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Abstract: In the pursuit of energy-efficient spiking neural network (SNN) hardware, synaptic devices
leveraging emerging memory technologies hold significant promise. This study investigates the
application of the recently proposed HfO2/SiO2-based interface dipole modulation (IDM) memory for
synaptic spike timing-dependent plasticity (STDP) learning. Firstly, through pulse measurements of
IDM metal–oxide–semiconductor (MOS) capacitors, we demonstrate that IDM exhibits an inherently
nonlinear and near-symmetric response. Secondly, we discuss the drain current response of a
field-effect transistor (FET) incorporating a multi-stack IDM structure, revealing its nonlinear and
asymmetric pulse response, and suggest that the degree of the asymmetry depends on the modulation
current ratio. Thirdly, to emulate synaptic STDP behavior, we implement double-pulse-controlled
drain current modulation of IDMFET using a simple bipolar rectangular pulse. Additionally, we
propose a double-pulse-controlled synaptic depression that is valuable for optimizing STDP-based
unsupervised learning. Integrating the pulse response characteristics of IDMFETs into a two-layer
SNN system for synaptic weight updates, we assess training and classification performance on
handwritten digits. Our results demonstrate that IDMFET-based synaptic devices can achieve
classification accuracy comparable to previously reported simulation-based results.

Keywords: MOSFET; gate dielectrics; interface dipole; neuromorphic; spiking neural network

1. Introduction

Research on solid/solid interfaces is intricately connected to the evolution of semi-
conductor devices. Throughout the extensive history of semiconductor devices, sub-
stantial progress has been made in understanding the various interfaces that consti-
tute these devices, such as metal/semiconductor, semiconductor/semiconductor, and
oxide/semiconductor interfaces. In the development of MOSFETs, the fundamental build-
ing blocks of Si large integrated circuits, the interfacial electronic states, especially at the
oxide/Si interface in the gate stack structure, are crucial elements influencing device op-
eration and performance. Historically, the discovery of high-quality SiO2/Si interfaces
formed by the thermal oxidation of silicon substrates in around 1960 paved the way for the
mass production manufacturing of CMOS integrated circuits [1,2]. In the 2000s, research
institutions worldwide actively pursued the development of high-k gate dielectrics, accu-
mulating knowledge about gate stacks containing various metal oxides [3,4]. The adoption
of HfO2-based dielectrics in current state-of-the-art MOSFETs is a technological fruition of
these research and development efforts [5]. In the 2010s, research on non-volatile memories
based on MOSFETs incorporating high-k dielectrics experienced a significant surge [6,7].
Ferroelectric field-effect transistor (FeFET) memory, integrating ferroelectric materials into
the gate stack, and conventional flash memory with high-k dielectrics garnered considerable
attention [8,9]. The discovery of ferroelectric HfO2 in 2021 captured researchers’ interest
due to its excellent material compatibility with silicon semiconductor technology [10], driv-
ing continued active research and development for memory applications [11–14]. A notable
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recent research trend in FeFETs, similar to the purpose of this study, is the development of
analog memories for neuromorphic applications [15,16].

Research on the dipole layers induced at dielectric/dielectric interfaces has primarily
advanced for the purpose of controlling the threshold voltage of high-k MOSFETs [17,18].
It has been reported that a small dipole layer is formed at the HfO2/SiO2 interface used
in this study [19,20]. Interfacial dipole modulation (IDM) memory was conceived based
on the studies of such high-k gate stack structures, with the objective of inducing MOS
threshold voltage shifts similar to FeFETs. The first reported IDM results were observed
in a HfO2/SiO2 stack structure incorporating a 1 monolayer (ML) of TiO2, as depicted in
Figure 1a [21]. A MOS capacitor with such a stack structure exhibits a high-frequency C-V
curve with small hysteresis, as illustrated in Figure 1b. This phenomenon was elucidated
by the alteration in the bonding state around the Ti atoms at the SiO2/HfO2 interface,
causing a change in the potential difference (interfacial dipole) between SiO2 and HfO2.
Subsequently, hard X-ray photoelectron spectroscopy studies of IDM metal–insulator–metal
structures have revealed changes in the Ti oxidation states synchronized with memory
operation, supporting the notion that the origin of IDM is the structural change around the
interfacial Ti atoms [22]. As IDM operates at amorphous dielectric/dielectric interfaces, it
does not necessitate high-temperature crystallization annealing, in contrast to ferroelectric
HfO2, and has been verified even with low-temperature annealing at around 300 ◦C [23].
Furthermore, as shown in Figure 1c, the modulation operation exhibits a gradual change
with respect to the applied voltage. This feature is also thought to originate from atomic-
scale disorder at the amorphous dielectric/dielectric interface. The gradual threshold
change is anticipated to be beneficial for analog operation in synaptic devices, as discussed
later. On the other hand, the modulation range of HfO2/SiO2-based IDM is relatively small,
up to about 0.33 V [21,23]. To extend the modulation range, a multilayered HfO2/SiO2
structure has been proposed. For example, an FET incorporating a multilayered IDM with
six TiO2 modulation layers achieves a threshold voltage shift of over 1 V and a current
change of over six orders of magnitude [21]. The pulse response characteristics of IDMFETs
have been investigated, demonstrating stable and repetitive modulation. The authors
believe that these characteristics make it suitable for use as a synaptic device in spiking
neural networks and have conducted detailed measurements. This report presents the
pulse response measurement of IDMMOS capacitors, explains the physical origin of their
characteristics, and describes the current modulation of IDMFETs to verify their potential
as synaptic devices in spiking neural networks.
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Figure 1. Basis of the interface dipole modulation (IDM) mechanism and MOS capacitor charac-
teristics. (a) Proposed IDM mechanism for the HfO2/SiO2 interface with an atomically thin TiO2

modulation layer. (b) High-frequency C-V curve of the HfO2/SiO2/n-Si IDMMOS capacitor dis-
playing counterclockwise hysteresis. (c) Relationship between Vfb shift from the initial Vfb and the
maximum and minimum Vg in C-V measurements.
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Energy-efficient neuromorphic computing hardware is a recent hot topic in the elec-
tronic memory device research field, and a variety of emerging-memory-based technologies
have been proposed [24–26]. In particular, research on analog memory aimed at emulating
biological synapses is active, and the realization of highly integrated synaptic devices
is expected. One criterion for evaluating synaptic devices is the linearity of synaptic
weight update characteristics. For example, in the current mainstream of deep neural
networks, good linearity in weight updates is preferred and increased nonlinearity leads
to poor learning and inference performance [27,28]. Also, regarding the next generation
AI technology, spiking neural networks (SNNs), most studies show that linear weight
updates are advantageous [29,30]. However, there is also the possibility of intentionally
introducing nonlinear update dynamics to improve the performance of unsupervised SNN
learning [31–33]. In SNN systems, as illustrated in Figure 2a, spikes transmitted from
presynaptic neurons undergo weighting through synapses before being input into the
postsynaptic neuron [34,35]. In post-synaptic neurons, input spikes contribute to the rise
in membrane potential, leading to output spikes when the membrane potential reaches
a specific threshold according to leaky integrate-and-fire (LIF) dynamics. Spike timing-
dependent plasticity (STDP) serves as a fundamental synaptic learning rule, updating
synaptic weights based on the temporal difference between pre-synaptic and post-synaptic
spikes. Numerous studies have explored STDP learning employing emerging memory
devices, with a predominant focus on two-terminal resistive-switching memory due to its
benefits in high-density integration [36,37]. Meanwhile, three-terminal memory devices
like FET-type memory have garnered attention as synaptic devices capable of achieving
concurrent STDP learning within a single device [38–40]. This study aims to achieve concur-
rent STDP in IDMFETs utilizing a straightforward spike waveform and operation approach.
We apply the experimentally observed STDP-like responses of IDMFET to a simple SNN
network and assess its suitability for unsupervised SNN learning.
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Figure 2. Illustration of the spiking neuron model and network architecture for pattern recognition
examined in this study. (a) Spike-based neuron model with leaky integrate-and-fire (LIF) dynamics
and spike-timing-dependent plasticity (STDP) synaptic learning. (b) Network architecture where
feature synapses are trained through an unsupervised learning based on the experimentally observed
pulse responses of IDMFET.

2. Materials and Methods
2.1. Oxide Deposition and Device Fabrication

The HfO2, TiO2, and SiO2 constituting the IDM stack structure were deposited in the
same chamber via the high-vacuum electron-beam (EB) evaporation method [41]. The
thicknesses of the HfO2 and SiO2 were estimated from the calibrated deposition rates using
transmission electron microscopy (TEM) and in situ X-ray photoelectron spectroscopy (XPS,
Vacuum Science Instruments, Bad Schwalbach, Germany). The modulation layer of 1-ML
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TiO2 was determined based on in situ XPS measurements of TiO2 deposition on the Si
surface. Following the oxide deposition of the IDM stack, a post-deposition annealing
(PDA) process was performed at 400 ◦C for 30 min in an O2/Ar (~20%) atmosphere.
Subsequently, a 50 nm-thick Ir layer was deposited onto the sample surface to serve as the
gate electrode, using an EB deposition method.

A 2-IDMMOS capacitor containing two TiO2 modulation layers was prepared for
pulse response characterization. Using the high-vacuum EB evaporation method, the IDM
oxide stack, comprising a 3.5 nm-thick top HfO2 layer, a 1.8 nm-thick inner SiO2 layer, a
1.8 nm-thick inner HfO2 layer, and two TiO2 modulation layers, was formed on an n-type
Si(100) substrate covered with a thermally grown SiO2 layer approximately 5 nm thick.
After the above PDA, Ir gate electrodes with a diameter of 200 µm were fabricated using a
stencil mask method.

The IDMFET was fabricated through the following steps [42]. Initially, n+ source/drain
(S/D) regions were formed on a p-type Si(100) substrate using the ion implantation method,
followed by the formation of an approximately 10 nm-thick thermally grown SiO2 layer. Af-
ter etching the SiO2 layer to 5 nm using diluted hydrofluoric acid, a multilayered HfO2/SiO2
IDM stack, comprising 6 TiO2 modulation layers, was deposited using the high-vacuum
EB evaporation method. This 6-IDM stack is composed of a 3.5 nm-thick top HfO2 layer,
1.8 nm-thick inner SiO2 layers, 1.8 nm-thick inner HfO2 layers, and six TiO2 modulation
layers. After the above PDA, a 50 nm-thick Ir layer was deposited and, subsequently, gate
electrode patterns with a gate length of 1 µm and a gate width of 100 µm were formed
using lithography and reactive-ion etching.

2.2. Pulse Response Measurements of IDM Devices

The pulse response characteristics of the IDMMOS capacitor were observed through a
repeated sequence of a voltage pulse stimulus and a C-V measurement at 1 MHz. Negative
voltage pulses to the gate electrode in this experiment failed to generate adequate minority
carriers (holes) to create an inversion layer on the Si surface. Consequently, we could not
obtain a sufficient oxide electric field compared to positive voltage pulses. To address this
limitation, we intentionally generated holes near the Si surface by exposing the sample
surface to light [21,23]. In such cases, it becomes imperative to maintain a relatively wide
pulse width, considering the hole diffusion process from the electrode-uncovered Si region
to the Si region beneath the gate electrodes. In this experiment, a pulse width of 20 msec
was employed.

The pulse response measurement of the IDMFET was conducted using a repeated se-
quence of a voltage pulse stimulus and drain current (Id) measurements with
Vds = 50 mV [21]. For comparison, the DC drain current–gate voltage (Id-Vg) curves
were also measured with Vds = 50 mV. Furthermore, to emulate the synaptic STDP behavior,
two voltage waveforms with a time difference were applied to the gate and drain elec-
trodes of the IDMFET. A repeated sequence of this double-pulse-controlled stimulus and Id
measurement was performed. The details of the voltage waveforms are described below.

2.3. SNN Architecture for Pattern Recognition

A simple two-layer feedforward network with 784 neurons in the input layer, N
neurons in the hidden layer (where N is a variable), and 10 neurons in the output layer
was utilized to perform training and classification tasks on the MNIST handwritten digits
dataset [43], as shown in Figure 2b. Spike-based temporal processing optimized for the
experimentally observed responses of the IDMFETs was implemented, referencing a com-
putationally efficient simplified model proposed by Iakymchuk et al. [44]. In the input
neurons, 28 × 28 pixels with 256 gray levels were transformed into 784 spike trains with
a frequency range from 200 Hz to 1.25 kHz. These spikes were then transmitted to the
hidden neurons through feature synapses, thereby raising the membrane potentials of the
neurons. The hidden neurons operate on a LIF model with dynamic threshold adjustments
and a 10 msec refractory period, generating output spikes when their membrane potential



Electronics 2024, 13, 726 5 of 15

exceeds a certain threshold. Additionally, a winner-take-all (WTA) competitive algorithm
was implemented through lateral inhibition in the hidden layer neurons.

The STDP weight update of the feature synapse was performed based on the time
difference between the pre-synaptic spike and the post-synaptic spike, with the time delay
from post-synaptic spike firing to reaching the synapse set to 80 µs. Furthermore, to
stabilize unsupervised learning, an additional weight depression function, independent of
the input neuron’s frequency and referred to as frequency-independent depression (FID),
was introduced for all synapses undergoing STDP. This FID operation simply produces
the effect of reducing the synaptic weight distribution. Through the above procedure,
the feature synapses acquire characteristics of the input images through unsupervised
learning. Additionally, the classification synapses update weights through supervised
learning based on STDP to associate the hidden neurons with the output neurons. These
synaptic learning processes enable the entire network to function as a pattern classifier. A
total of 60,000 MNIST images were used for training feature and classification synapses,
and 10,000 images were used for the performance test.

3. Results and Discussion
3.1. Pulse Response of IDM MOS Capacitors

The pulse response characteristic of the IDMMOS capacitor (illustrated in Figure 3a)
indicates that the flat-band voltage (Vfb) undergoes stable positive and negative shifts
in response to the voltage polarity switch every 50 pulses. Here, the Vfb shift from the
initial Vfb (∆Vfb) were plotted. Both positive and negative Vfb shifts display obvious
nonlinear responses, exhibiting substantial changes immediately after the polarity switch
and gradual suppression in the amount of change as the pulse count increases. Utilizing
the approximation formula for nonlinear characteristics [45,46], the estimated nonlinear
parameter ν for both positive and negative Vfb shifts is approximately six, indicating a
nearly symmetrical response. The pulse voltage (Vp) dependence illustrated in Figure 3b
indicates an increase in modulation amplitude and ν with the rise in Vp, as depicted in
Figure 3c. As a result, IDMs exhibit inherently nonlinear and near-symmetric responses
and the degree of nonlinearity varies depending on the operating conditions, making it
necessary to consider these specific characteristics in synaptic applications.
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Figure 3. Pulse response of an IDMMOS capacitor with two TiO2 modulation layers. (a) Cyclic
characteristics of flat-band voltage (Vfb) shifts, showing stable modulation amplitude and nonlinear
characteristics. (b) Dependence of Vfb modulation characteristics on pulse voltage (Vp). (c) Impact of
Vp on modulated Vfb shifts and nonlinear parameters (ν+ and ν−).

Next, we delve into the reasons behind the nonlinear response. The Vp-dependent
Vfb shift in Figure 3b incorporates information about both the interface dipole state and
response characteristics, which is useful for analyzing their relationship. ∆Vfb on the y-axis
corresponds to the strength of the interface dipoles, as shown in Figure 1a. Here, we
assumed that the unit dipole switches between two states: large and small. In this scenario,
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the maximum Vfb shift occurs when all the unit dipoles at the HfO2/SiO2 interface switch
due to the electric field; under the opposite electric field, the opposite maximum Vfb shift
occurs when all the unit dipoles switch to the opposite state. Additionally, the maximum
modulation width of the 2-IDM structure is 0.66 V, as previously reported. In this context,
the ratio of un-switched unit dipoles, that is, switchable unit dipoles, is defined as θD. In
the following discussion, θD was estimated from the experimentally obtained ∆Vfb based
on the above assumptions. On the other hand, the modulation rate, dVfb/dt (V/sec), can
be estimated from the ∆Vfb shift per pulse and the oxide electric field Eox (V/cm) can be
estimated from the relationship between the ideal C-V curve of the MOS structure and
Vp [47]. Consequently, we can establish the relationship between dVfb/dt and Eox as shown
in Figure 4a. It is essential to note that even if the switching rate of the unit dipole is
constant, the modulation rate varies depending on θD. For instance, a change in θD from
θD = 0.5 to θD = 0.65 or θD = 0.35 predicts the characteristics (I) and (II) in Figure 4a. How-
ever, the experimental results indicate more significant changes that cannot be explained
by a simple θD difference.
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The experimentally obtained dVfb/dt is considered to be proportional to the num-
ber of switchable unit dipoles. Therefore, the following relationship can be predicted:
dV/dt = ∆Vmax·k·θD, where ∆Vmax is the maximum Vfb modulation of 0.66 V and k (s−1)
represents the reaction rate associated with the structural change responsible for dipole
modulation. As mentioned earlier, IDM originates from alterations in the chemical bond
state around the Ti atom. Previous studies have indicated that this phenomenon can be
elucidated by the electric-field-induced chemical bond breakage model [21]. In our study,
we continue to employ the following equation, based on the bond-breaking model:

k = v0exp
(
−

∆H∗
0 − pe f f E
kBT

)
(1)

where υ0 is the molecular vibrational frequency, typically on the order of ~1013 (s−1), and
T and kB are the temperature (K) and Boltzmann’s constant, respectively. From these
relationships and the experimentally obtained Eox dependence, we can estimate the zero-
field activation energy ∆H∗

0 (eV) and the effective dipole moment peff (eÅ) for each θD. The
θD dependence of ∆H∗

0 and peff for positive ∆Vfb shifts is summarized in Figure 4b, and the
results estimated by the same analysis for negative ∆Vfb shifts are shown in Figure 4c. We
can find that, for both cases, both ∆H∗

0 and peff increase when θD falls below 0.5. Studies on
the dielectric breakdown of gate dielectrics have reported that ∆H∗

0 and peff are sensitive
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to local bonding configuration [48,49]. In addition, in the previous report on the IDM
response, it has been suggested that the observed ∆H∗

0 of about 0.7 eV for large θD is close
to the breakage of the Ti-O bond [21]. Namely, the observed θD dependence in this study
likely exhibits that the Ti bonding configuration contributing to IDM varies depending on
θD. Since IDM occurs at an amorphous oxide interface, it is natural that there are variations
in the bond length and bond angle in the chemical bonds of interfacial Ti atoms. Therefore,
it is reasonable to assume that the initial structural change starts from the bonding with low
∆H∗

0 . In addition, there is a possibility that the structural change itself affects approximate
bonding, that is, IDM itself leads to structural variations with higher ∆H∗

0 values. From the
above experimental results and considerations, we conclude that the nonlinearity in the
IDM response is an unavoidable feature caused by the amorphous oxide interface.

3.2. Pulse Response of IDMFETs

We can easily predict that converting the threshold voltage (Vth) shift induced by the
IDM into a change in the channel current of the FET will result in a response characteristic
that is different from the IDM response, since the channel current–gate voltage relationship
of the FET is not ideally linear, i.e., general Id-Vg characteristics include at least a linear
region and a sub-threshold region [50]. Before describing the synaptic characteristics of the
IDMFET, we will briefly discuss the fundamental DC Id-Vg curve and pulse-induced Id
change. The DC Id-Vg curves shown in Figure 5a indicate that approximately 1 V hysteresis
takes place with a sweeping voltage range of ±4.5 V. To convert the IDM-induced Vth
shift into Id change, it is suitable to use the read Vg within this hysteresis range. Here,
the sub-threshold swing was estimated to be approximately 100 mV/decade, suggesting
that the Id change caused by a 0.1-V Vth shift is expected to be an order of magnitude
current change.

The amplitudes of the Id modulations marked as (I), (II), and (III) in Figure 5a represent
the pulse-induced Id changes observed under different readout Vg voltages and the same
pulse conditions. Here, the pulse voltage (Vp) and pulse width (tp) were set to ±5.4 V and
800 µs, respectively, and the Vp polarity was switched every 300 pulses. The changes in
the pulse response characteristics (I), (II), and (III) shown in Figure 5b indicate that the
Id increase and decrease exhibit opposite behavior regarding nonlinearity. As for the Id
increase, (I) exhibits a nonlinear response, (II) approaches a linear response, and (III) shows
an inverted nonlinear response, exhibiting that the nonlinear coefficient (ν+) changes from
positive to negative. Regarding the Id decrease, the nonlinear coefficient (ν−) is always
positive and the nonlinearity becomes stronger in the order of (I), (II), and (III). On the
other hand, even with the same read Vg, the nonlinearity changes significantly depending
on the pulse voltage Vp (Figure 5c,d). In the lower graph of Figure 5d, we present the
ratio of the nonlinear parameters for Id increase and decrease (ν+/ν−) as an indicator of
asymmetry. Here, ν+/ν− values approaching 1 indicate proximity to symmetric response
and smaller Vp values have better symmetry. In summary, the nonlinearity and asymmetry
of the IDMFET exhibit complex behavior dependent on the read and pulse conditions. A
summary of the ν+/ν− ratios measured under various conditions (Figure 5e) shows that the
general tendency is that the asymmetry becomes stronger when aiming for a large current
ratio (Imax/Imin). This implies that, simultaneously, the nonlinearity of the Id decrease
becomes stronger.

The above behavior regarding the nonlinearity and asymmetric response can be
roughly understood in terms of basic FET operation as follows. We can easily understand
that when the Id modulation is in the linear region or sub-threshold region with a suffi-
ciently small Imax/Imin ratio, the nonlinear and near-symmetric IDM characteristics are
directly reflected in the Id response, as the Id dynamics of (I) in Figure 5b show. On the
other hand, when Imax/Imin is large and the device is operating in the sub-threshold region,
even if the Vth shift is constant, the smaller the current, the smaller the absolute Id change
will be exponentially. In other words, in the characteristic of the Id increase, the current is
insensitive to Vth shifts in the initial stage and gradually becomes sensitive, so the nonlinear
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characteristics are weakened. Conversely, in the characteristic of the Id decrease, the current
is sensitive to Vth shifts in the initial stage and gradually becomes insensitive, so the nonlin-
earity of FET operation is further superimposed on the nonlinear IDM response. It is easy
to predict that a similar effect will occur even when Imax/Imin is large and the Id modulation
straddles the linear and sub-threshold regions. This emphasized asymmetry can be found
in the Id dynamics in (II) of Figure 5b. As Imax/Imin increases further, the current becomes
more insensitive to Vth shifts during the initial stage of Id increase, resulting in an opposite
nonlinear response. This can be seen in the Id dynamics in (III) of Figure 5b. The ultimate
goal of this study is to verify whether the nonlinear and asymmetric IDMFET response can
be applied to STDP learning.
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Id modulation amplitude measured under various read gate voltage conditions (I)–(III). (b) Pulse-
induced Id changes with a pulse voltage (Vp) of ±5.4 V. Estimated nonlinear parameters for Id

increase (ν+) and Id decrease (ν−) are shown. (c) Impact of Vp on nonlinear asymmetric Id responses
observed under read conditions (II) in (a). (d) Vp dependence of ν+, ν−, and the ratio of ν+/ν− under
various read conditions. (e) Correlation between asymmetric characteristics, ν+/ν−, and the ratio of
maximum to minimum drain current (Imax/Imin).

3.3. Double-Pulse-Controlled Synaptic Operation of IDMFETs

To update the Id of IDMFETs based on the time difference between pre- and post-
synaptic spikes, akin to synaptic weight (w) updates in biological STDPs, it is crucial to
carefully choose the pre-spike and post-spike waveforms. However, for compatibility
with the digital circuits responsible for neuron information processing, it is preferable to
avoid complex waveforms as much as possible. We adopted a simple bipolar rectangular
waveform, as shown in Figure 6a. Pre- and post-synaptic spikes have waveforms of the
same voltages (VSTDP) and pulse widths (tSTDP) with a time difference ∆t. Assuming that a
superimposed waveform of pre-synaptic and post-synaptic spikes is applied to the gate
stack structure, Id modulation is expected to depend on ∆t, because the period during
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which a voltage twice VSTDP is applied coincides with ∆t. Here, the application period of
VSTDP also changes, but since IDM has an exponential response to Eox, it is expected that it
can be ignored by setting an appropriate VSTDP. Figure 6b shows the measurement results
in which the sign of ∆t alternates every 500 spikes. An increase in Id is observed at +∆t and
a decrease in Id is observed at −∆t, indicating the expected STDP-like response. This means
that synaptic potentiation occurs when a post spike is input after a pre spike is input and
synaptic depression occurs at the opposite timing. Furthermore, as ∆t approaches 200 µs
of tSTDP, the amplitude of the Id modulation increases, which is a characteristic predicted
from the above waveform superposition. On the other hand, we also find that STDP
operation exhibits obvious nonlinear and asymmetric potentiation/depression properties.
For example, at ∆t = ±200 µs, the ν+/ν− ratio was estimated to be 0.2, showing similar
asymmetry to the previously discussed single-pulse IDMFET response.
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the spike timing difference (∆t), and nonlinear characteristics persist even during STDP operation.
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set ∆t conditions, are shown as insets.

In order to determine whether the pulse-timing-dependent Id modulation obtained
from the IDMFET can be applied to STDP learning, we need to investigate the different ∆t
responses acquired within the same Id range. Therefore, we performed a similar double-
pulse measurement that restricted the Id range, where the sign of ∆t is reversed and
when Id exceeds the range of 0.8 to 3.0 µA. Figure 7a presents the comparison of response
characteristics for ∆t = ±200 µs and ±100 µs. We can see that for the latter, more pulses
are required for ∆t sign reversal compared to the former. Both results exhibit asymmetric
response characteristics and ∆t does not approximately affect the ν+/ν− ratio. The ∆Id−Id
characteristics in Figure 7b can be obtained by converting the measured pulse-induced
Id change into an Id change for each pulse (∆Id). Here, we can find the impact of the
asymmetry response. Regarding an Id increase, a slight ∆Id value persists even as Id
approaches 3 µA. However, in the case of an Id decrease, ∆Id approaches zero more closely
as Id approaches 0.8 µA. The experimentally obtained ∆Id−Id data were fitted with an
approximate equation: ∆Id = α(Id−I0) + β(Id − I0)γ, where α, β, γ, and I0 are constants.
In the simulation study described later, the approximate equation of ∆Id−Id data was
converted to the synaptic weight, w, in the w range of 0–0.8. The ∆w−∆t characteristics
of STDP shown in Figure 7c are the result converted from the experimentally obtained
∆Id−Id data. Here, in the double pulse scheme shown in Figure 6a, when ∆t is ±200 µs,
which is equal to the pulse width, the time during which the voltage of ±2 × Vp is applied
is maximum of 200 µs, and if it deviates from this, the application time becomes shorter
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by the maximum one. If it is outside the ±400 µs range or 0 sec, the application time
is expected to be zero. The ∆w−∆t characteristics of the experimental results show the
expected characteristics, with the maximum modulation at 200 µs and the minimum
modulation at −200 µs. On the other hand, the effects of IDMFET nonlinearity and
asymmetry are manifested as w-dependent potentiation/depression asymmetry. Under
conditions where w is close to zero, potentiation is larger than depression, reaching an
equilibrium of potentiation/depression around w = 0.4. As w increases further, depression
becomes more prominent. In the following simulations, these nonlinear and asymmetric
STDP characteristics are applied to unsupervised pattern learning.
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Figure 7. Double-pulse-induced Id modulation observed within a current range limited to 3.0–0.8 µA.
(a) Characteristics of STDP Id modulation observed for ∆t = ±200 µs and ∆t = ±100 µs. (b) ∆Id−Id

characteristics derived from STDP Id modulation data, with solid lines representing fitting curves.
(c) ∆w−∆t characteristics converted from measured ∆Id-Id showing nonlinear and asymmetric STDP
responses of IDMFET. (d) Variation of ∆w for STDP response of IDMFET with ∆t = ±200 µs from
fitting curves (∆w0). (e) ∆w−w characteristics derived from double-pulse-induced Id response with
unipolar rectangular waveforms, which were utilized as a frequency-independent depression (FID)
synaptic update.

On the other hand, an obvious variation is observed in the experimental ∆Id−Id data
in Figure 7b. Figure 7d illustrates the difference between the approximation curve and
measured data across the entire Id range for the ∆t = ±200 µs measurement. The origin of
this variation contains the fluctuations of the IDM device itself and measurement system
noise. Regarding the former, the fluctuation of the IDM response itself and other Vth
fluctuations such as the oxide carrier trap may contribute. In the subsequent simulations,
STDP incorporating the distribution of observed variations is applied.

In general, SNN learning requires an additional w update function that differs from
STDP, for example, to set initial w values and to optimize and adjust the synaptic learning
conditions. In this study, an additional w update of FID is applied to adjust the STDP-
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based unsupervised learning, as described above. We propose a two-pulse-controlled
modulation, as shown in the inset of Figure 7e, which is highly compatible with our STDP
operation. Positive and negative voltage pulses, serving as pre- and post-synaptic spikes,
are inputted into the IDMFET, inducing the w depression as shown in Figure 7e. The
depression effect becomes stronger with the increase in pulse voltage (VFID) across all w
ranges. This depression characteristic is incorporated into SNN simulations using the same
approximate equation as the STDP characteristics.

3.4. Unsupervised Synaptic Learning Based on IDMFET Characteristics

First, let us examine how unsupervised learning, combining STDP and FID, operates
using a network with N = 100 as an example. In this simulation, when a hidden layer neuron
fires, the synapses connected to it are updated by STDP and, subsequently, FID is applied to
all synapses that underwent STDP (100% FID). For STDP, we utilized the approximate curve
obtained from measurements at VSTDP = 3.5 V, and for FID, the approximate curve with VFID
varied in the range of 3.15 to 3.5 V was employed. Random variations from the distributions
estimated by the measurements were incorporated into both STDP and FID. The training
dynamics in Figure 8a show the average test accuracy over 10 training/classification cycles,
with the shaded area indicating the spread between the maximum and minimum values. In
comparison to the result at VFID = 3.2 V, a higher VFID of 3.5 V reaches maximum accuracy
faster but subsequently experiences more significant accuracy degradation and fluctuates.
Here, the number of training images required to reach 90% of the maximum average
accuracy is defined as learning efficiency (η). Although VFID does not significantly affect
the maximum accuracy (Figure 8b), a noticeably larger VFID is advantageous for learning
efficiency (Figure 8c). This is presumed to be due to a larger VFID enhancing the WTA
effect, suppressing the probability of overlapping different digit patterns. However, as
VFID increases, the robustness deteriorates after reaching the maximum accuracy, as shown
in Figure 8a, suggesting that a large VFID degrades the information of the pattern once
learned. Based on the characteristics of the IDMFET obtained in this experiment, a VFID of
around 3.2 V is considered a balanced and favorable condition.

From the perspective of reducing calculation costs, it is advantageous to minimize
the number of FIDs. Figure 8a illustrates the training dynamics of randomly inducing
FID pulses with a 50% probability, demonstrating that both the maximum accuracy and
learning efficiency are degraded compared to those of the 100% FID. As depicted in
Figure 8b,c, no clear benefit was found from the results of VFID dependence either. We
also investigated various FID probabilities and concluded that FID is always required
after STDP. This result suggests that FID is effective for properly operating WTA and
accumulating training pattern information in appropriate synapses. It is worth mentioning
that previously reported studies on STDP-based unsupervised learning did not incorporate
additional pulses such as FID [31–33,36–40]. This difference is presumed to be due to the
difference in spike waveforms. Generally, more complex spike waveforms are employed to
balance potentiation and depression during STDP, for example, spike waveforms include
triangle waves and different positive/negative shapes, voltages, and widths. In this study,
emphasis was placed on the simplicity of spike waveforms and concurrent STDP learning.
An important result of this study is that we were able to achieve efficient unsupervised
learning by combining additional FIDs within these constraints.

Next, we briefly mention the impact of the variation of IDMFETs. The training
and classification calculation without the variation was also performed, but there are no
significant differences in classification accuracy and learning efficiency (Figure 8b,c). We
performed similar calculations with a wider distribution than the experimentally observed
variation of IDMFETs and found a decline in learning performance. For example, if the
variation is 10 times wider than that of the IDMFETs, the maximum accuracy drops to 70%.
This means that whereas the current level of variation is acceptable, devices with excessive
variation should be treated with caution.
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updates. (a) Simulated training dynamics for N = 100 hidden neurons. Comparison of 100% FID
spike probability conditions with VFID = 3.5 V and 3.2 V. Additionally, the 50% FID spike probability
condition with VFID = 3.5 V is presented. (b) Impact of VFID on maximum accuracy. (I) and (II)
show the results for the 100% FID spike probability condition with and without variations in the
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(c) VFID dependence of learning efficiency (η), where η is defined as the number of training images
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(e) Dependence of accuracy on n, including relevant references (refs. [31–33]) for comparison.

Finally, let us discuss the impact of the feature neuron size. Figure 8e illustrates the
training dynamics for different values of n, calculated at VFID = 3.25 V. Increasing n results
in a decrease in learning efficiency due to the increased number of synapses to be learned,
where we found a proportional relationship of η = 68 × n. On the other hand, increasing n
can improve classification accuracy, as shown in Figure 8e, in which the previously reported
accuracy data deduced by similar networks with STDP-based unsupervised learning were
compared [31–33]. It is important to note that previous studies were not related to the
device characteristics or are not based on the actual device dynamics. It is evident that
even with the STDP characteristics of the IDMFET, introducing suitable FID operations
can achieve accuracy equivalent to conventional SNN. Based on these results, IDMFET is
considered a promising candidate as a synaptic device for unsupervised SNN learning.
Particularly noteworthy is the fact that, in typical SNN systems, the number of synapses
is orders of magnitude larger than that of neurons; therefore, the implementation of high-
density synaptic devices using IDMFETs is expected to be highly effective. Additionally, it
is expected that not only IDMFETs but also other three-terminal devices with similar nonlin-
ear response characteristics can be applicable to unsupervised SNN learning; for example,
ferroelectric HfO2 FeFETs and flash memory devices are promising candidates [15,16,38].
Achieving high-performance integrated synaptic devices based on these Si-based FETs,
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including IDMFETs, requires a meticulous investigation of the effects of device scaling,
endurance, and reliability during STDP operation, among other considerations. Further-
more, nonlinear responses are frequently observed in non-Si-based three-terminal memory
devices, including two-dimensional materials, organic materials, and so on [39,40,51,52].
We expect that such emerging devices can be extended to unsupervised learning, following
a similar approach to the one adopted in this study.

4. Conclusions

The pulse response characteristics of HfO2/SiO2-based IDM devices were investigated
in detail, with the aim of applying them to synaptic STDP learning in SNN systems. The
pulse measurements of IDM MOS capacitors reveal that IDM has an essentially nonlinear
and near-symmetric response. The cause of the nonlinearity was presumed to be due
to a variety of Ti-O chemical bonding states at the HfO2/SiO2 interface. The IDMFETs
exhibit nonlinear and asymmetric dynamics of pulse-induced Id modulation that are
associated with the superimposition of an inherent nonlinear and near-symmetric IDM
response and FET operation characteristics. STDP-like spike-timing-dependent double-
pulse-controlled Id modulation of IDMFETs can be demonstrated, showing nonlinear and
asymmetric weight update dynamics. We propose a timing-independent double-pulse-
controlled Id depression of IDMFETs as an additional FID weight update for SNN to
optimize unsupervised STDP learning. The training and classification of handwritten
digits with a two-layer SNN, leveraging the experimentally observed STDP and FID
characteristics, reveals the effectiveness of IDMFET synaptic devices for unsupervised
learning in SNNs.
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