference mean opinion score (DMOS) [10].
MOS normalizes observer scores, while DMOS normalizes scores based on the difference
between undistorted and distorted images.

Due to the impracticality and heavy workload of subjective evaluation, objective
image quality evaluation algorithms are more suitable for practical problems. The objective
evaluation method involves the computer calculating the quality index of the image using
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algorithms. However, different objective evaluation indicators can differ significantly from
subjective perceptions.

Objective evaluation indexes can be divided into three types based on the presence
of reference image information when predicting distorted image quality: full reference
(FR), reduced reference (RR), and no reference (NR) image quality evaluation methods [11].
FR-IQA, which focuses on full-reference image quality evaluation, has seen significant
advancements with the emergence of influential algorithms. Traditional algorithms like
the Peak-Signal-to-Noise Ratio (PSNR) are commonly used to evaluate image quality after
compression compared to the original image [12]. PSNR measures the distortion after
compression, with higher values indicating lower distortion. While PSNR is widely used, it
has limitations, such as being highly influenced by pixels, low consistency with subjective
evaluation, and not considering important characteristics of the Human Visual System
(HVS).

To address these limitations, evaluation methods based on the HVS have been pro-
posed, such as error sensitivity analysis and the Structural Similarity Index (SSIM) [12].
SSIM assumes that HVS can extract structural information from the scene independently
of local brightness and contrast. Improved FR algorithms based on SSIM, such as FSIM
and FSIMc, have been developed by incorporating color feature measures, weighted av-
erages, and phase consistency information. The Multi-Scale Structural Similarity Index
(MS-SSIM) [12] and Information Content Weighted Structural Similarity Index (IW-SSIM) [13]
have also been introduced, combining image details at different resolutions and obser-
vation conditions into quality assessment algorithms. Overall, FR-IQA algorithms are
continuously improving in terms of performance, speed, and accuracy.

For situations where obtaining a reference image is not possible, such as in many
practical applications, the semi-reference image quality evaluation method (RR-IQA) has
been developed. Although the full reference image quality evaluation method has shown
good results, RR-IQA only requires partial information or indirect features of the reference
image. Maalouf et al. [14] proposed an RR algorithm based on group transformation, which
extracts texture and gradient information from the reference and distorted images using
an image group. The information is then processed through CSF filtering and threshold
value to obtain the sensitivity coefficient, which is used to estimate the image quality
by comparing the sensitivity coefficient of the distorted image with that of the reference
image. Omari et al. [15] proposed an RR-IQA algorithm that operates on blocked or blurred
degraded images by using local harmonic analysis to detect images from the edge and
calculate local harmonic amplitude information. This information is then used with the
distorted images to estimate image quality. Other RR-IQA methods are based on Natural
Scene Statistics (NSS).

Typically, image quality assessment (IQA) methods require reference images for ac-
curate evaluation, which yields good results. However, in practical scenarios, reference
images are often unavailable or too expensive, making the task of no reference image
quality evaluation (NR-IQA) more meaningful. NR-IQA algorithms mainly focus on de-
tecting specific types of distortion like blur, block effects, and various forms of noise. For
instance, algorithms estimating sharpness and blur have shown effectiveness in evaluating
the quality of fuzzy images. NR-IQA methods can assess the degree of blur in an image,
employing edge analysis techniques such as Sobel and Canny for extracting image edges.
SVM-based methods are also utilized, where features from the spatial or transform domain
are extracted and a Support Vector Regression (SVR) model is trained based on existing
data, or an SVM + SVR model is used for distorted images. Representative algorithms
in this context include BIQI, DIIVINE, BiQI, and SVR. Gupta et al. [16] introduced the
DIIVINE algorithm, which employs controllable pyramid wavelet decomposition to extract
statistical features from normalized wavelet coefficients and establish regression models.
Mittal et al. [17] proposed the BRISQUE algorithm, which builds a regression model by
extracting statistical features from the spatial normalization coefficient of images. However,
the estimation effect of the quality score is not superior to that of the best blind degradation
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type method. Alternatively, probabilistic models like BLIINDS [18] and NIQE, as well
as codebook-based methods like CORNIA [12], have been used. Additionally, CORNIA
demonstrated that image features can be directly learned from the original image pixels,
eliminating the need for manual extraction.

In recent years, the field of image quality evaluation has witnessed the emergence
of deep learning-based algorithms. Deep learning, particularly Convolutional Neural
Networks (CNNs), has demonstrated remarkable performance in various image processing
tasks. The deep structure of CNNs enables the effective learning of complex mappings
between input and output. One notable advantage of CNNs is their ability to directly take
the original image as input and incorporate feature learning into the training process. This
deep structure allows for efficient learning of complex mappings while requiring minimal
domain knowledge.

Researchers, such as Kang et al. [19], have successfully utilized CNNs to accurately
predict no reference image quality assessment (NR-IQA). Their approach involved a five-
layer CNN model consisting of convolution, max–min pooling, and fully connected layers.
By using overlapped sampled image blocks as input, the network model extracted relevant
features from the corresponding spatial domain and predicted the quality fraction of the
image blocks. This integrated approach of feature learning and regression in the optimiza-
tion process resulted in a more efficient model for estimating image quality. The method
demonstrated superior performance on LIVE datasets and exhibited excellent generaliza-
tion ability in cross-dataset experiments. Additionally, local distortion experiments were
conducted to validate the CNN’s local quality estimation ability.

Another deep learning-based approach, introduced by Gu et al. [20], is the Deep
learning-based Image Quality Index (DIQI). In this method, the RGB image is converted
to the YIQ color space, and 3000 features are extracted. A sparse auto-encoder is then
trained using the L-BFGS algorithm. The input data are represented as a matrix of s × 3000,
where s denotes the number of training samples. The output is calculated using a linear
function, and the weights of each DNN layer are fine-tuned based on the loss function using
a backpropagation algorithm. Experimental results have demonstrated the effectiveness
of DIQI, and when compared to classical Full Reference (FR) and Reduced Reference (RR)
IQA algorithms, it showcased the promising potential of DNN in IQA research.

Liu et al. [21] introduced the RankIQA model for evaluating the quality of unrefer-
enced images. Unlike previous models that focused on feature extraction and network
improvements, RankIQA addresses the issue of limited image datasets. It achieves this by
employing data preprocessing techniques to generate distorted images of various levels
and ordering types from known quality images. The model utilizes a weight-sharing
network to sort images based on their quality using the generated sorted image set. Sub-
sequently, the entire network is fine-tuned, and the trained network is transformed into a
traditional convolutional neural network to estimate the image quality score from a single
image. The authors propose an efficient backpropagation method in the weight-sharing
network, which exhibits faster convergence and lower loss compared to standard pairwise
and hard negative sampling. Experimental results on the TID2013 dataset demonstrate
that RankIQA surpasses state-of-the-art methods by 5%. Additionally, in the LIVE dataset,
RankIQA outperforms existing NR-IQA techniques and even the latest FR-IQA techniques,
highlighting its ability to infer image quality without reference images.

In [22,23], researchers propose deep learning approaches for blind image quality
assessment that achieve state-of-the-art performance in both synthetic and authentic distor-
tion scenarios. In [22], a deep bilinear model called DB-CNN is introduced, consisting of
two streams of CNNs specialized in different distortion scenarios. For synthetic distortions,
the model pre-trains a CNN to classify the type and level of distortion in an input image.
For authentic distortions, a pre-trained VGG-16 CNN is used for image classification. The
features from the two streams are bilinearly pooled to obtain a final quality prediction.
The model is fine-tuned on target databases using a variant of stochastic gradient descent.
In [23], a Distortion Graph Representation (DGR) learning framework named LIQA is
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proposed. Each distortion is represented as a graph within this framework. It includes two
sub-networks: Type Discrimination Network (TDN) and the Fuzzy Prediction Network
(FPN). TDN aims to embed the DGR into a compact code to better discriminate distortion
types and learn the relationships between them. FPN, on the other hand, extracts the
distributional characteristics of the samples in a DGR and predicts fuzzy degrees based on
a Gaussian prior.

1.1.2. Video Anomaly Detection

Anomaly detection in video surveillance systems may include tasks such as detecting
video jitter, occlusion, anomaly in lighting, unauthorized objects and so on. This section
reviews some of the efforts for each task.

A. Video jitter detection

Video jitter is characterized by an overall displacement between frames, making the
detection of this displacement crucial in identifying jitter. Various methods are commonly
used for displacement estimation, including the optical flow method [24], block matching
method, feature point matching method, and gray projection method [25]. The optical
flow method utilizes fast corner detection and LK sparse optical flow. However, it heavily
relies on the detection of feature points, which can lead to inaccurate results when there
are limited corner points in the current environment. Additionally, obtaining better results
requires a larger computational effort. Furthermore, the optical flow method is prone to
producing incorrect estimates of moving objects in real-world environments, making it less
robust [24]. The feature point matching method is more dependent on the search for feature
points compared to the optical flow method. This often requires a significant computational
load to find more accurate feature points, resulting in slower processing speeds. On the
other hand, the gray projection method is commonly used due to its relatively lower
computational requirements and better overall performance. Therefore, it is a viable option
for practical applications [25].

B. Surveillance video occlusion

At present, the occlusion boundary detection methods based on video sequences fall
into two categories [26]: motion analysis-based models and machine learning-based models.
The motion analysis-based models only use motion estimation to determine the occlusion
boundary, but any error in the motion vector field may cause a high error in detecting
the occlusion boundary, and the generality of this method is poor [27]. To overcome the
shortcomings of motion analysis-based methods, some scholars have proposed a machine
learning-based occlusion boundary detection. The most representative is Stein’s occlusion
detection model, which uses supervised learning, is based on multiple color images, and
completes occlusion boundary detection by combining motion cues and local edge cues.
It can be seen from the analysis that the occlusion boundary detection method based on
the idea of supervised learning can solve the existing problems in the motion analysis
method to a certain extent [28]. However, in many practical problems, although a large
amount of data can be easily obtained, it requires high material resources and manpower
to mark these data, and in some cases, it is impossible to complete the data marking. As a
result, supervised learning is not possible. The phenomenon of less labeled data and more
unlabeled data is more obvious in online applications. Given this, scholars also put forward
the occlusion boundary detection method based on unsupervised online learning [29].
The typical one is based on video sequence, which realizes occlusion boundary detection
through a hedging algorithm. Although this method does not need to label the data, it
does not fully utilize the effective information of multi-frame images in the video sequence
and only performs occlusion detection based on a single feature, which still needs to be
improved in terms of accuracy and application scope [30].

Research in [31] presented an efficient deep learning framework for video anomaly de-
tection that leverages pre-trained deep models and combines auto-encoders with SHapley
Additive exPlanations (SHAP) for interpretability. Research in [32] introduces an innovative
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deep multiple instance ranking approach to identify anomalies in surveillance videos. This
method leverages weakly labeled training data, where video-level labels are employed in-
stead of clip-level annotations, enabling anomaly detection without the burden of extensive
manual segmentation.

The structure of the rest of this article is as follows: In Section 2, the details of the
proposed method are described. The results of implementing the proposed method are
discussed in Section 3, and the conclusions drawn from the study are presented at the end
of this section.

2. Materials and Methods

An efficient model for quality assessment and anomaly detection in surveillance
videos, in addition to using powerful techniques, should be fed appropriate data. In this
section, these two cases are explained. Therefore, first, the data used in the research are
described and then, the proposed strategy for quality assessment and anomaly detection in
surveillance videos is presented.

2.1. Data Acquisition

Investigations have shown that currently, there is no dual-purpose database for the
tasks of quality assessment and anomaly detection in airport surveillance videos. For this
reason, in this research, an effort was made to collect a database that can simultaneously
support these two goals. For this purpose, a database containing more than 4.5 h of video
was collected, the videos of which were collected through 1650 airport surveillance cameras
at different hours of the day and night and under different lighting conditions. All samples
were obtained through https://airportwebcams.net (accessed on 30 January 2024). The
color system of all samples is RGB and the frame rate of each sample is equal to 5 FPS.
Each sample belongs to a unique camera. Also, the length of each video sample is 10 s
and the resolution of each sample is 2 MP (1080 × 1920). In this way, the number of
frames in the collected database will be 82.5 K RGB images. Each sample is included with
two target variables: the quality measure, which is subjectively determined in the range
of [0, 1], and the type of anomaly in the video. A total of 3 observers were used to determine
the subjective scores of dataset samples. In this case, each observer was asked to rate each
sample on the scale of 1 (very low) to 5 (very good). Then, for each sample, the average
of the scores determined by the observers was normalized to the range of [0, 1]. Also, to
ensure consistency and reliability of the scoring system, all observers were trained and their
scoring was calibrated using a separate set of videos. The type of anomaly in each sample
can belong to one of the following four categories: 1—normal/no anomaly (806 samples),
2—jitter (273 samples), 3—occlusion (219 samples), and 4—lighting (352 samples).

2.2. Proposed Method

In the following, a new deep learning-based approach for quality assessment and
anomaly detection in airport surveillance systems is described. The proposed model uses
a combination of CNNs to simultaneously fulfill its objectives. A high-level view of the
structure of the proposed model is shown in Figure 1. As shown in Figure 1, the presented
architecture includes a 3D CNN and a 2D CNN. The 3D CNN in the proposed model can be
used individually for anomaly detection in input videos. In this case, first a subset of input
frame sequence with maximum standard deviation is extracted from the input video. Then,
the selected frames are fed to the 3D CNN model to classify anomaly types in the input
video. In case of anomaly detection by this CNN model, the sequence and anomaly type
are stored in a database and also, and a notification is sent to the operator. The 3D CNN
and the 2D CNN cooperate with each other for extracting the quality-related features from
input. The 2D CNN is fed with a single frame which has the minimum standard deviation
in frame sequence.

https://airportwebcams.net
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Figure 1. The structure of the proposed method for anomaly detection and quality assessment.

In proposed model, the features extracted through the Fully Connected (FC) layers
of both CNNs are concatenated to form a more powerful feature extraction model. The
features extracted through the 3D CNN (denoted as FC1 in Figure 1) can describe the
relationship between anomalies and image quality in frame sequence, while the features
of 2D CNN (denoted as FC2 in Figure 1) are specifically extracted based on the quality
features of the image. As will be shown, both of these feature sets are effective in improving
the accuracy of quality assessment. The concatenated features are reduced by the FC layer
and finally, the quality of input is estimated through a regression layer. In the proposed
model, the estimated quality (denoted as Q in Figure 1) is compared with an experimental
threshold (δ). If Q is less than δ for an input video, a notification is sent to the operator
reporting quality problem in the surveillance camera. In the following, both CNN models
are described in detail.

2.2.1. The Proposed 3D CNN for Anomaly Detection

As mentioned, in the proposed model, a 3D CNN model is used to process a subset
of the sequence of surveillance video frames. The proposed 3D CNN model is depicted
in Figure 2. This CNN model was designed to fulfill two tasks: First, this model is used
to detect the anomaly in the input frame sequences. This output is created through the
classification layer in the illustrated structure, and based on it, normality or the presence of
anomaly (jitter, occlusion, and light abnormality) can be determined. Second, this CNN
model provides a part of the necessary features for video quality assessment through its
fully connected layer. In this case, the activation values obtained from the FC1 layer are
considered as extracted features in this CNN model. It should be noted that this 3D CNN
is trained based on anomaly types of samples.
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Figure 2. The proposed 3D CNN model for anomaly detection.

In order to decrease the processing time of this model, the dimensions of each frame
were changed to 600 × 338. Also, the proposed CNN model was fed through a subset of
10 frame sequences in each anomaly detection period. Let us consider the sequence of
input video frames as Vrgb. Since the pattern of content changes in the video can reveal
important information about the type of anomaly, the frame selection process was based on
the content changes of the frames. For this purpose, first, each frame in the Vrgb sequence
was converted to a grayscale color system to obtain a sequence such as Vgray. Then, the
average of all Vgray frames was calculated as a matrix like Mw×h by averaging the intensity
values of all pixels across all frames. In the following, the sum of the difference of the
pixels of each frame in Vgray with the M matrix was calculated. This process refers to
subtracting the corresponding pixels of each frame from the average grayscale frame M.
This process normalizes the intensity values of each frame relative to the overall average. By
doing this, the amount of changes in each frame was described in the form of a numerical
value, and based on these values, 10 frames with the largest amount of difference were
determined. The selected frame indices were extracted from Vrgb, which result in a matrix
as S338×600×10×3.

Based on Figure 2, this 3D CNN model includes a simple structure consisting of three
3D convolution layers with strides (1,1,1). After each convolution layer, a PReLU layer
was used as an activation function. Unlike the ReLU layer, PReLU layers use a learnable
parameter such as α to pass negative values. The operator of this layer was formulated as
follows [33]:

Y =

{
X. i f x > 0
αX. else

(1)

where X is the input of the layer, while Y represents its output. Two advantages of PReLU
layers make their use effective in improving the generality of the deep model. First, due to
not having a zero slope, the feature removal problem is solved by this layer. Second, this
layer is effective in increasing the speed of training. The proposed 3D CNN model uses



Electronics 2024, 13, 749 9 of 19

hybrid pooling layers to improve the generality of the model because the commonly used
pooling layers, such as max pooling and average pooling, each have their disadvantages.
For example, max layers lead to overfitting problems and average layers in combination
with ReLU layers may lead to sparse feature maps. In the hybrid pooling layer, a learnable
parameter such as p is used for the heterogeneous combination of two pooling functions,
max and average, so that the defects of these two models can be solved. The hybrid pooling
layer operator can be formulated as follows [34]:

Shyb = p × Savg + (1 − p)× Smax (2)

where Smax and Savg represent the result of max pooling and average pooling, respectively.
After extracting feature maps by the third hybrid pooling layer, two FC layers are utilized
for extracting the features of the frame sequence and finally, the anomaly is identified using
a classification layer. As mentioned earlier, the activation weights of layer FC1 are also used
for concatenating with features of a 2D CNN to assess the quality of the input video.

2.2.2. The Proposed 2D CNN for Quality Assessment

In this research, a 2D CNN is used to more accurately describe the quality-related
features in surveillance videos. The model is fed through an RGB frame, with the lowest
standard deviation in the input frame sequence. The structure of 2D CNN is depicted in
Figure 3. The proposed 2D CNN for extracting quality-related features from the video has
a similar structure of layer orders to the 3D CNN, with the difference that two-dimensional
convolution and pooling layers are used in this model. On the other hand, every input
frame is fed to this model without changing the dimensions so that the destructive effects
of reducing the dimensions of the sample do not cause errors in the quality evaluation
process. Also, the 2D CNN is finalized with a regression layer which is used for training
CNN only. In this case, the 2D CNN model is trained by the quality target values of the
samples.
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Same as the 3D CNN, the proposed 2D CNN uses three consecutive convolution
modules. Each convolution module starts with a 2D convolution layer, which is followed
by a PReLU layer and finalized by a hybrid pooling layer. The feature maps produced by
the third hybrid pooling layer are flattened and finally reduced by a fully connected layer.
During the evaluation phase, the activation weights of this layer are concatenated with the
feature vector extracted by the 3D CNN (see Figure 1). The structure of layers in our 2D
and 3D CNNs is presented in Table 1.
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Table 1. The structure of the layers in proposed 2D and 3D CNNs.

Layer Type 2D CNN Setting 3D CNN Setting

Input 1080 × 1920 × 3 338 × 600 × 10 × 3
Convolution1 ([Dims], [N filters]) [30 × 30], [32] [32 × 32 × 5], [16]
Hybrid Pooling1 2 × 2 2 × 2 × 2
Convolution2 ([Dims], [N filters]) [10 × 10], [48] [16 × 16 × 3], [48]
Hybrid Pooling2 2 × 2 2 × 2 × 2
Convolution3 ([Dims], [N filters]) [8 × 8], [64] [8 × 8 × 2], [128]
Hybrid Pooling3 2 × 2 2 × 2 × 2
Fully Connected 1 400 300

It should be noted that the parameters of both CNN models were set using the
BayesOpt2017 tool.

3. Results and Discussion

Implementation of the proposed method was performed using MATLAB 2021a soft-
ware. The performance of the proposed method was tested from two aspects: accuracy
in detecting anomalies and accuracy in quality assessment. Both the CNN models in the
proposed architecture were trained using stochastic gradient descent with momentum
(SGDM) optimizer. Maximum training epochs for 3D CNN were considered as 150 while
this parameter for 2D CNN was 120. The initial learning rate for both models was 0.005
with a drop factor of 0.2 and a drop period of 5. The size of the mini-batch in 3D CNN
was 256, while this parameter in 2D CNN was 128. All experiments were conducted on a
personal computer with an Intel Core i7 processor operating at 3.4 GHz and 32 GB of RAM
(Intel Corporation, Santa Clara, CA, USA). Additionally, the feature extraction processes
for CNN models were executed in parallel. The training of both 2D and 3D CNN models
was carried out using an NVIDIA GeForce GTX 1080 graphics card (NVIDIA Corporation,
Santa Clara, CA, USA). In the following sections, the database specifications, evaluation
metrics, and a discussion of the implementation results are provided.

3.1. Evaluation Metrics

For both “anomaly detection” and “quality evaluation” tasks, a 10-fold cross-validation
technique was utilized. In this process, the database samples were divided into 10 non-
overlapping subsets, and the evaluation was performed 10 times. In each iteration, 9 subsets
were used for training the model, and the remaining subset was used for evaluation. After
each iteration, the performance of the model was evaluated based on different criteria and
finally, the average value obtained for each criterion was calculated.

In the case of the anomaly detection task, the predicted labels by the proposed algo-
rithm were compared with the actual labels of the test samples (actual anomaly type in
sample), and based on that, accuracy, precision, recall, and the F-measure were calculated.
Since accuracy and recall are used for evaluating performance in binary classification
problems, these metrics were calculated separately for each target class, considering the
current class as positive and other classes as negative. Precision represents the algorithm’s
accuracy in classifying samples of each class separately. On the other hand, recall indicates
the proportion of positive samples that were correctly classified. The F-measure is a har-
monic mean of precision and recall. These metrics can be calculated based on the following
formulas:

Precision = 100 × TP
TP + FP

(3)

Recall = 100 × TP
TP + FN

(4)

F − Measure = 2 × Precision × Recall
Precison + Recall

(5)
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In the equations provided above, TP refers to the count of correctly identified positive
samples. FN represents the count of positive samples that are incorrectly classified into
other (negative) categories. Additionally, FP also represents the count of samples belonging
to other (negative) categories that were mistakenly classified into positive categories.

In contrast, when evaluating quality, the Spearman order correlation coefficient
(SROCC), Pearson linear correlation coefficient (PLCC), and Concordance Coefficient Cor-
relation (CCC) were utilized to determine the relationship between predicted quality scores
and subjective scores.

The SROCC was employed to assess the predictive monotonicity of image quality
assessment models and can be calculated using the following formula:

SROCC = 1 −
6∑N

i=1 d2
i

N(N2 − 1)
(6)

where N denotes the total number of samples, and di represents the discrepancy between
the subjective quality score ranking and the objective quality score ranking of the i-th
image.

PLCC was used to evaluate the prediction accuracy of the image quality evaluation
model. Before calculating PLCC, a nonlinear regression is required for the objective quality
score obtained from the model evaluation and the subjective quality score obtained from
the artificial evaluation. The commonly used five-parameter nonlinear regression logistic
function formula is as follows:

p = β1

(
0.5 − 1

exp(β2( p̂ − β3))
+ β4 p̂ + β5

)
(7)

where p̂ represents the objective score calculated by the model, p is the score calculated
by the regression operation, and βi, (i = 1, . . . , 5) are the model parameters. PLCC is
calculated as the following equation:

PLCC =
∑N

i=1 (si − s)(pi − p)√
∑N

i=1 (si − s)2 ∑N
j=1

(
pj − p

)2
(8)

where N is the total count of samples, si, and pi, respectively, refer to the subjective and
objective quality scores of the i-th sample, and s and p are the average subjective quality
scores and objective quality scores, respectively.

Finally, the CCC metric shows the degree of agreement in correlation coefficients
among subjective and objective quality values [15].

CCC(T, P) =
2 × Corr(T, P)× σT × σP

σ2
T + σ2

P + (µT − µP)
2 (9)

In the above equation, T and P represent vectors of subjective and objective quality
values, and Corr(T, P) describes the Pearson correlation coefficient between these two
vectors. Additionally, σs and µs represent the standard deviation and mean of the s values,
respectively.

3.2. Performance of the Proposed Method in Anomaly Detection

The proposed method was implemented using MATLAB 2021a software. All experi-
ments were performed on a personal computer running the Windows 10 operating system
on an Intel Core i7 processor with a processing frequency of 3.2 GHz, and 16 GB RAM. The
implementation of the CNN model was performed based on the CUDA capability of the
NVidia GeForce GTX 1080 graphics adapter.

To examine the effectiveness of the proposed 3D CNN model in detecting anomalies,
its performance was compared with the following configurations:
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• Proposed (Avg. Pooling): In this configuration, all pooling layers in the 3D CNN
model used in the proposed method were of the average pooling type.

• Proposed (Max Pooling): In this configuration, all pooling layers in the 3D CNN model
used in the proposed method were of the max pooling type.

• Two-dimensional CNN: In this configuration, the anomaly detection is performed
using the 2D CNN model only. It should be noted that in this case, the learning model
is fed with one frame each time.

In addition to the above three cases, the performance of the proposed 3D CNN model
in anomaly detection was compared with the ResNet50 and VGG-16 networks.

In Figure 4, the average accuracy of the proposed method for identifying anomalies in
videos is compared with other methods. It should be noted that the results presented in
this figure and other graphs in this section are the aggregate results of 10 repetitions of the
experiments. Based on Figure 4, the proposed method can achieve an accuracy of 96.48% in
identifying video anomalies, and it outperforms the compared methods. On the other hand,
if the hybrid pooling layers of the proposed 3D CNN are replaced with average pooling
layers, the detection accuracy will decrease to 93.09%. Similarly, if the hybrid pooling
strategy is ignored and feature extraction is performed by the Max Pooling-based CNN
model, the detection of anomalies can be performed with an accuracy of 94%. In contrast,
in the case of replacing the proposed 3D CNN with a 2D CNN (with a similar architecture),
the detection accuracy decreases to 89.33%. These comparisons indicate that firstly, the
use of the proposed 3D CNN model can perform better compared to 2D convolutional
models such as 2D CNN, ResNet50, and VGG-16, and increase the detection accuracy by at
least 5.15%; secondly, comparing the performance of the hybrid pooling mechanism with
CNN models using static pooling functions demonstrates that this mechanism is capable
of extracting more accurate anomaly-related features, and based on the extracted features,
the detection accuracy can be increased by at least 3.39%. These results demonstrate
the effectiveness of the techniques employed in the proposed method for improving the
accuracy of video anomaly detection.
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The confusion matrix can provide more detailed insights into the performance of
classification methods in identifying various video anomalies. In Figure 5, the confusion
matrix of the proposed method and other methods in classifying database samples is
presented.
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In these confusion matrices, each column represents the actual labels of the test
samples, and the rows represent the labels assigned by each classification method. For
example, in Figure 5a, out of 806 samples belonging to the “normal” class (the sum of values
in the first column of the matrix), the proposed method correctly classified 786 samples, and
only 20 samples were misclassified into other categories. The interpretation of classification
results for other existing categories is similarly possible. The proposed 3D CNN model
could correctly classify 95.6% of jitter anomalies. On the other hand, the performance of
this model in correctly classifying occlusion and lighting anomalies was 95.89% and 95.17%,
respectively, which are significantly higher than the compared methods. Overall, the
comparison of these confusion matrices shows that the proposed method has superiority
over other methods in classifying samples of most categories and managed to increase the
accuracy of anomaly detection by at least 3.39%.

Figure 6 compares the performance of different methods in detecting various video
anomalies based on precision, recall, and F-measure metrics in the database.
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Figure 6. Comparison of the performance of different methods based on (a) precision, (b) recall, and
(c) F-measure for each class, and (d) average of these metrics.

In each of the plotted graphs in Figure 6a–c, the first dimension represents the classes
related to video anomalies, and the second dimension corresponds to the compared meth-
ods. By examining these graphs, it can be inferred that the proposed method, when using
layers of hybrid pooling in 3D CNN, can classify different categories with higher efficiency
compared to other methods. Figure 6d presents the average metrics of precision, recall, and
the F-measure. These graphs demonstrate the overall performance of different methods
in terms of classification quality. Furthermore, the numerical results obtained from the
experiments conducted in this section are presented in Table 2.

Table 2. Comparison of the performance of the models in anomaly detection.

Method Accuracy F-Measure Recall Precision

Proposed 96.4848 95.6734 96.0460 95.3241
Proposed (AvgPool) 93.0909 92.0620 93.2088 91.0522
Proposed (MaxPool) 94 93.1615 94.4428 92.0419
2D CNN 89.3333 87.909 89.1707 86.8763
ResNet50 91.3333 89.8329 90.9986 88.8237
VGG-16 90.5455 88.7227 89.7765 87.7941
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The comparison of the accuracy, precision, recall, and F-measure metrics in Table 2
and Figure 6 confirms that the proposed method can identify various video anomalies with
higher quality compared to the other models. Based on these results, the proposed method
can improve the metrics of precision, recall, and the F-measure. Higher precision validates
that the outputs generated by the proposed method are more likely to be correct for each
type of anomaly compared to other methods. Additionally, higher recall indicates that the
proposed method has been able to correctly identify a higher rate of samples belonging to
different anomaly types. Figure 7 illustrates the ROC curve obtained from the detection of
various anomalies in video samples.
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Based on the data presented in Figure 7, the proposed method demonstrates superior
true positive rates and lower false positive rates compared to the other methods being
compared. Additionally, the proposed method exhibits a larger area under the ROC
curve. Thus, it can be inferred that the method proposed in this paper achieves a better
performance in accurately categorizing different video anomalies based on their frame
sequences.

3.3. Performance of the Proposed Method in Quality Assessment

In this section, the performance of the proposed hybrid model is evaluated in video
quality assessment using SROCC, PLCC, and CCC criteria. In this experiment, the perfor-
mance of the proposed model has been evaluated in two modes.

- Proposed (3D + 2D CNNs): In this case, according to the procedure presented in
Section 3, quality assessment is performed based on the combination of 3D CNN and
2D CNN features.

- Proposed (2D CNN Only): In this case, only the 2D CNN model is used to assessment
of video quality. In other words, the features extracted by 3D CNN are ignored in the
proposed model. The purpose of comparing the proposed method with this state is to
evaluate the effectiveness of the proposed hybrid strategy.

In addition to the above situations, the performance of the proposed method was
compared with the RANKIQA [21], DB-CNN [22], and LIQA [23] methods. Figure 8 shows
the results of quality assessment on two samples of the database.
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Figure 8. Quality assessment by the proposed method on two samples of the database.

As shown in Figure 8, in similar scenes, the quality of the left image is significantly
higher than that of the right image. The score of the left image is 60.1215 and the score
of the right image is 40.2418. The proposed hybrid model can objectively evaluate image
quality in real scenes. The better image quality is, the higher the evaluation score is, and it
is more consistent with subjective evaluation.

Figure 9 compares the performance of different methods in quality assessment using
SROCC, PLCC, and CCC criteria. In this figure, the first dimension represents each of
the SROCC, PLCC, and CCC metrics, while the second dimension represents quality
assessment methods.
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The results presented in Figure 9 show that the proposed method is superior to the
compared methods in terms of the evaluated metrics. According to the obtained results, if
only the 2D CNN model is used to assess the quality of samples, correlation-based criteria
will be significantly reduced. This feature shows that the 3D CNN model can be effective
in describing the temporal features of video frames for quality assessment purposes, so
combining the features of these two CNN models can be effective in obtaining a more
accurate model for quality assessment. According to these results, the LIQA [23] model
has the closest performance to the proposed approach, but the simplicity of the proposed
architecture compared to methods such as LIQA or DB-CNN makes our method suitable
for real-world applications.

Figure 10 compares the performance of different methods using a Taylor diagram. In
this diagram, the efficiency of methods in quality assessment was evaluated in terms of
correlation, standard deviation, and normalized RMSD at the same time.

Electronics 2024, 13, 749  18  of  20 
 

 

 

Figure 10. Comparing the performance of different methods in quality assessment using SROCC, 

PLCC, and CCC. 

Figure 10 shows that the quality values assessed by the proposed method, in addition 

to being consistent with the subjective quality values, also have fewer differences. These 

results show that the scale of quality values produced by the proposed method is more 

consistent with the subjective quality values and this indicates the ability to understand 

and analyze the output of the proposed model better than other methods. Table 3 summa-

rizes the performance of different methods in terms of quality assessment. 

Table 3. The performance of different methods in terms of quality assessment. 

Method  PLCC  SRCC  CCC 

Proposed (3D + 2D CNNs)  0.9014  0.8926  0.8972 

Proposed (2D CNN Only)  0.7931  0.7729  0.7764 

RANKIQA [21]  0.8276  0.8175  0.8196 

DB-CNN [22]  0.8661  0.8569  0.8617 

LIQA [23]  0.8891  0.8806  0.8854 

3.4. Conclusions 

In this paper, a new model for quality assessment and anomaly detection in airport 

surveillance systems was presented. The proposed model utilizes a 3D CNN and a 2D 

CNN for achieving fulfilling these tasks. The 3D CNN in the proposed model can be used 

individually for anomaly detection in input videos. The results show that the proposed 

3D CNN model was able to correctly detect anomalies in surveillance videos with an av-

erage accuracy of 96.48%, which is at least 3.39% higher than the compared methods. On 

the other hand, the 3D CNN and the 2D CNN cooperated to extract the quality-related 

features from the input. In this case, the concatenated features of these two CNNs were 

used by a regression layer to predict the quality of the input video. The results showed 

that the quality values assessed by the proposed method, in addition to being consistent 

with the subjective quality values, also had fewer differences. The higher accuracy and 

lesser complexity of the model prove the efficiency of this approach for being used in real-

world scenarios. 
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PLCC, and CCC.

Figure 10 shows that the quality values assessed by the proposed method, in addition
to being consistent with the subjective quality values, also have fewer differences. These
results show that the scale of quality values produced by the proposed method is more
consistent with the subjective quality values and this indicates the ability to understand and
analyze the output of the proposed model better than other methods. Table 3 summarizes
the performance of different methods in terms of quality assessment.

Table 3. The performance of different methods in terms of quality assessment.

Method PLCC SRCC CCC

Proposed (3D + 2D CNNs) 0.9014 0.8926 0.8972
Proposed (2D CNN Only) 0.7931 0.7729 0.7764
RANKIQA [21] 0.8276 0.8175 0.8196
DB-CNN [22] 0.8661 0.8569 0.8617
LIQA [23] 0.8891 0.8806 0.8854

3.4. Conclusions

In this paper, a new model for quality assessment and anomaly detection in airport
surveillance systems was presented. The proposed model utilizes a 3D CNN and a 2D
CNN for achieving fulfilling these tasks. The 3D CNN in the proposed model can be used
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individually for anomaly detection in input videos. The results show that the proposed
3D CNN model was able to correctly detect anomalies in surveillance videos with an
average accuracy of 96.48%, which is at least 3.39% higher than the compared methods.
On the other hand, the 3D CNN and the 2D CNN cooperated to extract the quality-related
features from the input. In this case, the concatenated features of these two CNNs were
used by a regression layer to predict the quality of the input video. The results showed that
the quality values assessed by the proposed method, in addition to being consistent with
the subjective quality values, also had fewer differences. The higher accuracy and lesser
complexity of the model prove the efficiency of this approach for being used in real-world
scenarios.
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