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Abstract: Driver drowsiness detection is a significant element of Advanced Driver-Assistance Systems
(ADASs), which utilize deep learning (DL) methods to improve road safety. A driver drowsiness
detection system can trigger timely alerts like auditory or visual warnings, thereby stimulating
drivers to take corrective measures and ultimately avoiding possible accidents caused by impaired
driving. This study presents a Deep Learning-based Intelligent Driver Drowsiness Detection for
Advanced Driver-Assistance Systems (DLID3-ADAS) technique. The DLID3-ADAS technique aims
to enhance road safety via the detection of drowsiness among drivers. Using the DLID3-ADAS
technique, complex features from images are derived through the use of the ShuffleNet approach.
Moreover, the Northern Goshawk Optimization (NGO) algorithm is exploited for the selection of
optimum hyperparameters for the ShuffleNet model. Lastly, an extreme learning machine (ELM)
model is used to properly detect and classify the drowsiness states of drivers. The extensive set of
experiments conducted based on the Yawdd driver database showed that the DLID3-ADAS technique
achieves a higher performance compared to existing models, with a maximum accuracy of 97.05%
and minimum computational time of 0.60 s.

Keywords: driver drowsiness detection; deep learning; northern goshawk optimization; road
safety; ShuffleNet

1. Introduction

Transportation has been instrumental in human life, and a major portion of South
Korea’s economy arises from the transportation industry [1]. Although driving can be a
means for quick and safe travel, fatigue, drowsiness, and a shortage of driver vigilance can
result in accidents, including damages and fatalities. Driver drowsiness is accountable for a
huge number of accidents all over the world [2]. Driver distraction signifies reduced focus
on one’s actions, which can be serious for protective driving without challenging activities.
There are various factors that distract drivers’ attention; however, in practice, only two
major types have been studied: (1) fatigue and (2) distraction [3]. The term fatigue describes
the integration of signs that diminish performance and a subjective sense of tiredness.
Despite extensive research, the term fatigue still does not have a commonly recognized
definition. The European Transport Safety Council (ETSC) refers to fatigue as tiredness
in relation to an incapability or a reluctance to endure activities, commonly because such
activities have been occurring for an extended period [4]. In addition, tiredness begins as
an exterior representation of fatigue, which is predominant during driving. According to
the aim of a study, the words fatigue and drowsiness are either utilized interchangeably
or specified [5]. Consequently, a few research studies performed by the ETSC described
four drowsiness stages according to user behavior, such as moderately awake, completely
awake, strictly sleepy, and drowsy [6]. In this study, we categorized two stages, namely
drowsy and alert, to minimize complexity and attain generalizable outcomes by employing
a binary classification. Fatigue during driving has been shown to significantly increase
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the risk of suffering from an accident. In particular, driving when feeling fatigue increases
the possibility of a crash by 4–6 times compared to alert driving. Indeed, a major study
draws the conclusion that fatigue is featured in 15% to 20% of accidents [7]. Therefore, the
expansion of techniques efficient in monitoring driver fatigue conditions in real time, as
well as having the ability to warn drivers shortly prior to falling asleep, is essential for
avoiding collapses.

Driver drowsiness detection is dependent upon having a technique that starts record-
ing a driver’s steering behavior as soon as the activities of a trip begin [8]. Common
indicators of waning concentration include signs showing that the driver is hardly steering,
along with small, yet fast and sudden steering activities for maintaining the car on its
path. Remarkably, the incorporation of deep learning (DL) methods has considerably
improved signal and image processing functions to address real-time complexity. The
advance of DL methods is evidenced in the significant developments in the domain of
object recognition [9]. These improvements have played a crucial role in different indus-
tries, such as the field of security systems, the medical field, and the field of autonomous
vehicles. Recently, the application of DL has led to a revolution in the identification of
drowsiness indicators of every type, including vehicle motion, behavioral, and biological
indicators [10]. The significant impact of DL in identifying these important features of
drowsiness is transformational.

This study presents a Deep Learning-based Intelligent Driver Drowsiness Detection
for Advanced Driver-Assistance Systems (DLID3-ADAS) technique. To accomplish this, the
DLID3-ADAS technique initially pre-processes the input frames using a median filtering
(MF) approach. Additionally, the complex features of the images are derived through the
use of the ShuffleNet approach. Moreover, the Northern Goshawk Optimization (NGO)
methodology is exploited to arrive at an optimum hyperparameter choice for the ShuffleNet
algorithm. Lastly, an extreme learning machine (ELM) model is proposed to properly detect
and classify the drowsiness states of drivers. This comprehensive comparison study shows
that the DLID3-ADAS technique achieves enhanced performance over other approaches
on various aspects. The key contributions are as follows:

• This study presents a new DLID3-ADAS method that follows a multi-stage approach
to ensure that subsequent steps operate on refined and improved data, potentially
leading to more accurate drowsiness detection.

• This study employs the ShuffleNet approach for feature extraction from input images.
ShuffleNet, which is known for its performance and lower computational require-
ments, permits the extraction of complex features from image frames, allowing the
model to capture intricate patterns connected with driver drowsiness.

• The hyperparameter optimization of the ShuffleNet model using the NGO algorithm
with cross-validation helps boost the predictive outcomes of the DLID3-ADAS tech-
nique for unobserved data. This ensures the efficient tuning of model parameters,
thereby improving the overall performance of the drowsiness detection technique.

• This study employs an ELM model for the final stage of driver drowsiness detection
and classification. ELM, which is known for its fast training speed and simplicity, is
effectively utilized to make timely and accurate predictions.

• The proposed model offers accurate driver drowsiness detection with maximum
classification performance and minimum computational complexity.

2. Relevant Works in the Literature

In [11], a bio-sensing probe that coupled LEDs in the near-infrared (NiR) spectrum with
a photodetector named PhotoPlethysmoGraphy (PPG) was developed. The PPG signal
generation was controlled by modifying non-oxygenated and oxygenated hemoglobin
concentrations in a monitored subject’s bloodstream, which could be promptly associated
with cardiac activities as measured in the Autonomic Nervous System (ANS) to describe
the subject’s drowsiness stage. Phan et al. [12] introduced two effective techniques with
three conditions for a doze alert model. One technique utilizes previously implemented
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facial landmarks for identifying yawns and blinks, which are dependent upon the correct
thresholds for all drivers. Then, it employs DL methods with two modified deep neural
networks (DNNs) based on ResNet-50V2 and MobileNet-V2. The other technique examines
videos and recognizes the activities of the driver in all frames to automatically learn each
feature. In [13], the applicability of an Advanced Driver-Assistance System (ADAS), a
DL-based driver tiredness identification technique, is presented. Initially, the face area of
drivers could be recognized by employing the SSD MobileNet object detection algorithm.
The identified head, mouth, and eye positions were monitored and verified over time.
Lastly, these models can be combined with Convolutional Neural Networks (CNNs).

Rundo et al. [14] designed an ADAS based upon the deployment of an ad hoc devised
bio-inspired sensing platform that samples drivers’ PPG signal, which is correctly inter-
related with the corresponding stage of subjective attention. A novel downstream deep
model is implemented to sufficiently process the driver’s PPG signal by reconstructing
the corresponding attention stage. Sinha et al. [15] implemented various frameworks for
analyzing the effectiveness of drowsiness detection based on facial areas. An innovative
identification technique was developed by employing DL methods. To evaluate drivers’
condition, facial areas related to the whole face could be utilized. Various approaches
were implemented for facial recognition, such as Yolo V3, Viola Jones, and DLib. The
CNN method implemented for drowsiness identification was adapted from LeNet for
classification. Kumar et al. [16] proposed a non-invasive technique for detecting drowsiness
in drivers. Facial features were utilized to detect the drowsiness of drivers. The eye and
mouth regions were extracted and analyzed using a hybrid DL algorithm. The hybrid DL
technique was developed by integrating both a long short-term memory (LSTM) technique
and an adapted InceptionV3. InceptionV3 was adapted by including a global average
pooling layer for dropout and spatial robustness methods.

In [17], a solution was established that addresses all the difficulties of the Raspberry Pi
camera but remains quite portable and proficient. By employing the OpenCV technique
and tasks, the Raspberry Pi camera converts the video stream of a driver to grayscale
and frame images. The eye sets are taken into consideration, and the Eye Aspect Ratio
and face landmarks are obtained through Euclidean distances. Patel et al. [18] developed
a driver tiredness identification method that employs eye blinking, mouth closing, and
mouth opening amounts to recognize drowsiness. An alert sound is produced once the
driver’s eyes are closed for a long period. The output of the model is established based on
the DL algorithm of Dlib, which implements a CNN as its baseline method for accurate
recognition, OpenCV, and the Raspberry Pi platform with an attached camera.

Jeong and Ko [19] developed a fast FER method to monitor drivers’ reactions, which
is capable of working in lower-measurement devices installed in vehicles. For this purpose,
a hierarchical weighted random forest (WRF) algorithm, which is trained based upon the
similarity of data to increase its accurateness, is exploited. Zhao et al. [20] introduced
an innovative research study using a dynamic FER, while employing near-infrared (NIR)
video sequences and LBP-TOP (local binary patterns from three orthogonal planes) feature
descriptors. NIR images integrated with LBP-TOP features offer an illumination-invariant
description of facial video frames. Chen et al. [21] developed a multi-modal fusion-based
FER system that is efficient in precisely identifying facial expressions irrespective of lighting
cases and head positions, utilizing a structured-light imaging camera that gives three
modalities of images—Depth Maps, near-infrared (NIR), and RGB. Majeed et al. [22]
designed a deep neural network (DNN) framework for driver drowsiness identification by
exploiting an CNN.

The existing landscape of driver drowsiness detection through the use of ADASs that
employ DL techniques has witnessed important developments. However, a major research
gap exists, highlighting the vital requirement for systematic exploration and optimization
of hyperparameters. While there have been significant developments in DL approaches
in this field, the literature has only studied the impact of hyperparameter tuning on the
overall effectiveness of driver drowsiness detection models. Overcoming this research
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gap is essential to fully utilize DL techniques, confirm their robustness and adaptability in
real-time driving conditions, and finally enrich the reliability and efficiency of ADASs.

3. The Proposed Method

In this study, we established a novel DLID3-ADAS technique. The DLID3-ADAS
technique aims to enhance road safety via the detection of drowsiness among drivers. It
comprises many processes, namely MF preprocessing, ShuffleNet-based feature extraction,
NGO-based parameter tuning, and ELM classification. Figure 1 describes the overall
procedure of the presented DLID3-ADAS technique. In this study, the selection of methods,
including ShuffleNet and MF, is based on their proven efficiency in different fields and their
possible collaboration to address the particular challenge of driver drowsiness detection.
While each individual method has been commonly used, their incorporation within the
DLID3-ADAS architecture is new and strategic. The reason behind using MF lies in its
capability to alleviate noise in an input frame, which provides a clean foundation for
the extraction of succeeding features. ShuffleNet, renowned for its efficacy in extracting
complicated features while maintaining computation efficacy, is chosen to capture complex
patterns that are critical for identifying signs of driver drowsiness. The combination of
the NGO technique for tuning the hyperparameters in ShuffleNet is a deliberate attempt
to optimize the accuracy of the model. The incorporation of these techniques within the
DLID3-ADAS method is a thoughtful synthesis and a simple combination, which leverages
the strength of all the methods to create an advanced and cohesive technique for detecting
driver drowsiness. The contribution lies in the strategic incorporation and optimization of
these algorithms within a unified framework that is specifically tailored for enhancing road
safety while building upon existing methods.
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Figure 1. The overall procedure of the DLID3-ADAS system.

3.1. Preprocessing

The DLID3-ADAS technique initially pre-processes the input frames using the MF
approach to improve the quality and robustness of the input frames [23]. This method
enrolls the help of a MF technique to pre-process raw image frames taken by in-car cameras.
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The MF technique efficiently decreases noise and artifacts in the images and provides
enhanced feature extraction in the following analysis. By changing all pixel intensity values
to the median value and its local neighborhood, MF effectively mitigates the effect of
outliers and enriches the precision of the input frames. This pre-processing stage not only
enhances the visual input but also ensures the preservation of reliability and accuracy in
subsequent stages with the use of other DL methods. This contributes to achieving a more
effective and robust driver drowsiness identification method in the ADAS.

3.2. ShuffleNet-Based Feature Extraction

In this work, the complex features of images are derived through the use of the Shuf-
fleNet approach. ShuffleNet significantly decreases the computational rate and attains
exceptional effectiveness while maintaining computational accuracy [24]. Essentially, com-
bined convolution has been employed in the AlexNet network model, and a few effective
NN architectures, namely MobileNetv2 and Xception, present depthwise separable convo-
lution depending on the group convolution. While the capability of the method as well as
the quantity of computation are coordinated, the addition of point-by-point convolution
takes a huge portion; thus, pixel-level group convolution is presented in the ShuffleNet
architecture to decrease the 1 × 1 convolutional function. However, the convolutional
process could be limited for all group-by-group convolutions, which decreases the model’s
computational complexity. However, while numerous group convolutions are weighted,
the output channel can arise from a smaller section of the input network to be positioned.
The output is only compared to the inputs, and other groups’ data could be attained. The
data among the groups are not compatible with each other, which hinders the data flow
among the networks within the groups [25]. The input and output networks of ShuffleNet
could be fixed to a similar amount to decrease memory consumption. In the case that the
feature map size is h × w, the convolution of height and width is 1 × 1 as a model, and
input and output counts are C1 and C2, respectively. Based on the multiply–accumulate
operations (MACs) and Float Operations (FLOPs), the computational equation is as follows:

B = h · w(C1 × (1 × 1)× C2) = h · w · C1 · C2, (1)

MAC = h · w · C1 + h · w · C2 + (1 × 1)× C1 × C2 = h · w · (C1 + C2) + C1 × C2 (2)

By using inequality,
(C1 + C2) ≥ 2

√
C1C2, (3)

when
MAC ≥ 2

√
h·w·B +

B
h · w

(4)

In Equation (4), w and h are the mapping feature’s width and height, B represents
the FLOPs, and MAC denotes the network layer memory accessibility as well as the write
and read consumption rates. Thus, if C1 = C2, once the input channel corresponds to the
output channel, the memory consumption will be minimum.

3.3. Parameter Tuning Using the NGO Model

At this stage, the NGO method is exploited to attain a better hyperparameter choice
for the ShuffleNet algorithm. The NGO approach shows its performance in parameter
tuning the ShuffleNet method. By leveraging the model’s ability to effectively explore the
performance space and utilize potential areas, the NGO approach systematically fine-tunes
the parameters, namely the learning rates, batch sizes, and architectural parameters of
ShuffleNet. This optimization method is proposed to improve the model’s efficiency by
modifying its configuration, thereby leading to enhanced accuracy, decreased overfitting,
and improved generalization abilities. The NGO approach’s adaptability and versatility
generate the potential for efficiently directing the complex hyperparameter landscape of
deep neural networks (DNNs), thus contributing to the optimization and modification of
ShuffleNet for various tasks and databases. The NGO algorithm is a new swarm intelligent
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optimization technique that stimulates the hunting behaviors of northern goshawks [26].
The NGO algorithm has been developed to enhance this selection process and demon-
strates high accuracy and stability, as well as exceptional optimization performance. The
fundamental steps of the NGO algorithm are given below:

Step 1: Population initialization
A population matrix X is first generated, and population members are initialized

randomly within the search range as follows:

X =



X1
...
Xi
...
XN


N×m

=



x1,1 · · · x1,j · · · x1,m
...

...
...

xi,1 · · · xi,j · · · xi,m
...

...
...

xN,1 · · · xN,j · · · xN,m


N×m

(5)

where the location of the ith northern goshawk is Xi; N denotes the number of population
members and set the maximum dimension m of the solution; xi,j represents the ith northern
goshawk in the jth dimension; and F and Fi are the objective function values of the ith

population and their formula is expressed as follows:

F(X) =


F1 = F(X1)

Fi = F(Xi)

F1 = F(XN)


N×1

(6)

Step 2: Recognize prey and attack
The initial phase of hunting a target when emulating a northern goshawk is to ran-

domly choose the target and perform a rapid hunt. The aim is to detect a better area in the
search range, and a global search is performed. The ith prey is fixed to Pi,j as the newest
location in the jth dimension; r and I are randomly generated integers during the iteration
process; and xi,j and Pi,j are the locations of the goshawk and the prey.

Pj = Xk
i ∈ 1, 2, · · · , N
k ∈ 1, 2, · · · , i − 1, i + 1, · · · , N

(7)

xnew,P1
i,j =

 xi,j + r
(

pi,j − Ixi,j

)
, FPi < Fi

xi,j + r
(

xi,j − pi,j

)
, FPj ≥ Fi

(8)

The updated prey location P1, the updated northern goshawk location xnew, P1
i , and

the updated objective function value Fnew, P1
i are obtained after the first stage of the attack:

Xi =

{
Xnew,P1

i , Fnew,P1
i < Fj

Xi, Fnew,P1
i ≥ Fj

(9)

Step 3: Pursuit and Escape
Once the northern goshawk has attacked the prey, it then attempts to get out and

continues hunting for another target. Based on its speed, the northern goshawk can capture
a target in almost any situation [27]. These simulation behaviors increase the model’s ability
to conduct a local search within the search range. It is assumed that the northern goshawk
has the current iteration number t, a hunting range of about R, and the maximum iteration
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counts T. Then, the location xnew, P2
i,j in the jth dimension of the ith goshawk is attained

as follows:

R = 0.02
(

1 − t
T

)
(10)

xnew,P2
i,j = xi,j + R(2r − 1)xi,j (11)

Xi =

{
Xnew,P2

i , Fnew,P2
i < Fj

Xi, Fnew,P2
i ≥ Fj

(12)

where Xnew, P2
i and Fnew, P2

i are the position and objective function values of the ith northern
goshawk after the iterative and second-stage upgrade.

Fitness selection is a crucial factor in the GWO approach. Solution encoding is ex-
ploited for assessing the aptitude (goodness) of the candidate solution. Here, the accuracy
value is the main condition utilized for designing a fitness function:

Fitness = max (P) (13)

P =
TP

TP + FP
(14)

Based on the above the mathematical formulae, FP and TP are the false-positive and
true-positive values.

3.4. ELM Classification

Finally, the ELM model detects and classifies the drowsiness of drivers. ELM is a
method based on single-layer feedforward networks (FFNs) whose main goal is to interlink
a natural learning device to the neural networks [28]. Owing to its superior structure, which
depends on random hidden neuron devices that do not need to be adjusted to be parallel
to conventional ANNs, it can deliver precise outcomes with a low computational cost.
Furthermore, ELM provides other benefits like comfort of execution, superior simplification
capacity, and minimum human involvement. Because of these advantages, ELM is selected
as the central machine learning (ML) technique. The main scientific method underlying
ELM is defined below.

A single hidden layer (HL) exists in the system of ELM. The input weights of the input
layers and HL are set once and do not need to be trained. Iterative testing is mainly utilized
to fix the outcome weights of the outcome layers and HL. The training and development
period of an ELM model is faster when compared to single-layer FFNs, so the input weights
endure in their early state and only the output weights are trained [29]. Figure 2 portrays
the architecture of the ELM model. In 2006, Huang et al. proposed an ELM model with
a simple 3-layer structure procedure to find the faults of conventional soft calculating
methods. The bias values and input weight are produced arbitrarily in the structure of
the ELM model. It employs a simple inverse process of the HL output matrix to scale an
output weighted matrix among the output layers and HL logically. In addition, it is a great
time-sequence forecast technique due to its interpolation and estimation abilities. The ELM
model is signified arithmetically as a function with training data (N) and hidden nodes (L)
as follows:

L

∑
i=1

wig
(

Win(i), bi, xj

)
=

L

∑
i=1

wig
(

Win(i), xj + bi

)
= Yj, j = 1, . . . , N. (15)

where wi implies the weighted matrix; xj signifies the input vector; Win(i) represents the
weighted vector; Win(i).xj denotes the inner product of Win(i); xj and bi symbolize the bias
of ith hidden nodes; g(•) represents the sigmoid function; and yj stands for the output. An
input weight and bias are chosen arbitrarily at the beginning of the ELM procedure.
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4. Result Analysis and Discussion

The proposed model was simulated using the Python 3.8.5 tool. The proposed model
was experimented on a PC with i5-8600k, GeForce 1050Ti 4 GB, 16 GB RAM, 250 GB SSD,
and 1 TB HDD. In this study, drowsiness detection among drivers was investigated by
using the Yawdd driver database from the Kaggle repository [30]. The dataset comprises
500 instances divided into two classes, as shown in Table 1. Figure 3 displays sample
drowsiness and non-drowsiness images.

Table 1. Details of dataset.

Classes No. of Samples

Drowsiness 250
Non-drowsiness 250

Total Samples 500

Figure 4 shows the classification analysis of the DLID3-ADAS technique at a ratio of
80:20 for TRPH/TSPH. Figure 4a,b display the confusion matrices accomplished by the
DLID3-ADAS technique. This simulation value shows that the DLID3-ADAS method can
precisely categorize and identify images into two class labels. Figure 4c shows the PR
analysis of the DLID3-ADAS method. This figure shows that the DLID3-ADAS technique
attains exceptional PR analysis under each class. To conclude, Figure 4d displays the
ROC analysis of the DLID3-ADAS technique. The outcome shows that the DLID3-ADAS
technique provides efficient findings with increased ROC values for diverse class labels.

The drowsiness detection ability of the DLID3-ADAS technique was examined at a
ratio of 80:20 for TRPH/TSPH, and the results are shown in Table 2 and Figure 5. The
obtained findings show that the DLID3-ADAS technique can properly differentiate the
drowsiness and non-drowsiness classes. According to an 80% of TRPH, the DLID3-ADAS
technique offers an enhanced accuy of 96.23%, a precn of 96.29%, a recal of 96.23%, an
Fscore of 96.25%, and an AUCscore of 96.23%. Additionally, based on a 20% of TSPH, the
DLID3-ADAS technique boosts the values to an accuy of 97.05%, a precn of 96.96%, a recal
of 97.05%, an Fscore of 96.99%, and an AUCscore of 97.05%.
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Figure 4. (a,b) Confusion matrices based on a ratio of 80:20 for TRPH/TSPH; (c) PR curve based on a
ratio of 80:20 for TRPH/TSPH; and (d) ROC curve based on a ratio of 80:20 for TRPH/TSPH.

Table 2. Drowsiness detection of the DLID3-ADAS model at a ratio of 80:20 for TRPH/TSPH.

Classes Accuy Precn Recal Fscore AUCscore

TRPH (80%)

Drowsiness 94.92 97.40 94.92 96.14 96.23
Non-drowsiness 97.54 95.19 97.54 96.35 96.23

Average 96.23 96.29 96.23 96.25 96.23

TSPH (20%)

Drowsiness 96.23 98.08 96.23 97.14 97.05
Non-drowsiness 97.87 95.83 97.87 96.84 97.05

Average 97.05 96.96 97.05 96.99 97.05
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Figure 5. The average outcome of the DLID3-ADAS system under a ratio of 80:20 for TRPH/TSPH.

The accuy curves for training (TR) and validation (VL) portrayed in Figure 6 for the
DLID3-ADAS method under a ratio of 80:20 for TRPH/TSPH offer valuable insights into
its effectiveness on varied epochs. Primarily, they show a constant upgrading in both TR
and TS accuy with higher epochs, demonstrating the effectiveness of the model in learning
and recognizing the patterns of both data of TR and TS. The upgrading tendency in the TS
accuy highlights the adaptability of the model for the TR dataset and its ability to generate
correct predictions when using unobserved data, underscoring its capability in generating
results with robust generalization.
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Figure 6. Accuy curves of the DLID3-ADAS model under a ratio of 80:20 for TRPH/TSPH.

Figure 7 illustrates a wide-ranging overview of the TR and TS loss values obtained
by the DLID3-ADAS technique under a ratio of 80:20 for TRPH/TSPH across diverse
epochs. The TR loss reliably decreases as the model upgrades the weights to minimize the
classification errors in these datasets. The loss curves represent the model’s alignment with
the TR data, underscoring its ability to capture patterns. What is significant is the incessant
improvement in parameters when using the DLID3-ADAS technique, which is developed
to diminish the differences between predictions and actual TR labels.
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Figure 8 shows the classification analysis of the DLID3-ADAS technique under a
ratio of 70:30 for TRPH/TSPH. Figure 8a,b illustrate the confusion matrices acquired by
the DLID3-ADAS algorithm. This outcome reveals that the DLID3-ADAS technique can
correctly categorize and classify the images into two class labels. Next, Figure 8c presents
the PR curve of the DLID3-ADAS technique. This result shows that the DLID3-ADAS
technique attains exceptional PR analysis under each class. In conclusion, Figure 8d
demonstrates the ROC curve of the DLID3-ADAS technique. The simulation value shows
that the DLID3-ADAS technique offers efficient findings with boosted ROC values for
diverse classes.

The drowsiness detection ability of the DLID3-ADAS method was examined under
a ratio of 70:30 for TRPH/TSPH, and the results are shown in Table 3 and Figure 9. The
experimental outcome shows that the DLID3-ADAS method appropriately distinguishes
the non-drowsiness and drowsiness classes. Based on a 70% of TRPH, the DLID3-ADAS
method achieves an increased accuy of 95.03%, a precn of 95.40%, a recal of 95.03%, an Fscore
of 95.12%, and an AUCscore of 95.03%. In addition, with a 30% of TSPH, the DLID3-ADAS
method attains an increased accuy of 95.68%, a precn of 95.39%, a recal of 95.68%, an Fscore
of 95.33%, and an AUCscore of 95.68%.

The accuy curves for TR and VL shown in Figure 10 for the DLID3-ADAS technique
under a ratio of 70:30 for TRPH/TSPH offers valuable insights into its effectiveness across
various epochs. Essentially, they show a continuous upgrading in both TR and TS accuy
with increased epochs, demonstrating the effectiveness of the model in learning and
recognizing the patterns in both data of TR and TS. The increasing trend in TS accuy
highlights the adaptability of the model for the dataset of TR and its ability to make precise
predictions on unobserved data, underscoring its capability in generating results with
robust generalization.
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Table 3. Drowsiness detection of the DLID3-ADAS system under a ratio of 70:30 for TRPH/TSPH.

Classes Accuy Precn Recal Fscore AUCscore

TRPH (70%)

Drowsiness 91.72 98.10 91.72 94.80 95.03
Non-drowsiness 98.34 92.71 98.34 95.44 95.03

Average 95.03 95.40 95.03 95.12 95.03

TSPH (30%)

Drowsiness 91.36 100.00 91.36 95.48 95.68
Non-drowsiness 100.00 90.79 100.00 95.17 95.68

Average 95.68 95.39 95.68 95.33 95.68
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Figure 11 displays a comprehensive overview of the TR and TS loss values for the
DLID3-ADAS technique under a ratio of 70:30 for TRPH/TSPH across diverse epochs.
The TR loss dependably diminishes as the model upgrades the weights to decrease the
classification errors in both datasets. These loss curves noticeably reveal the model’s
alignment with the TR dataset, underscoring its abilities to effectively capture patterns.
What is significant is the continuous enhancement in parameters when using the DLID3-
ADAS technique, which is aimed at minimizing the discrepancies between predictions and
actual TR labels.
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Figure 11. Loss curves of the DLID3-ADAS method under a ratio of 70:30 for TRPH/TSPH.

To confirm the improved performance of the DLID3-ADAS method, a brief comparison
with other methods was conducted, and the results are shown in Table 4 and Figure 12 [22].
The comparative findings demonstrate that the DLID3-ADAS technique achieves excep-
tional performance over other models. In terms of accuy, the DLID3-ADAS technique achieves
an increased accuy of 97.05% while the YOLOv3-tiny CNN, SVM, LSTM NN, Dlib + linear
SVM, 2s-STGCN, Dlib + 15-layer CNN, and 3D Deep CNN models attain smaller accuy values
of 94.32%, 89.00%, 88.00%, 92.50%, 93.40%, 96.69%, and 96.80%, respectively.

Table 4. Comparison analysis of the DLID3-ADAS technique with other models.

Methodology Accuy Precn Recal Fscore

YOLOv3-tiny CNN 94.32 94.46 93.01 92.37
SVM Model 89.00 91.16 92.67 90.10

LSTM NN Model 88.00 93.08 91.22 95.35
Dlib + linear SVM 92.50 90.61 91.80 93.92

2s-STGCN 93.40 95.13 94.55 91.74
Dlib + 15-layer CNN 96.69 93.51 90.67 94.76

3D Deep CNN 96.80 95.36 93.90 94.22
DLID3-ADAS 97.05 95.87 92.69 95.53Electronics 2024, 13, x FOR PEER REVIEW 16 of 19 
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The results of a computational time (CT) analysis of the DLID3-ADAS technique when
compared to other models are shown in Table 5 and Figure 13. These findings show that
the DLID3-ADAS technique obtains a higher performance compared to other algorithms.
In terms of CT, the DLID3-ADAS method achieves a minimum CT of 0.60 s, whereas the
YOLOv3-tiny CNN, SVM, LSTM NN, Dlib + linear SVM, 2s-STGCN, Dlib + 15-layer CNN,
and 3D Deep CNN methods attain larger CT values of 2.16 s, 1.60 s, 2.26 s, 1.67 s, 1.24 s,
1.52 s, and 2.16 s, respectively.

Table 5. CT analysis of the DLID3-ADAS technique compared to other models.

Methodology Computational Time (s)

YOLOv3-tiny CNN 2.16
SVM Model 1.60

LSTM NN Model 2.26
Dlib + linear SVM 1.67

2s-STGCN 1.24
Dlib + 15-layer CNN 1.52

3D Deep CNN 2.16
DLID3-ADAS 0.60
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5. Conclusions

In this study, we presented an innovative DLID3-ADAS technique. The DLID3-ADAS
technique aims to enhance road safety via the detection of drowsiness among drivers. It
comprises many processes, namely MF preprocessing, ShuffleNet-based feature extrac-
tion, NGO-based parameter tuning, and ELM classification. To accomplish drowsiness
detection, the DLID3-ADAS technique initially pre-processes the input frames using the
MF approach. Additionally, the complex features of the images are derived through the
use of the ShuffleNet approach. Moreover, the NGO algorithm is exploited to select the
optimum hyperparameter choice for the ShuffleNet approach. Finally, the ELM technique
detects and classifies the drowsiness states of drivers. To examine the performance of the
DLID3-ADAS technique, a sequence of simulations was conducted. The comprehensive
comparative analysis shows that the DLID3-ADAS technique achieves superior perfor-
mance when compared to other methods, with a maximum accuracy of 97.05% and a
minimum computational time of 0.60 s.

The DLID3-ADAS architecture has certain limitations despite the promising outcomes.
The binary classification of non-drowsy and drowsy states, while practical, may oversim-
plify the states of driver fatigue, potentially missing slight variation in drowsiness level.
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Furthermore, the model’s efficiency depends on the availability of comprehensive and
diverse datasets, and the model’s generalization to diverse driving conditions requires
further exploration. In future work, an objective is to resolve this limitation by integrating
nuanced drowsiness levels, leveraging large and different datasets, and expanding the
applicability of the model to various driving scenarios. Furthermore, exploring adaptive
learning mechanisms and refining the algorithm’s real-time abilities will be vital to enhance
the robustness and real-world deployment of the DLID3-ADAS architecture. An avenue
for future research is to improve the accuracy and sophistication of the proposed model in
detecting driver drowsiness, ultimately contributing to enhanced road safety outcomes.
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