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Abstract: In recent years, there has been a significant increase in collaboration between medical
imaging and artificial intelligence technology. The use of automated techniques for detecting medical
symptoms has become increasingly prevalent. However, there has been a lack of research on the
relationship between impacted teeth and the inferior alveolar nerve (IAN) in DPR images. The severe
compression of teeth against the IAN may necessitate the requirement for nerve canal treatment.
To reduce the occurrence of such events, this study aims to develop an auxiliary detection system
capable of precisely locating the relative positions of the IAN and impacted teeth through object
detection and image enhancement. This system is designed to shorten the duration of examinations
for dentists while concurrently mitigating the chances of diagnostic errors. The innovations in this
research are as follows: (1) using YOLO_v4 to identify impacted teeth and the IAN in DPR images
achieves an accuracy of 88%. However, the developed algorithm in this study achieves an accuracy
of 93%. (2) Image enhancement is utilized in this study to expand the dataset, with an accuracy of up
to 2~3% enhancement in detecting diseases. (3) The segmentation technique proposed in this study
surpasses previous methods by achieving 6% higher accuracy in dental diagnosis.

Keywords: image segmentation; impacted tooth; inferior alveolar nerve; database augmentation;
CNN; object detection

1. Introduction

In the era of artificial intelligence (AI) technologies, remarkable advancements have
continuously reshaped our lifestyles and work patterns. These innovations have become
increasingly pervasive, particularly within the healthcare domain, where the fusion of
medicine and AI is a prominent paradigm. With the global populace experiencing a rise in
age, escalating burdens associated with chronic illnesses, and frequently constrained health-
care resources, these represent ubiquitous predicaments confronting healthcare systems
worldwide. Nonetheless, the rapid advancement of technology offers sanguine prospects.
Novelties such as wearable apparatuses [1], telemedicine [2], extensive-scale databases [3],
and decision-making driven by industrial artificial intelligence (IAI) [4] have augmented
the efficiency of healthcare practitioners. These works have also laid the groundwork for
potentially metamorphosing the entire healthcare field. Utilizing these technologies, health
statuses can be systematically assessed and skillfully managed. Diseases can be predicted
in advance, and tailored medical interventions can be offered. This means that while using
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advanced AI technologies, it is possible to foresee or anticipate illnesses before they fully
develop. Additionally, specific and personalized medical treatments or interventions can
be provided based on this early prediction.

AI models can meticulously dissect MRI images to ascertain the orientation of targets
under diverse clinical scenarios. It can obviate the necessity for supplementary manual
annotations or calibration methodologies [5]. The deployment of AI technology empowers
physicians to attain a more profound comprehension of medical afflictions. This technology
assists in preventing the onset of diseases and formulating more effective treatment meth-
ods. This amplifies the caliber of patient care and augments the prospects of diminishing
healthcare outlays and enhancing healthcare accessibility.

In the contemporary field of dentistry, numerous studies have embraced the integra-
tion of digital technologies. Technologies such as cone beam computed tomography (CBCT)
imaging [6], surgical guides [7], robotic navigation systems for surgery [8], and even the
incorporation of AI in surgery [9] have collectively optimized dental procedures, render-
ing them more comprehensive and precise. Traditionally, digital panoramic radiography
(DPR) has been used to image periodontal conditions and take manual impressions, a
process prone to human error. However, with the digitization of dentistry, AI modeling
has expedited the production of surgical and prosthodontic components while enhancing
the accuracy of data acquisition. The improvement in efficiency and quality provides
clinicians more time for patient care. Furthermore, periapical (PA) image is utilized as
an adjunct diagnostic tool, particularly in the assessment of conditions such as apical
lesions [10], implants [11], and furcation involvement [12]. DPR images refer to extraoral
radiographs [13], typically encompassing all teeth alongside adjacent skeletal structures
and nerves, providing two-dimensional information about dental and maxillofacial osseous
anatomy. Research pertaining to DPR images has encompassed a range of applications,
including tooth localization [14], multi-symptom assessment on DPR images [15], and
prosthesis classification [16], among others. DPR images offer substantial advantages in
localization and classification. In clinical practice, panoramic radiographs are commonly
utilized to assess the contact status between the mandibular third molar and the inferior
alveolar nerve, as well as to evaluate the depth of the mandibular third molar and its
proximity to the mandibular ramus. Should suspicions arise regarding contact between
the inferior alveolar nerve and the mandibular third molar post-panoramic screening, a
computed tomography (CT) scan is employed to further identify cortical bone defects sur-
rounding the inferior alveolar nerve [17]. However, due to the significant increase in patient
costs and radiation exposure associated with CT scans [18], CT is not a routine examination
method. Consequently, the accurate assessment capability of panoramic radiographs in
determining true contact relationships, avoiding misinterpretation issues, and thereby
reducing the frequency of CT usage is of paramount importance. In a previous study [19],
a classifier was introduced to discern the relationship between the inferior alveolar nerve
and impacted teeth on DPR images, ultimately achieving an accuracy of 79.5% and a mean
average precision (mAP) of 0.885.

In the fields of medical imaging and oral surgical procedures, precise localization and
identification of anatomical structures are of paramount importance. This is particularly
evident when dealing with impacted teeth. Dentists must have a clear understanding
of the patient’s oral condition before performing oral surgical procedures, especially for
the precise positioning of the teeth and their proximity to the inferior alveolar nerve.
Accurate positioning and identification not only contribute to surgical success but also
reduce patient risk and discomfort. One such scenario involves impacted third molars,
commonly known as wisdom teeth, which fail to erupt normally due to insufficient space
in the jawbone [20]. The affected lower wisdom teeth may still be partially covered by soft
tissue and unable to grow normally, as shown in Figure 1. The mandibular third molar may
result in complications such as cysts and tumors [21], which can lead to nerve injuries, given
the proximity of the lower third molars to the inferior alveolar nerve. Therefore, accurate
knowledge of the location of the impacted tooth and its relative proximity to the inferior
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alveolar nerve (IAN) becomes critical during impacted tooth extraction surgery. In recent
years, the development of computer vision and deep learning technologies has provided
new avenues for addressing this challenge, including the application of techniques such as
YOLO [22], Faster R-CNN [23], and image preprocessing algorithms. The integration of
these techniques allows for accurate identification of the distance between the impacted
tooth and the inferior alveolar nerve. It helps reduce potential nerve damage and improves
the efficiency and safety of oral surgery.
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Figure 1. DPR image in which the red circle encompasses the impacted tooth and the inferior
alveolar nerve.

This study introduces an assisted detection algorithm combining object recognition
and object detection, utilizing YOLO_V4 and a referenced cropping algorithm [24] to
pinpoint the position between the impacted teeth and the inferior alveolar nerve. Im-
age enhancement [25] is employed to augment pathological features for improved CNN
training accuracy. Various CNN models, including AlexNet [26], GoogLeNet [27], and
Inception_v3 [28], are utilized for object recognition, and their results are validated using a
Fuzzy voting system [29], ensuring data reliability. This approach automates the segmenta-
tion of dental panoramic radiographs to ascertain overlap between impacted teeth and the
inferior alveolar nerve, streamlining dental procedures while minimizing errors.

This research aims to address the following research questions:

1. YOLO_v4 achieves an accuracy of 88% in identifying impacted teeth and the inferior
alveolar nerve, while the developed algorithm attains a superior 93% accuracy value.

2. The development of image enhancement techniques enhances disease detection accu-
racy by 2–3% in dental disease identification.

3. The segmentation technique proposed in this study surpasses previous methods by
achieving 6% higher accuracy in dental diagnosis.

2. Materials and Methods

The primary objective of this study is to utilize image processing alongside AI models
to identify the relative positions of impacted teeth and the inferior alveolar nerve (IAN)
within DPR images. The flowchart of this study is depicted in Figure 2 and consists of three
stages: tooth segmentation, image enhancement, and CNN training. Tooth segmentation
aims to identify the images of impacted teeth and the IAN. This stage uses algorithmic
image segmentation, and YOLO_V4 object recognition to locate pathological positions.
Image enhancement methods are employed to highlight the relative positions of the IAN
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and impacted teeth. Medical X-ray images for this study were not readily available, so a
database augmentation technique was used to expand the image database. The training of
a CNN model is an effective approach for object classification, and further enhancements
can be achieved by fine-tuning hyperparameters and optimizing the model. It determines
whether the images containing impacted teeth overlap with the IAN and outputs the result
if the model training accuracy is over 90%.
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2.1. Tooth Segmentation

This study proposes methods for upper and lower jaw segmentation. The segmenta-
tion methods include image resizing, region cropping, and partial masking. These methods
better highlight the upper and lower jaw areas for further easy identification and assess-
ment. The DPR images utilized in this study have inconsistent sizes, so the original images
are resized to ensure they have a consistent target size of 1540 × 2816. The resized image
helps eliminate variability caused by differences in DPR image sizes. Next, region cropping
is applied to extract the upper and lower jaw regions from the entire image. Specific rows
and columns are selected to encompass the regions of interest, as shown in Figure 3a.

After database analysis and statistics, all of the DPR images used in this study were
resized to the same size, and the lower row of teeth was, in all cases, located below 70%
of the vertical position of the DPR image. Therefore, this study uses image masking
technology to retain the lower row of the DPR image and use this area as the basis for
image segmentation, where pixel values outside the mask are set to 255 (white), while
pixel values within the mask remain unchanged (original image). This process preserves
pixels within the masked area while masking out pixels outside the mask. This effectively
improves the visibility of the upper and lower jaw areas. Applying this mask to the original
image yields a masked version, which is used for lower teeth segmentation. This method
significantly identified the upper and lower jaw regions, as shown in Figure 3b.

A. Grayscale image

The color space of the DPR images is in RGB format. However, the images in RGB
format are not conducive for subsequent processing. To streamline the image processing
work, in this study, we converted these images into grayscale images. This conversion
allows the study to focus solely on the grayscale luminance values of the images, eliminating
the need to process each of the three RGB channels separately. This approach simplifies
the representation of all pixel points in the images, which can be located using only the x
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and y-axis coordinates. This not only streamlines the image processing process but also
enhances overall work efficiency.

B. Gaussian high-pass filter

The major challenge in symptom analysis is the presence of noise points in the im-
ages. Therefore, it is crucial to apply filtering techniques to reduce this undesirable noise
information. There are various types of filters available in existing technologies, and se-
lecting the most suitable one is a critical decision. A variant of this filter is known as the
Gaussian low-pass filter, which is used to reduce specific types of noise. Another variant,
the Gaussian high-pass filter, is used to enhance dark areas in the image and accentuate
details. The Gaussian high-pass filter is also a common technique employed for image
enhancement and feature extraction. In the case of emphasizing the characteristics of the
tooth edge, the Gaussian high-pass filter is the most suitable choice [30]; the formula is
shown in (1), where D0 is the cut-off frequency and D(u,v) is the distance from the center
of the frequency rectangle. When D0 is larger, the smoothness is better. This filter effec-
tively reduces low-frequency components in the image. Consequently, this high-frequency
information is preserved in the processed image, as shown in Figure 4.

H(u, v) = e−D2(u,v)/2D2
0 (1)
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C. Contrast Stretching

Contrast stretching is a widely used technique in image processing [31]. It can increase
contrast by expanding the brightness distribution of the image. The goal of contrast
stretching is to highlight features by increasing image contrast. Contrast enhancement is
achieved using histogram equalization, a method that redistributes the brightness levels
of an image. It makes the brightness levels in the image more uniformly distributed, thus
increasing contrast, as shown in Figure 5a. The square balancing technique is applied to
enhance the differences between brightness levels. The squared image is then subjected to
min–max normalization, mapping pixel values to the range of 0 to 255 for display purposes,
as shown in Figure 5b.
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Flat field correction is used to mitigate uneven brightness points in an image, ensur-
ing that pixel values tend to be uniform. This correction helps eliminate differences in
brightness caused by uneven illumination. Flat field correction is applied to the squared
balanced image to improve image quality, as shown in Figure 5c. The flat field correction
formula is as follows (2): where C represents the corrected image, R is the original image,
F is the flat field image, D is the dark field or dark frame, and m is the average value of
(F − D). The images of F and D are based on adaptive histogram equalization adjustment
parameters and are processed if they are lower than the adaptive threshold. If the threshold
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is lower than the threshold, it will be classified as a dark field, otherwise, it will be classified
as a flat field. It can adjust region brightness and contrast in different areas of the image.
Parameters are set to ensure that adaptive histogram equalization preserves details and
avoids over-enhancement, as shown in Figure 5d.

C =
(R − D)× m

F − D
(2)

D. Binarization

Binarization is the conversion of a grayscale image into a binary image [32], which
contains only two pixel values, typically black and white. This transformation highlights
the objects of interest in the image, facilitating subsequent analysis and processing. This
study adopts a widely used image binarization method known as Otsu’s method. This
method relies on an automatically selected threshold that categorizes the pixels in the
image into the foreground (the target objects) and the background (everything else). Otsu’s
method effectively accomplishes the conversion of an image into a binary image and
performs admirably in various scenarios, as shown in Figure 6.
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E. Morphological operations

Morphological operations primarily deal with the shape, structure, and geometric
features of objects [33]. These operations enable various enhancements, segmentations,
and analyses of images by altering the morphology of objects. Morphological operations
are based on a structuring element and a set of operations, including dilation, erosion,
opening, and closing, among others. The opening operation formula is as follows (3):
A is the original image, B is the structural element image, and the set A is opened by the
structural element B, which means that the result of A being eroded by B is then expanded
by B. In this study, the image is first subjected to median filtering to reduce noise, as shown
in Figure 7a. An opening operation is applied to smooth the image and remove unnecessary
information, as shown in Figure 7b.

A ◦ B = (A ⊙ B)⊕ B (3)

F. Vertical Grayscale Projection Algorithm

This study proposes a tooth segmentation algorithm based on vertical grayscale pro-
jection, which aims to automatically detect and segment teeth in DPR images. Vertical
grayscale projection is used to analyze the brightness distribution in different regions.
It is employed to identify the positions of tooth clefts, as shown in Figure 8a. Subse-
quently, teeth are segmented based on the characteristics of the projection distribution, as
shown in Figure 8b,c. This algorithm exhibits excellent applicability and efficiency in oral
image processing.

G. YOLO_v4

This study uses YOLO_V4 and vertical grayscale projection algorithms to locate the po-
sitions of impacted teeth and the inferior alveolar nerve. YOLO_V4 is an object recognition
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model, often used for detection or license plate recognition. In this research, YOLO_V4 was
applied to identify impacted teeth and the inferior alveolar nerve in DPR images. This study
annotated 500 DPR images for YOLO_v4 training, with the validation results depicted in
Figure 9, showcasing an impressive accuracy of up to 88%. The YOLO model records both
the position and class of bounding boxes, enabling the extraction of impacted teeth based
on the recorded positions. The proposed impacted tooth segmentation algorithm, based
on vertical grayscale projection, achieves an accuracy rate of 93%. Comparative analysis
utilizing 100 untrained images against prior research outcomes, as presented in Table 1,
reveals that the leveraging of the proposed impacted tooth segmentation algorithm in this
study demonstrates an enhancement in accuracy by 3–5% compared to previous research
and YOLO_v4.
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Table 1. The comparison of impacted tooth position.

Method This Study Algorithm YOLO_V4 Method [19]

Accuracy 93.15% 88.13% 90.9%

2.2. Single Tooth Image Enhancement

In order to improve the accuracy of CNN training results, it is most critical to highlight
the symptoms of impacted teeth. This study uses image preprocessing to eliminate most
of the noise of impacted teeth images, additionally creating a black mask over adjacent
unaffected tooth areas. The masked images are used as the training image dataset for the
CNN model in this study.

A. Image preprocessing

To enhance the accuracy of the CNN training model, this study applies image enhance-
ment to the cropped impacted tooth images. Image preprocessing initially involves using
guided filtering [34] to smooth the image while preserving edges and features. Guided
filtering is a smoothing image filter that preserves edges. In guided filtering, the original
image serves as the guidance map, filtering out edge noise while retaining edge information.
This aids in enhancing image quality and emphasizing specific regions of interest. The
filtering results are depicted in Figure 10a, with the formulation given by Algorithm 1.

Algorithm 1. Guided Filter

Input filtering input image p, guidance image I, radius γ, regularization ε

Output filtering output image q.
1 : meanI = fmean(I)

meanp = fmean(p)
corrI = fmean(I. ∗ I)

corrIP = fmean(I. ∗ p)
2 : varI = corrI − meanI . ∗ meanI

varIp = corrIp − meanI . ∗ meanp
3 : a = covIp ./ (var I + ε

)
b = meanIp − meanI . ∗ meanp

4 : meana = fmean(a)
meanb = fmean(b)

5 : q = meana. ∗ I + meanb
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B. Brightness threshold segmentation

This study calculates the average pixel value of the filtered image, which is the overall
brightness level of the image. Based on the calculated average pixel value, brightness
adjustment is applied to the image. Different adjustments are made based on different
ranges of average pixel values. For example, if the average pixel value is below a certain
threshold (e.g., less than 122), the brightness range is adjusted to a brighter region. This
helps to highlight low-brightness areas, which makes them easier to be identified; the image
after brightness adjustment is shown in Figure 10b. Subsequently, brightness thresholding
is used to convert the processed image into a binary mask. In this mask, pixels with
brightness higher than the threshold are considered as the target region, while pixels with
brightness lower than the threshold are considered as the background.

C. Region Selection

In order to enhance the accuracy of recognition, this research employs a region area
filtering technique to select regions of interest while excluding noisy areas. The primary
aim is to ensure that the selected regions effectively represent the principal target regions
rather than inconsequential noise. Subsequently, a binary mask was generated, with white
pixels denoting the regions of interest, while black pixels signified the background as
shown in Figure 10c. This step of constructing the binary mask is important to isolate the
target region for more comprehensive analysis and subsequent processing. In this study,
brightness threshold segmentation is employed to precisely locate the regions of interest.
It can effectively segregate the regions of interest from the background by establishing a
binary mask. To eliminate noise from this mask, a region area filtering approach is applied,
ensuring that only regions surpassing a predefined area threshold are retained, as shown
in Figure 10d.
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D. Center Point Calculation and Edge Detection

In the preceding step, a binary image mask is obtained, where white regions represent
the objects of interest, and black regions denote the background. To facilitate further
analysis and processing of these objects, the next step involves detecting the contours of
the target objects. In this study, the Canny edge detection algorithm was employed for this
purpose. The Canny algorithm [35] is adept at detecting edges within regions of interest.
Once the edges are detected, the computed center points and contours are overlaid onto the
edge regions, as shown in Figure 10e. This overlaying process aids the positions and shapes
of the target objects. It provides a clear representation of the dental structures, which is
essential for subsequent analysis and diagnosis.

E. Determining the inclination or tilt direction of the target object

Boundary detection is employed to determine the inclination direction of the impacted
tooth. Firstly, the distances between these boundaries within the region of interest is
calculated. Subsequently, the shortest line among all possible lines passing through the
center point of the region is selected, as shown in Figure 10f. The shortest line typically
represents the connection between the top and bottom of the tooth crown. By determining
the slope of this line, the inclination direction of the impacted tooth could be ascertained.

F. Image Mask

The threshold related to the width of the tooth is set by the slope of the inclination direc-
tion of the impacted tooth. By shifting the line from the central point by this threshold value
on both sides, the boundary points of the impacted tooth can be identified. Subsequently,
the areas outside the line are covered with a black mask, as shown in Figure 11.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 19 
 

 

  
(a) (b) 

Figure 11. Masking result: (a) lines on both sides of the impacted tooth and (b) the mask for the 
adjacent non-impacted tooth area. 

2.3. CNN Training 
In recent years, a suite of influential deep learning models rooted in CNNs has 

emerged, notably including AlexNet, GoogLeNet, VGGNet, and ResNet, among others. 
The CNN architecture is often used for classification tasks. This study harnesses four es-
tablished models—AlexNet, GoogLeNet, MobileNet_V2, and ShuffleNet—for transfer 
learning purposes. The acceleration of CNN model training within this study is facilitated 
through the utilization of an Nvidia GeForce GTX 1060 GPU, with comprehensive hard-
ware performance details presented in Table 2. MATLAB and Deep Network Designer 
serve as the foundational software tools for designing convolution network models. The 
core aim of this research is to discern whether impacted wisdom teeth exert pressure on 
the inferior alveolar nerve. The image database is segregated into two distinct categories, 
each containing 1000 images. These images are randomly partitioned, allocating 70% for 
CNN training and validation purposes. Among the 70%, 60% is dedicated to training and 
40% is dedicated to validation. The remaining 30% constitutes test images, utilized to eval-
uate the accuracy of the CNN. 

Table 2. The hardware and software platform. 

Hardware Specifications 
CPU Intel(R) core i7-8700 
GPU NVIDIA GeForce GTX 1060 

DRAM 32 GB 
MATLAB R2022b 

Deep Network designer 14.5 

The architecture of the models, taking ShuffleNet as an example in this study, is out-
lined in Table 3. The input image size is 224 × 224. Since this study deals with only two 
classes, adjustments are made to the fully connected layer to output two classes instead of 
the original 1000. Training a CNN with existing images alone is insufficient. Therefore, 
data augmentation is employed to expand the database, such as vertical flipping, bright-
ness adjustment, and image rotation. It results in a total of 1000 images through data aug-
mentation. 

  

Figure 11. Masking result: (a) lines on both sides of the impacted tooth and (b) the mask for the
adjacent non-impacted tooth area.

2.3. CNN Training

In recent years, a suite of influential deep learning models rooted in CNNs has
emerged, notably including AlexNet, GoogLeNet, VGGNet, and ResNet, among others.
The CNN architecture is often used for classification tasks. This study harnesses four
established models—AlexNet, GoogLeNet, MobileNet_V2, and ShuffleNet—for transfer
learning purposes. The acceleration of CNN model training within this study is facilitated
through the utilization of an Nvidia GeForce GTX 1060 GPU, with comprehensive hardware
performance details presented in Table 2. MATLAB and Deep Network Designer serve
as the foundational software tools for designing convolution network models. The core
aim of this research is to discern whether impacted wisdom teeth exert pressure on the
inferior alveolar nerve. The image database is segregated into two distinct categories, each
containing 1000 images. These images are randomly partitioned, allocating 70% for CNN
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training and validation purposes. Among the 70%, 60% is dedicated to training and 40% is
dedicated to validation. The remaining 30% constitutes test images, utilized to evaluate the
accuracy of the CNN.

Table 2. The hardware and software platform.

Hardware Specifications

CPU Intel(R) core i7-8700

GPU NVIDIA GeForce GTX 1060

DRAM 32 GB

MATLAB R2022b

Deep Network designer 14.5

The architecture of the models, taking ShuffleNet as an example in this study, is
outlined in Table 3. The input image size is 224 × 224. Since this study deals with only
two classes, adjustments are made to the fully connected layer to output two classes
instead of the original 1000. Training a CNN with existing images alone is insufficient.
Therefore, data augmentation is employed to expand the database, such as vertical flipping,
brightness adjustment, and image rotation. It results in a total of 1000 images through
data augmentation.

Table 3. The input and output of ShuffleNet model.

Layer Output
Size

KSize Stride Repeat
Output Channels

0.5× 1× 1× 2×
Image 224 × 224 3 3 3 3

Conv1
Max Pool

112 × 112 3 × 3 2
1 24 24 24 24

56 × 56 3 × 3 2

Stage2
28 × 28 2 1

48 116 176 224
28 × 28 1 3

Stage3
14 × 14 2 1

96 232 353 488
14 × 14 1 7

Stage4
7 × 7 2 1

192 464 704 976
7 × 7 1 3

Conv5 7 × 7 1 × 1 1 1 1024 1024 1024 1024

Global Pool 1 × 1 7 × 7

Fc 2 2 2 2

During the training phase, the configuration of hyperparameter combinations plays a
crucial role in determining the success of the model. Each parameter represents a different
aspect, such as the number of neural network layers, the choice of loss function, the size of
convolutional kernels, and the learning rate, among others. This study experimented with
various hyperparameter combinations. The details of the best performing parameter set
are shown in Table 4.
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Table 4. Hyperparameter in the CNN model.

Hyperparameter Value

Initial Learning Rate 0.0001
Max Epoch 30

Mini Batch Size 32
Validation Frequency 10
Learning Drop Period 10

Learning Rate Drop Factor 0.1

3. Results and Discussion

This section presents the performance of the proposed CNN model and compares
it with the methods proposed in other studies [36]. Additionally, an advanced symptom
enhancement method is analyzed. The comparison of the four CNN networks is presented
for further discussion of the results. The CNN models are validated by the accuracy rate of
both the validation set and the testing dataset. Table 5 provides details about the training
process of ShuffleNet, and the specific training steps are shown in Figures 12 and 13.
Furthermore, the confusion matrix, as shown in Table 6, is calculated based on the network
model. This study’s training results are divided into whether the impacted tooth touches
the inferior alveolar nerve. Equations (4)–(6) demonstrate the commonly used metrics for
training, including accuracy, recall, and precision.

Accuracy =
Tp + Tn

Tp + Fp + Tn + Fn
(4)

Precision =
Tp

Tp + Fp
(5)

Recall =
Tp

Tp + Fn
(6)

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall
(7)

Table 5. The SuffleNet training process.

Epoch Iteration Time Elapsed Mini-Batch Validation

1 1 00:00:03 53.12% 51.63%
5 90 00:00:43 100.00% 83.01%
10 200 00:01:31 100.00% 84.31%
15 310 00:02:20 100.00% 84.64%
20 420 00:03:08 100.00% 86.93%
25 530 00:03:57 100.00% 87.95%
30 640 00:04:45 100.00% 89.92%

Electronics 2024, 13, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 12. The training process of the ShuffleNet model. 

 
Figure 13. The training loss process for ShuffleNet. 

Table 5. The SuffleNet training process. 

Epoch Iteration Time Elapsed Mini-Batch Validation 
1 1 00:00:03 53.12% 51.63% 
5 90 00:00:43 100.00% 83.01% 

10 200 00:01:31 100.00% 84.31% 
15 310 00:02:20 100.00% 84.64% 
20 420 00:03:08 100.00% 86.93% 
25 530 00:03:57 100.00% 87.95% 
30 640 00:04:45 100.00% 89.92% 

Table 6. SuffleNet confusion matrix. 

 Not Touch Touch  
Not touch 43.5 (Tp) 2.9 (Fp) 93.7% 

Touch 7.2 (Tn) 46.4 (Tn) 86.6% 
 85.8% 94.0% 89.9% 

 

Accuracy =
Tp +  Tn

Tp +  Fp +  Tn +  Fn (4)

Precision =
Tp

Tp +  Fp (5)

Recall =
Tp

Tp +  Fn (6)

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall  (7)

This study utilizes four distinct CNN models for training on the proposed target. 
Table 7 presents three common model evaluation metrics, including accuracy, recall, and 

Figure 12. The training process of the ShuffleNet model.



Electronics 2024, 13, 702 14 of 18

Electronics 2024, 13, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 12. The training process of the ShuffleNet model. 

 
Figure 13. The training loss process for ShuffleNet. 

Table 5. The SuffleNet training process. 

Epoch Iteration Time Elapsed Mini-Batch Validation 
1 1 00:00:03 53.12% 51.63% 
5 90 00:00:43 100.00% 83.01% 

10 200 00:01:31 100.00% 84.31% 
15 310 00:02:20 100.00% 84.64% 
20 420 00:03:08 100.00% 86.93% 
25 530 00:03:57 100.00% 87.95% 
30 640 00:04:45 100.00% 89.92% 

Table 6. SuffleNet confusion matrix. 

 Not Touch Touch  
Not touch 43.5 (Tp) 2.9 (Fp) 93.7% 

Touch 7.2 (Tn) 46.4 (Tn) 86.6% 
 85.8% 94.0% 89.9% 

 

Accuracy =
Tp +  Tn

Tp +  Fp +  Tn +  Fn (4)

Precision =
Tp

Tp +  Fp (5)

Recall =
Tp

Tp +  Fn (6)

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall  (7)

This study utilizes four distinct CNN models for training on the proposed target. 
Table 7 presents three common model evaluation metrics, including accuracy, recall, and 

Figure 13. The training loss process for ShuffleNet.

Table 6. SuffleNet confusion matrix.

Not Touch Touch

Not touch 43.5 (Tp) 2.9 (Fp) 93.7%

Touch 7.2 (Tn) 46.4 (Tn) 86.6%

85.8% 94.0% 89.9%

This study utilizes four distinct CNN models for training on the proposed target.
Table 7 presents three common model evaluation metrics, including accuracy, recall, and
precision. It can be observed from the table that both accuracy and recall achieve an
accuracy rate exceeding 85%, and compared to method [37], it can been seen that the
precision is higher than [37] 2~5%.

Table 7. Training result evaluation metrics.

AlexNet GoogleNet ShuffleNet MobileNet v2 Method in [37]

Accuracy 89.24% 91.63% 91.63% 92.43% 85.05%

Precision 88.70% 92.74% 93.54% 93.54% 87.18%

Recall 89.43% 90.55% 89.92% 91.33% 82.93%

Table 8 demonstrates that the results for the original images fall within the range of
87% to 89%. Through the image enhancement proposed in this study, there is a notable
improvement in the accuracy of the CNN training results. The image masking enhancement
effectively boosts the training results by 2% to 3%. All four models achieve a judgment
accuracy of over 90%.

Table 8. CNN training result after image enhancement.

AlexNet GoogleNet ShuffleNet MobileNet V2

Original 87.58% 87.58% 89.90% 89.54%

F1-score 87.35% 87.47% 89.46% 89.53%

Training time 3:25 3:04 4:49 4:58

After masking 90.24% 91.63% 91.63% 92.43%

F1-score 89.06% 91.63% 91.69% 92.42%

Training time 3′30 2′58 5′32 5′46

In this study, a single tooth testing image is obtained using images from a non-training
database as shown in Figure 14. Table 9 shows the diagnostic accuracy of whether the
IAN in Figure 14 is extruded by an impacted tooth. The accuracy of ShuffleNet reached
93.90%, and the judgment accuracy of the other three models also exceeded 90%. There
was a significant improvement of over 6% compared to the technique in reference [36].
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Table 9. Comparison with other research.

AlexNet GoogleNet ShuffleNet MobileNet v2 Method in [36]

Accuracy 93.51% 93.48% 93.90% 93.42% 87.20

In clinical practice, dentists often rely on their experience to visually assess the contact
relationship between impacted teeth and the IAN based on DPR images. However, there
remains a chance of misjudgment by dentists. Therefore, through the auxiliary system
developed in this study, clinicians can now utilize assistance in diagnosing the true contact
relationship between impacted teeth and the IAN based on DPR images. If contact between
the inferior alveolar nerve and the mandibular third molar is suspected on DPR images, CT
images can be used to further identify the inferior alveolar nerve, which provides dentists
with more convenient and efficient consultations. Figure 15 explores the relationships
between eight sets of mandibular third molars and the inferior alveolar nerve. By utilizing
the image localization segmentation algorithm developed in this study along with CNN
training models for pathological assessment, it is evident that the judgment results are
highly accurate.

Electronics 2024, 13, x FOR PEER REVIEW 16 of 19 
 

 

there remains a chance of misjudgment by dentists. Therefore, through the auxiliary sys-
tem developed in this study, clinicians can now utilize assistance in diagnosing the true 
contact relationship between impacted teeth and the IAN based on DPR images. If contact 
between the inferior alveolar nerve and the mandibular third molar is suspected on DPR 
images, CT images can be used to further identify the inferior alveolar nerve, which pro-
vides dentists with more convenient and efficient consultations. Figure 15 explores the 
relationships between eight sets of mandibular third molars and the inferior alveolar 
nerve. By utilizing the image localization segmentation algorithm developed in this study 
along with CNN training models for pathological assessment, it is evident that the judg-
ment results are highly accurate. 

The 
impacted 

tooth 
compressin
g the IAN 

    

Accuracy 97.19% 96.28% 98.12% 99.41% 

The im-
pacted 

tooth does 
not com-
press the 

IAN 
    

Accuracy 94.45% 97.26% 95.36% 98.11% 

Figure 15. Validation in the relationship between the impacted tooth and the IAN. 

4. Conclusions 
The primary objective of this study is to accurately determine if impacted teeth com-

press the inferior alveolar nerve (IAN) using a CNN model. To enhance the precision of 
the training model, in this research, we initially segmented the entire dental arch into in-
dividual images of affected single teeth. During the image segmentation process, a vertical 
grayscale projection algorithm was employed to identify pixel valleys, leading to a more 
precise cropping of individual tooth images with an accuracy of up to 93%. Compared to 
recent research [1], this method improved the cropping accuracy by 2.25%, surpassing the 
segmentation accuracy of YOLO_v4 (88%). To mitigate noise, the study employs precise 
calculation of the tilted angle of affected teeth to create a mask for the non-region of inter-
est, retaining only the impacted teeth and the IAN. This approach significantly enhances 
the CNN model’s training accuracy by 3%. Finally, the study compares the accuracy of 
four models, with ShuffleNet exhibiting the highest accuracy, achieving a 93.90% accuracy 
value in determining compression on the inferior alveolar nerve. This marks a 6.4% im-
provement over state-of-the-art research [2]. In the future, this research aims to enhance 
medical diagnostic support systems by employing more sophisticated image segmenta-
tion models for feature annotation. It will continue to use digital panoramic radiography 
(DPR) as the initial method for dental symptom recognition. When signs of concern are 

Figure 15. Validation in the relationship between the impacted tooth and the IAN.



Electronics 2024, 13, 702 16 of 18

4. Conclusions

The primary objective of this study is to accurately determine if impacted teeth com-
press the inferior alveolar nerve (IAN) using a CNN model. To enhance the precision of
the training model, in this research, we initially segmented the entire dental arch into indi-
vidual images of affected single teeth. During the image segmentation process, a vertical
grayscale projection algorithm was employed to identify pixel valleys, leading to a more
precise cropping of individual tooth images with an accuracy of up to 93%. Compared to
recent research [1], this method improved the cropping accuracy by 2.25%, surpassing the
segmentation accuracy of YOLO_v4 (88%). To mitigate noise, the study employs precise
calculation of the tilted angle of affected teeth to create a mask for the non-region of interest,
retaining only the impacted teeth and the IAN. This approach significantly enhances the
CNN model’s training accuracy by 3%. Finally, the study compares the accuracy of four
models, with ShuffleNet exhibiting the highest accuracy, achieving a 93.90% accuracy value
in determining compression on the inferior alveolar nerve. This marks a 6.4% improvement
over state-of-the-art research [2]. In the future, this research aims to enhance medical
diagnostic support systems by employing more sophisticated image segmentation models
for feature annotation. It will continue to use digital panoramic radiography (DPR) as the
initial method for dental symptom recognition. When signs of concern are detected, more
detailed and precise diagnosis, such as cone beam computed tomography (CBCT), will be
employed, thereby reducing medical resource utilization and contributing to advancements
in the field of dentistry.

Author Contributions: Conceptualization, Y.C., S.-L.C., H.-S.C. and Y.-J.L.; data curation, Y.C.,
K.-C.L., Y.-J.L., T.-H.T., C.-H.P. and A.-Y.T.; formal analysis, T.-Y.C.; funding acquisition, S.-L.C. and
C.-A.C.; methodology, H.-S.C., Y.-J.L., T.-H.T., C.-H.P. and A.-Y.T.; resources, C.-A.C., S.-L.C. and
K.-C.L.; software, S.-L.C. and Y.-J.L.; supervision, C.-A.C. and S.-L.C.; validation, Y.C., H.-S.C. and
T.-Y.C.; visualization, H.-S.C., Y.-J.L., T.-Y.C., T.-H.T., C.-H.P. and A.-Y.T.; writing—original draft,
H.-S.C. and Y.-J.L.; writing—review and editing, T.-Y.C. and K.-C.L. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Technology (MOST), Taiwan,
under grant numbers MOST-109-2410-H-197-002-MY3, MOST-107-2218-E-131-002, MOST-107-2221-E-
033-057, MOST-107-2622-E-131-007-CC3, MOST-106-2622-E-033-014-CC2, MOST-106-2221-E-033-072,
MOST-106-2119-M-033-001, MOST 107-2112-M-131-001, and MOST-112-2410-H-033-014 and the
National Chip Implementation Center, Taiwan.

Institutional Review Board Statement: Chang Gung Medical Foundation Institutional Review Board;
IRB number: 02002030B0; date of approval: 1 December 2020; protocol title: A Convolutional Neural
Network Approach for Dental Bite-Wing, Panoramic and Periapical Radiographs Classification;
executing institution: Chang-Geng Medical Foundation Taoyuan Chang-Geng Memorial Hospital of
Taoyuan; duration of approval: from 1 December 2020 to 30 November 2021. The IRB reviewed the
study and determined that it is an expedited review according to case research or cases treated or
diagnosed by clinical routines. However, this does not include HIV-positive cases.

Informed Consent Statement: The IRB approved the waiver of the participants’ consent.

Data Availability Statement: The data presented in this study are available in this article.

Acknowledgments: The authors are grateful to the Applied Electrodynamics Laboratory (Department
of Physics, National Taiwan University) for the support with the microwave calibration kit and
microwave components.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ton, L.-P.; Le, L.-S.; Nguyen, M.-S. Micraspis: A Computer-Aided Proposal Toward Programming and Architecting Smart IoT

Wearables. IEEE Access 2021, 9, 105393–105408. [CrossRef]
2. Ahmad, M.; Alkanhel, R.; El-Shafai, W.; Algarni, A.D.; El-Samie, F.E.A.; Soliman, N.F. Multi-Objective Evolution of Strong S-Boxes Using

Non-Dominated Sorting Genetic Algorithm-II and Chaos for Secure Telemedicine. IEEE Access 2022, 10, 112757–112775. [CrossRef]

https://doi.org/10.1109/ACCESS.2021.3096749
https://doi.org/10.1109/ACCESS.2022.3209202


Electronics 2024, 13, 702 17 of 18

3. Malysiak-Mrozek, B.; Wieszok, J.; Pedrycz, W.; Ding, W.; Mrozek, D. High-Efficient Fuzzy Querying with HiveQL for Big Data
Warehousing. IEEE Trans. Fuzzy Syst. 2022, 30, 1823–1837. [CrossRef]

4. Peres, R.S.; Manta-Costa, A.; Barata, J. Implementing Privacy-Preserving and Collaborative Industrial Artificial Intelligence. IEEE
Access 2023, 11, 74579–74589. [CrossRef]

5. Gokyar, S.; Robb, F.J.L.; Kainz, W.; Chaudhari, A.; Winkler, S.A. MRSaiFE: An AI-Based Approach Towards the Real-Time
Prediction of Specific Absorption Rate. IEEE Access 2021, 9, 140824–140834. [CrossRef] [PubMed]

6. Zhang, Y.-D.; Satapathy, S.C.; Zhu, L.-Y.; Gorriz, J.M.; Wang, S.-H. A Seven-Layer Convolutional Neural Network for Chest
CT-Based COVID-19 Diagnosis Using Stochastic Pooling. IEEE Sens. J. 2022, 22, 17573–17582. [CrossRef] [PubMed]

7. Cattari, N.; Condino, S.; Cutolo, F.; Ghilli, M.; Ferrari, M.; Ferrari, V. Wearable AR and 3D Ultrasound: Towards a Novel Way to
Guide Surgical Dissections. IEEE Access 2021, 9, 156746–156757. [CrossRef]

8. Mikada, T.; Kanno, T.; Kawase, T.; Miyazaki, T.; Kawashima, K. Suturing Support by Human Cooperative Robot Control Using
Deep Learning. IEEE Access 2020, 8, 167739–167746. [CrossRef]

9. Yadalam, P.K.; Trivedi, S.S.; Krishnamurthi, I.; Anegundi, R.V.; Mathew, A.; Al Shayeb, M.; Narayanan, J.K.; Jaberi, M.A.; Rajkumar,
R. Machine Learning Predicts Patient Tangible Outcomes after Dental Implant Surgery. IEEE Access 2022, 10, 131481–131488.
[CrossRef]

10. Chuo, Y.; Lin, W.-M.; Chen, T.-Y.; Chan, M.-L.; Chang, Y.-S.; Lin, Y.-R.; Lin, Y.-J.; Shao, Y.-H.; Chen, C.-A.; Chen, S.-L.; et al. A
High-Accuracy Detection System: Based on Transfer Learning for Apical Lesions on Periapical Radiograph. Bioengineering 2022,
9, 777. [CrossRef]

11. Chen, Y.-C.; Chen, M.-Y.; Chen, T.-Y.; Chan, M.-L.; Huang, Y.-Y.; Liu, Y.-L.; Lee, P.-T.; Lin, G.-J.; Li, T.-F.; Chen, C.-A.; et al.
Improving Dental Implant Outcomes: CNN-Based System Accurately Measures Degree of Peri-Implantitis Damage on Periapical
Film. Bioengineering 2023, 10, 640. [CrossRef] [PubMed]

12. Mao, Y.-C.; Huang, Y.-C.; Chen, T.-Y.; Li, K.-C.; Lin, Y.-J.; Liu, Y.-L.; Yan, H.-R.; Yang, Y.-J.; Chen, C.-A.; Chen, S.-L.; et al. Deep
Learning for Dental Diagnosis: A Novel Approach to Furcation Involvement Detection on Periapical Radiographs. Bioengineering
2023, 10, 802. [CrossRef] [PubMed]
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