
Citation: Kossowski, T.; Samolej, S.;

Davidrajuh, R. Simulation in the

GPenSIM Environment of the

Movement of Vehicles in the City

Based on Their License Plate

Numbers. Electronics 2024, 13, 683.

https://doi.org/10.3390/

electronics13040683

Academic Editors: Valentina E. Balas,

Dariusz Kania and Andrzej Pułka

Received: 20 December 2023

Revised: 22 January 2024

Accepted: 4 February 2024

Published: 7 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Simulation in the GPenSIM Environment of the Movement of
Vehicles in the City Based on Their License Plate Numbers
Tomasz Kossowski 1,* , Sławomir Samolej 2 and Reggie Davidrajuh 3

1 Department of Electrical and Computer Engineering Fundamentals, Rzeszow University of Technology,
35-959 Rzeszów, Poland

2 Department of Computer and Control Engineering, Rzeszow University of Technology,
35-959 Rzeszów, Poland

3 Department of Computer and Electrical Technology, University of Stavanger, 4036 Stavanger, Norway
* Correspondence: t.kossowski@prz.edu.pl; Tel.: +48-17-865-1298

Abstract: This paper uses colored Petri nets (PN) to develop a model of vehicle movement in a city.
The modeler defines the number and location of crossroads, the connections between them, and how
many vehicles are at the given points of the network. The vehicles are recognized by their license
plate numbers, and it is possible to determine where they start their journey and where they are
going. The algorithm proposed in this paper suggests the shortest vehicle route based on Dijkstra’s
algorithm. This study focuses on improving route planning by considering road usage, which is
determined by the starting and ending locations of vehicles (as if traffic cameras were identifying
license plates). This approach will lead to optimal control of traffic lights (or vehicle navigation) to
minimize traffic jams and make good use of all roads. Additionally, this paper shares the results of
preliminary simulations using both colored and uncolored Petri nets in the GPenSIM environment.

Keywords: discrete system simulation; colored Petri nets; traffic lights; GPenSIM

1. Introduction

Petri net is a tool for modeling discrete systems. Petri net was invented in the 1960s
by Carl Adam Petri. Petri nets are closely related to automaton theory, but they have
the ability to express concurrent events [1]. In its simplest version, a Petri net consists of
places, transitions, and directed arcs. Such a network can only describe a system as a static
combination of possible states [2,3]. To describe a particular state of the system, “tokens”
are needed, which can be moved between places through transitions along the graph’s
arcs. In their simplest form, tokens in a Petri net are indistinguishable from one another [2].
More extended forms of Petri nets use concepts such as token coloring, transition activation
time, and hierarchy.

This paper uses an extended Petri net—a colored Petri net—to develop a city model
for the dynamic simulation of vehicle traffic. Colored Petri net (CPN) distinguishes tokens
using colors, where color is an identifier with a specific name [4,5]. This identifier can be
the same for multiple tokens (e.g., “blue”) or individuals as a registration number (each
token has a different “color” as an identifier, e.g., 001, 002, 003, and so on) [6,7].

In a Petri net, the most important elements are:

- Places: Places are drawn as circles, inside which the token presented by the black dots
can be placed. There can be any non-negative number of tokens in one place.

- Transitions: Transitions are drawn with rectangles.
- Arcs: Arcs can have weights greater than or equal to 1. Weights equal to 1 (default

value) are not shown in the Petri net. The weight determines exactly how many tokens
pass along the arc [8].

There are some problems associated with modeling real-life discrete event systems
using Petri nets:

Electronics 2024, 13, 683. https://doi.org/10.3390/electronics13040683 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13040683
https://doi.org/10.3390/electronics13040683
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-5420-3629
https://orcid.org/0000-0003-1655-6444
https://orcid.org/0000-0003-0013-5274
https://doi.org/10.3390/electronics13040683
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13040683?type=check_update&version=1

Electronics 2024, 13, 683 2 of 18

- Petri net models are very large (number of data and structures) for real-life systems,
even for simple systems. Such models are not small or compact [9].

- Long simulation time: Simulation of Petri nets takes a long time as large matrix
manipulations are involved (as a large Petri net model results in a large incidence
matrix). In addition, every enabled transition is checked to determine whether it can
start firing by checking the additional firing conditions.

- Difficulty in model analysis: Due to the huge size, analyzing structural and behavioral
properties becomes time-consuming.

- “Explosion of states”: Possibility to obtain information (for certain Petri net classes)
from the Petri net structure without exploring its state space. The Petri net tool auto-
matically generates the state space, showing every possible state that can eventually
be reached from the initial state. For real-life systems, this space is huge (and usually,
it is of infinite size). Hence, analyzing such a huge or infinite state space is difficult
and usually impossible [10–13].

Many tools are available for Petri net-based modeling (e.g., CPN and GPenSIM). Some
extensions increase the computational power of modeling while maintaining its analytical
capabilities (e.g., colored Petri nets) [10,13–15].

A manual description of crossroads throughout the city with the definition of de-
pendencies and transit trigger conditions would be impossible. It is, therefore, necessary
to develop crossroad modules as universal blocks. Modular Petri nets are proposed in
some works [9,13,16,17] (e.g., for control of traffic lights [18]) and implemented in the
General-purpose Petri net Simulator (GPenSIM) [13]. Modeling, simulation, and analysis
of modular Petri nets using GPenSIM offer many possibilities, e.g., all input data can be
collected in the form of tables, and the model structure can be built automatically from
modules as needed. This type of approach saves time and avoids errors when describing
each state [13,15,16,19].

Managing traffic signals through an algorithm that adapts to traffic volume has been
known for many years. The most commonly used for this are induction loops in the
roadway, counting the queue of vehicles [20]. Newer solutions include CCTV video
surveillance with object recognition [21,22]. This system works very well in each part of
the day but is sensitive; e.g., errors arise when objects move too close together and when
weather conditions are unfavorable (such as rain and snow). Currently, the solutions are
based on machine learning and neural networks, allowing us to achieve better results
compared to classical algorithms [23]. The network learns the traffic characteristics of a
given crossroad and optimizes traffic routing. Combining crossroads throughout the city
into a single system allows for even better management of traffic signal control. Systems
based on artificial intelligence are already being used and tested in China [24,25]. More
and more, algorithms are not only able to identify objects (like cars and people), but they
can also discern and interpret vehicle license plates. Such data analysis at each crossroad
can identify the exact route taken by each vehicle within the range of the CCTV system.
The extent to which this information can aid in traffic optimization is yet to be determined.
Based on these data, can we better regulate traffic light cycles, thereby directing cars to
roads with less traffic? Alternatively, will the information be transmitted to the vehicles so
that the driver can take the route with a lower ETA (estimated time of arrival)? This solution
(combined with a mesh network of vehicles and city infrastructure) could be particularly
relevant for autonomous vehicles. There are a few possible applications for the proposed
solution. The security of distributed systems, where the infrastructure is connected directly
to users, is also a significant issue, as an open network is exposed to attacks, which poses a
major challenge to ensuring its stability and resilience against cyber attacks [26]. At this
stage, the primary focus is to introduce the concept and carry out its simulation, which is
the main objective of this study.

The optimization of urban traffic with the help of proper algorithms that determine the
cycles of traffic lights has been known for years [20,21]. Hence, this study proposes a novel
approach, in addition to the existing ones, where alterations in the paths of moving vehicles

Electronics 2024, 13, 683 3 of 18

are facilitated by modifying their directions in the navigation system. This proposition
is based on the concept of suggesting routes with a minimal estimated time of arrival
(ETA), taking into account the prevailing traffic conditions. A significant difference from
current navigation (through, e.g., online maps, which have such functionality) is the use
of information from traffic cameras for this purpose. It is not navigation that is supposed
to decide which route is the shortest at any given time, but the integrated management
system of the city’s traffic light network. Knowing information about the typical (most
often duplicated) routes taken by individual vehicles each day (based on reading license
plate numbers and recording the path of each vehicle—one of this paper’s assumptions), it
would be possible to propose access routes in such a way that centrally controlled traffic is
optimally distributed. Machine learning, or AI algorithms, which are now being extensively
used, could be used for this purpose (in further research). As previously stated, such a
groundbreaking control system would be especially useful in self-driving vehicles. By
recognizing the recurring start and end points of a journey (considering that most of us
follow a similar route to and from work daily) and correlating them with consistent travel
times, it becomes feasible to design optimal routes, which may not necessarily be the
shortest. This would enable vehicles to move in a “green wave”, minimizing their waiting
time in traffic jams at intersections. Currently, such solutions are not used due to the
enormous complexity of the proposed problem. It would be necessary to integrate the
entire system of cameras in the city (they are not everywhere, which makes the task more
difficult), along with a database of routes traveled (optimized by an adaptive algorithm),
and end with the indication of the route to individual (willing) users. At this moment, such
a system can be created only virtually as a simulation; however, its development, together
with the demonstration of practical advantages, can be realized in practice in the future.
This paper aims to focus on developing a model of the intersection network along with
a description of the required properties. The goal is to conduct simulations on the fully
functioning model before implementing optimization; conducting advanced optimization
is proposed as a continuation of this research (further work).

The proposed model aims to completely change the plane and level of traffic control.
The basic axiom changes because we no longer want to control traffic lights in such a way
as to relieve traffic jams. We want to control traffic and vehicles so that these jams do not
form or are as small as possible. This is a completely different approach from the current
one, and ongoing simulation studies are leading to proof of this thesis.

The most important goals are:

- Development of crossroad and road modules (algorithms and their construction in a
simulation environment).

- Proposing the concept of a modular colored Petri net to solve the given problem.
- Comparison of the possibilities of a colored and uncolored network based on the

assumptions of universal modules.
- Allowing the user to define the appearance of the city and crossroads, as well as the

number of vehicles, in a transparent and convenient way.
- Visualization of the above data in graphical form.
- Development of functions that automatically generate data and parameters necessary

to perform simulations in the GPenSIM environment.
- Using this tool to create a model and simulate sample input data.

The rest of the paper is organized as follows: The basic concepts of Petri nets are
introduced in Section 2. Section 3 describes a P/T (noncolored) Petri nets alternative
example. Section 4 shows the results of the simulation using a colored Petri net. Finally,
Section 5 presents conclusions and future research.

2. Concept of Modular Colored Token Petri Net (MCTPN)

Research on optimizing vehicle routing using colored Petri nets requires some assump-
tions. Of course, there are many works where authors have proposed various assumptions
and solutions using Petri nets (colored and timed) [27–30]. However, none of them use the

Electronics 2024, 13, 683 4 of 18

capabilities of GPenSIM, and there are very few where modularity has been used. The goal,
therefore, is to develop such a network so that it can be modeled and shown from a different,
previously unknown perspective. The proposed solution is not only a description of the
modular Petri net itself (as a mathematical model) but is also a tool that can be extended in
further works. The end goal is to optimize the control of traffic signals or vehicles to make
both the travel time as short as possible and the distribution of traffic balanced. Controlling
the movement of cars can be performed based on correcting navigation indications as they
pass through successive crossroads. Such corrections can be applied using data from the
central traffic management system. The second solution is the automatic rerouting of an
autonomous vehicle. Vehicles of this type will be on the roads more and more every year.
There are already about 40 million autonomous cars (and around 1.5 billion of all) in the
world, with a projected growth of 5 million per year [21,26,31]. In both cases, we can talk
about automatic route control either by the vehicle’s behavior or by directing it with the
appropriate traffic light setting. This automation system, however, must be managed by a
complex computer algorithm. The possibilities are many, and this article proposes the use
of the GPenSIM tool and the Matlab environment.

For modeling large systems as modular systems, the modular Petri net is defined as a
to-tuple (Equations (1)–(3)) [12–14]:

MCTPN = (C, S) (1)

where
C = ∑m

i=1 Φi (Crossroads − Petri Modules) (2)

S = ∑n
j=1 Ψj (Street − connectors between Petri Modules) (3)

The formal definition of a single module (MCTPN) is shown in Formula (4), and the
connector between modules is in Formula (5). A detailed description of the function of
each component will be discussed when the colored Petri net algorithm is described in
detail in Section 3 [16,17].

Φ = (PI, PO, TC, TG, AC, MC) (4)

where:

PI—input places of the crossroad;
PO—output places of the crossroad;
TC—traffic light transitions at the crossroad;
TG—colored token transitions of the crossroad;
AC—arcs in the crossroad;
MC—initial markings in the crossroad.

Ψ = (TS, AS, MS) (5)

where:

TS—transitions between two crossroads;
AS—arcs in the street (towards crossroads);
MS—initial markings in the street.

The implementation of the presented algorithm is based on the following assumptions:

1. Colored: each vehicle (token) has a unique number (license plate).
2. Modular: the network simulates the layout of crossroads in the city.
3. Model define: The user can define what the city looks like. Data can be prepared in a

spreadsheet. Users can also define the number of cars at each point.
4. Constant speed: It means that vehicles cannot overtake each other.
5. Shortest path: the cars follow the shortest path to their destination (defined randomly).

The Dijkstra algorithm was used for this.

Electronics 2024, 13, 683 5 of 18

6. Single-lane roads: all of them. Tokens congregate in a place in front of the traffic
light and drive in any direction independently. There are no dedicated lanes for going
straight or turning in either direction.

7. No reverse: no vehicle can turn around at the crossroad. This situation is impossible
due to the determination of the shortest paths using Dijkstra’s algorithm.

8. Definition of routes: the routes of the cars are known based on the readings of traffic
cameras (in reality). For simulation, this information will be asked from the database
(see point 5).

9. Reconfigurable: the simulation conditions may change each time. This does not
include the starting and ending points of the vehicles, which are fixed. This means
that vehicles may start at slightly different moments in time and that signals operate
differently during each simulation.

The proposed modules are universal. It is possible to implement multi-lane roads [32],
but this is not necessary for the proposed solution. In the proposed model, the road is not
differentiated by the number of lanes, so it can be treated as both single-lane and multi-lane.
This is due to the averaging of traffic, not due to the volume in front of the traffic lights
themselves but relative to the road as a general section between crossroads—taking into
account its full capacity. Scheme of whole modules was shown in Figure 1.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 20

Figure 1. Scheme of modules representing segments of the city.

The following issues are key when using colors in GPenSIM [33,34]:

1. Only transitions can manipulate colors; output token colors can be added, removed,

or changed in the preprocessor.

2. By default, the system collects all the colored tokens from the input locations when a

transition is fired and then moves the colored tokens to the output locations.

3. An enabled transition can select specific input tokens based on color.

4. An enabled transition can select specific input tokens based on time (e.g., when the

creation time of the tokens is known).

5. The token has the following structure: tokID, creation time, and color setting.

tokID: A single token identifier (integer value).

time_creation: The transition time (real value) when the token was created.

t_color: The color setting (the set of text strings).

Several functions are available in GPenSIM for color manipulation. One of those used

in this article is tokenEXColor, which can be described as follows [9,13]:

[set_of_tokenID,nr_token_av] = tokenEXColor (place, nr_tokens_wanted, t_color), where

the function requires three input arguments and returns two output values.

Input arguments (place, nr_tokens_wanted, t_color):

Place: From which place the tokens are to be selected.

nr_tokens_wanted: The number of required tokens of a certain color.

t_color: The set of colors.

Output values [set_of_tokID,nr_token_av]:

set_of_tokID: A set of tokIDs that meet the color specifications.

nr_token_av: Number of valid tokIDs available in set_of_tokID.

Figure 1. Scheme of modules representing segments of the city.

The following issues are key when using colors in GPenSIM [33,34]:

1. Only transitions can manipulate colors; output token colors can be added, removed,
or changed in the preprocessor.

2. By default, the system collects all the colored tokens from the input locations when a
transition is fired and then moves the colored tokens to the output locations.

3. An enabled transition can select specific input tokens based on color.
4. An enabled transition can select specific input tokens based on time (e.g., when the

creation time of the tokens is known).
5. The token has the following structure: tokID, creation time, and color setting.

tokID: A single token identifier (integer value).

Electronics 2024, 13, 683 6 of 18

time_creation: The transition time (real value) when the token was created.
t_color: The color setting (the set of text strings).
Several functions are available in GPenSIM for color manipulation. One of those used

in this article is tokenEXColor, which can be described as follows [9,13]:
[set_of_tokenID,nr_token_av] = tokenEXColor (place, nr_tokens_wanted, t_color), where the

function requires three input arguments and returns two output values.
Input arguments (place, nr_tokens_wanted, t_color):
Place: From which place the tokens are to be selected.
nr_tokens_wanted: The number of required tokens of a certain color.
t_color: The set of colors.
Output values [set_of_tokID,nr_token_av]:
set_of_tokID: A set of tokIDs that meet the color specifications.
nr_token_av: Number of valid tokIDs available in set_of_tokID.
The crossroads module consists of four identical groups of elements (for each direction

of the world). The full structure of the entire module will be presented in Section 3.
However, it is important to explain the principle of operation of a single group in the
block diagram shown in Figure 2. Its base is the transit system responsible for the passage
of vehicles in a given direction. Its output is the place marked as an exit (along with
information about the world direction and the number of the current crossroad). The
inputs, on the other hand, are three. They correspond to the other directions of the world
(except the one described for the exit, satisfying the assumption of no turning back). Tokens
accumulate at the input locations and wait for a transit to be triggered (which corresponds
to the situation at the actual crossroad). Each token has a different “color”, and its routes
are known. Based on these parameters, the transit only lets through tokens consistent with
their destination direction. The remaining tokens wait for other transitions (corresponding
to the other world directions, e.g., “north”) to be triggered because the same inputs are
connected by paths to the other transitions, as will be shown in detail in Section 3.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 20

The crossroads module consists of four identical groups of elements (for each direc-

tion of the world). The full structure of the entire module will be presented in Section 3.

However, it is important to explain the principle of operation of a single group in the block

diagram shown in Figure 2. Its base is the transit system responsible for the passage of

vehicles in a given direction. Its output is the place marked as an exit (along with infor-

mation about the world direction and the number of the current crossroad). The inputs,

on the other hand, are three. They correspond to the other directions of the world (except

the one described for the exit, satisfying the assumption of no turning back). Tokens ac-

cumulate at the input locations and wait for a transit to be triggered (which corresponds

to the situation at the actual crossroad). Each token has a different “color”, and its routes

are known. Based on these parameters, the transit only lets through tokens consistent with

their destination direction. The remaining tokens wait for other transitions (corresponding

to the other world directions, e.g., “north”) to be triggered because the same inputs are

connected by paths to the other transitions, as will be shown in detail in Section 3.

Figure 2. Scheme of one side of the traffic light (one form of four parts of a cross).

As mentioned, the most important element here is the transit using information about

which tokens from which locations can be passed on. These parameters are generated au-

tomatically based on the following information:

1. Vehicle registration number (color);

2. starting point (random);

3. end point (random);

4. the shortest path, containing information on consecutive crossroad numbers.

Based on this information, a database is created where the following parameters are

specified:

1. Crossroad number combined with the direction of exit (according to geographical

direction);

2. registration numbers of vehicles to go in this direction to reach the next crossroad

according to their shortest path;

3. the direction of entry (from where they are coming).

These data define the parameters necessary for the COMMON_PRE [13] function,

making it possible to direct tokens using their colors. This is carried out by specifying the

parameter tokID1 = tokenAllColor (input buffer, number of tokens to pass, colors of tokens to

pass). [7,19] These would not be needed in a classical Petri net, where there is no possibility

of targeting tokens according to their colors (no vehicle differentiation). All parameters

are calculated automatically from the input data set by the user. A block diagram of the

function that generates the data matrix named sp2 (shortest path 2) is shown in Figure 3.

The very large loop Is due to the need to correlate data with the following:

1. All crossing;

2. for each crossroad i, the others are all crossroads j to which traffic is going (i ≅ j);

Figure 2. Scheme of one side of the traffic light (one form of four parts of a cross).

As mentioned, the most important element here is the transit using information about
which tokens from which locations can be passed on. These parameters are generated
automatically based on the following information:

1. Vehicle registration number (color);
2. starting point (random);
3. end point (random);
4. the shortest path, containing information on consecutive crossroad numbers.

Based on this information, a database is created where the following parameters
are specified:

1. Crossroad number combined with the direction of exit (according to geographical
direction);

Electronics 2024, 13, 683 7 of 18

2. registration numbers of vehicles to go in this direction to reach the next crossroad
according to their shortest path;

3. the direction of entry (from where they are coming).

These data define the parameters necessary for the COMMON_PRE [13] function,
making it possible to direct tokens using their colors. This is carried out by specifying
the parameter tokID1 = tokenAllColor (input buffer, number of tokens to pass, colors of tokens to
pass) [7,19]. These would not be needed in a classical Petri net, where there is no possibility
of targeting tokens according to their colors (no vehicle differentiation). All parameters
are calculated automatically from the input data set by the user. A block diagram of the
function that generates the data matrix named sp2 (shortest path 2) is shown in Figure 3.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 20

3. all directions;

4. all shortest paths from the sp (shortest path) matrix;

5. information on whether the vehicle is moving on or pulling over to the destination

parking lot.

The data should be properly stored in the correct cells to minimize the number of

operations in the COMMON_PRE function. The sp2 matrix generation function described

above is executed once during the entire simulation, while the COMMON_PRE function

is called for each transit for each fire. Therefore, it is important to perform most of the

complex operations beforehand. Ready-made data will enable the entire simulation to run

much faster because the COMMON_PRE function, having ready-made data sets, does not

have to search and calculate them every time.

Figure 3. Block diagram of the algorithm that generates data for the COMMON_PRE.m file.

Special transit blocks were used to generate the tokens. They are responsible only for

the “departure” of vehicles from parking places directly adjacent to crossroads. In differ-

ent simulation variants, the timing of their triggering (token release) can be changed in-

dependently of the operation of the crossroad transitions. This means that vehicles can set

off quickly and jam up the city. Each of the transitions, labeled T_gen, has been imple-

mented with a designation of its location—crossroad number and geographic orientation.

A block diagram of the crossing segment containing vehicle-generating transitions is

shown in Figure 4. The generated tokens can be retrieved by the transit agency responsible

for directing traffic when they are triggered. These tokens are subsequently transferred to

output locations to reach the next crossroads.

Figure 3. Block diagram of the algorithm that generates data for the COMMON_PRE.m file.

The very large loop Is due to the need to correlate data with the following:

1. All crossing;
2. for each crossroad i, the others are all crossroads j to which traffic is going (i ∼= j);
3. all directions;
4. all shortest paths from the sp (shortest path) matrix;
5. information on whether the vehicle is moving on or pulling over to the destination

parking lot.

The data should be properly stored in the correct cells to minimize the number of
operations in the COMMON_PRE function. The sp2 matrix generation function described
above is executed once during the entire simulation, while the COMMON_PRE function
is called for each transit for each fire. Therefore, it is important to perform most of the
complex operations beforehand. Ready-made data will enable the entire simulation to run

Electronics 2024, 13, 683 8 of 18

much faster because the COMMON_PRE function, having ready-made data sets, does not
have to search and calculate them every time.

Special transit blocks were used to generate the tokens. They are responsible only
for the “departure” of vehicles from parking places directly adjacent to crossroads. In
different simulation variants, the timing of their triggering (token release) can be changed
independently of the operation of the crossroad transitions. This means that vehicles can set
off quickly and jam up the city. Each of the transitions, labeled T_gen, has been implemented
with a designation of its location—crossroad number and geographic orientation. A block
diagram of the crossing segment containing vehicle-generating transitions is shown in
Figure 4. The generated tokens can be retrieved by the transit agency responsible for
directing traffic when they are triggered. These tokens are subsequently transferred to
output locations to reach the next crossroads.

Electronics 2024, 13, x FOR PEER REVIEW 9 of 20

Figure 4. Scheme of tokens (i.e., cars) generation part—one section.

3. Colored Petri Net Modeling Algorithm

Using the described concept of a modular colored Petri net and the defined fragments

of structures, it is possible to create entire functional blocks. Recall that these are the two

basic types on which the entire simulated structure is built:

• The junction module consists of the four fragments described earlier.

• The road module that connects crossroads located directly next to each other is in the

crossmap file input.

Both of these modules, together with all their components, are shown in Figure 5.

Individual sections of crossroads responsible for passing vehicles (tokens) in one of

the world directions collect data from other directions (entrance places). For example, a

transition directing vehicles to the north takes tokens from the input places in the direc-

tions east, west, and south. Therefore, the vehicle cannot turn around at the crossroad.

This is due to the assumption that such an operation is not optimal from the point of view

of the shortest path between the start and end points. With such a crossroads network

structure, there is no way for Dijkstra’s algorithm to route traffic through the same node

twice (returning from the next and returning to the previous one to change direction).

Each crossroad module has the same set of four entry and four exit locations, regardless

of the connections between them. Entrances not connected to the road are treated as car

parks adjacent to a given crossroad, from which vehicles can set off on the road (e.g., park-

ing under a block of flats with access to the first crossroad). Exits without further connec-

tions are treated identically but as the end of the vehicle’s journey (e.g., under the factory).

In the case of connections with other crossroads, these places are points where vehicles

move along the road module. Decisions to target individual tokens were described in the

previous section. However, in Figure 5, the transitions responsible for coloring the tokens

(assigning them registration numbers and releasing them for traffic in the city) are not

included due to the readability of the structure. The complete structure with all compo-

nents is shown in Figure 6. The algorithm written in pseudocode can be presented as fol-

lows:

Figure 4. Scheme of tokens (i.e., cars) generation part—one section.

3. Colored Petri Net Modeling Algorithm

Using the described concept of a modular colored Petri net and the defined fragments
of structures, it is possible to create entire functional blocks. Recall that these are the
two basic types on which the entire simulated structure is built:

• The junction module consists of the four fragments described earlier.
• The road module that connects crossroads located directly next to each other is in the

crossmap file input.

Both of these modules, together with all their components, are shown in Figure 5.
Individual sections of crossroads responsible for passing vehicles (tokens) in one of

the world directions collect data from other directions (entrance places). For example, a
transition directing vehicles to the north takes tokens from the input places in the directions
east, west, and south. Therefore, the vehicle cannot turn around at the crossroad. This
is due to the assumption that such an operation is not optimal from the point of view
of the shortest path between the start and end points. With such a crossroads network
structure, there is no way for Dijkstra’s algorithm to route traffic through the same node
twice (returning from the next and returning to the previous one to change direction). Each
crossroad module has the same set of four entry and four exit locations, regardless of the
connections between them. Entrances not connected to the road are treated as car parks
adjacent to a given crossroad, from which vehicles can set off on the road (e.g., parking
under a block of flats with access to the first crossroad). Exits without further connections
are treated identically but as the end of the vehicle’s journey (e.g., under the factory). In
the case of connections with other crossroads, these places are points where vehicles move

Electronics 2024, 13, 683 9 of 18

along the road module. Decisions to target individual tokens were described in the previous
section. However, in Figure 5, the transitions responsible for coloring the tokens (assigning
them registration numbers and releasing them for traffic in the city) are not included due
to the readability of the structure. The complete structure with all components is shown in
Figure 6. The algorithm written in pseudocode can be presented as follows:

Electronics 2024, 13, x FOR PEER REVIEW 10 of 20

Figure 5. Modules of the colored Petri net block (without T_gen transitions).

Main program pseudocode.

START

User sets data: Car number, topography of city map, locations of parkings, and

numbers of cars in each parking place.

For each crossroad from MAP

For each direction

Generate transitions, places, and arcs in the CROSSROAD module

For each pair of crossroads

For each direction

Generate transitions, places, and arcs in the STREET module,

connected to CROSSROADS modules

OR

If it is not a pair

Make connections to parking places

For each car

Generate random starting and ending points

Generate the shortest path using the Dijkstra algorithm

For each crossroad

For each direction

Generate data for transitions on Petri net about where moving

tokens (cars) are

Put tokens in places

Set Arcs throughput

Figure 5. Modules of the colored Petri net block (without T_gen transitions).

The road module is generated automatically only when two crossroads are directly
adjacent. The names of these modules are generated from the number of interconnected
crossroads; in particular, transitions connecting traffic lanes in each direction are described
in this way. On this basis, it is possible to clearly define a lane connecting two crossroads.
For example, the lane connecting junctions 4 and 5 is T_street_45, but the return lane is
T_street_54. The numbering is unique and completely distinguishable in the system, so you
can adjust the parameters individually for each road (or globally for all types) at once. The
global setting of parameters, such as firing time, is divided into each module separately.
You can set this parameter for all crossroads, for all roads, and, if necessary, individually
for each transition by modifying the matrix containing all the transitions in the model.
Similarly, you can globally set the weights of all paths or independently of paths inside
crossroads and roads. In the case of complicating the model, each path can be defined
individually because all paths, along with their weight as a parameter, are available in the
matrix of paths.

Electronics 2024, 13, 683 10 of 18

Main program pseudocode.

START
User sets data: Car number, topography of city map, locations of parkings, and
numbers of cars in each parking place.
For each crossroad from MAP

For each direction
Generate transitions, places, and arcs in the CROSSROAD module

For each pair of crossroads
For each direction

Generate transitions, places, and arcs in the STREET module,
connected to CROSSROADS modules

OR
If it is not a pair

Make connections to parking places
For each car

Generate random starting and ending points
Generate the shortest path using the Dijkstra algorithm
For each crossroad

For each direction
Generate data for transitions on Petri net about where moving
tokens (cars) are
Put tokens in places
Set Arcs throughput

Set all data for Transitions, Places, Arcs, firing time, simulation time,
initial values, and others for Petri net in the GPenSIM library as a
structure

Generete colored Petri net model in GPenSIM
Make simulation

Show results (defined by the user)
STOP

Electronics 2024, 13, x FOR PEER REVIEW 11 of 20

Set all data for Transitions, Places, Arcs, firing time, simulation time,

initial values, and others for Petri net in the GPenSIM library as a

structure

Generete colored Petri net model in GPenSIM

Make simulation

Show results (defined by the user)

STOP

Figure 6. Complete modular colored Petri net block with whole elements.

The road module is generated automatically only when two crossroads are directly

adjacent. The names of these modules are generated from the number of interconnected

crossroads; in particular, transitions connecting traffic lanes in each direction are de-

scribed in this way. On this basis, it is possible to clearly define a lane connecting two

crossroads. For example, the lane connecting junctions 4 and 5 is T_street_45, but the re-

turn lane is T_street_54. The numbering is unique and completely distinguishable in the

system, so you can adjust the parameters individually for each road (or globally for all

types) at once. The global setting of parameters, such as firing time, is divided into each

module separately. You can set this parameter for all crossroads, for all roads, and, if nec-

essary, individually for each transition by modifying the matrix containing all the transi-

tions in the model. Similarly, you can globally set the weights of all paths or independently

of paths inside crossroads and roads. In the case of complicating the model, each path can

be defined individually because all paths, along with their weight as a parameter, are

available in the matrix of paths.

Figure 6. Complete modular colored Petri net block with whole elements.

Electronics 2024, 13, 683 11 of 18

4. Noncolored Petri Net Modeling Algorithm

The task of optimizing travel time for vehicles using Petri nets can be solved in two
ways. The first assumes colored networks, where the “color” is the vehicle registration
number. This consideration has already been described in the introduction. The second
option assumes that there is no information about the starting and ending points of vehicles.
Therefore, the analysis is carried out with a classic Petri net, where vehicles are treated as
mere tokens. Due to the lack of information, this approach requires a simpler model and less
decision-making. The algorithm is much simpler, resulting in much lower computational
complexity and shorter computation time. An example of an algorithm using an uncolored
Petri net is described in this chapter as an example of an alternative approach. The process
of traffic management can be performed only by optimizing the traffic signal control system
without interfering with the routes of moving vehicles. An example of the algorithm is
shown in Figure 7.

Electronics 2024, 13, x FOR PEER REVIEW 12 of 20

4. Noncolored Petri Net Modeling Algorithm

The task of optimizing travel time for vehicles using Petri nets can be solved in two

ways. The first assumes colored networks, where the “color” is the vehicle registration

number. This consideration has already been described in the introduction. The second

option assumes that there is no information about the starting and ending points of vehi-

cles. Therefore, the analysis is carried out with a classic Petri net, where vehicles are

treated as mere tokens. Due to the lack of information, this approach requires a simpler

model and less decision-making. The algorithm is much simpler, resulting in much lower

computational complexity and shorter computation time. An example of an algorithm us-

ing an uncolored Petri net is described in this chapter as an example of an alternative

approach. The process of traffic management can be performed only by optimizing the

traffic signal control system without interfering with the routes of moving vehicles. An

example of the algorithm is shown in Figure 7.

Figure 7. Noncolored Petri net block.

5. Results

Based on the presented algorithms and modules of crossroads and roads, software

was developed as a function called in the GPenSIM (v. 9) environment. For the simulation

to work correctly, it is necessary to prepare the main simulation file (MSF) that generates

a Petri net model based on the input data. This file has the structure shown in Figure 8.

Figure 7. Noncolored Petri net block.

Electronics 2024, 13, 683 12 of 18

5. Results

Based on the presented algorithms and modules of crossroads and roads, software
was developed as a function called in the GPenSIM (v. 9) environment. For the simulation
to work correctly, it is necessary to prepare the main simulation file (MSF) that generates a
Petri net model based on the input data. This file has the structure shown in Figure 8.

Electronics 2024, 13, x FOR PEER REVIEW 13 of 20

Figure 8. Main simulation file.

The main simulation file references a number of other functions. Most of them are

elements of the GPenSIM environment, but it is necessary to prepare a PDF file (Petri net

Definition File) to build the model. In this file, all locations, places, and transitions are

defined. This can be carried out manually or by creating appropriate functions that define

all parameters from the input data, as was done. The PDF file is called from MSF as a

function that returns the Petri net model. The data for the PDF file is generated in the

crossgen.m file, which is the main component of the study. As described earlier, it gener-

ates all the data necessary for all the other functions that make up the model, which is

ultimately simulated from the function called in MSF (sim = gpensim(pni)). The result of

the generator is not only the simulation parameters but also a graphical map of crossroads

in the city defined in the file by the user (Figure 9) and a graph where each crossroad is a

node and the connections between them are one-way paths (Figure 10). In Figure 9, the x

and y axes are the cardinal directions. The starting point of the city starts in the northwest

and leads through subsequent points with intersections (placed on the grid). Figure 10

only shows the connections between intersections using the path model. You can therefore

see possible connections, but without their geographical location.

Figure 9. Map of the city with crossings defined by the user in a spreadsheet.

Figure 8. Main simulation file.

The main simulation file references a number of other functions. Most of them are
elements of the GPenSIM environment, but it is necessary to prepare a PDF file (Petri net
Definition File) to build the model. In this file, all locations, places, and transitions are
defined. This can be carried out manually or by creating appropriate functions that define all
parameters from the input data, as was done. The PDF file is called from MSF as a function
that returns the Petri net model. The data for the PDF file is generated in the crossgen.m
file, which is the main component of the study. As described earlier, it generates all the data
necessary for all the other functions that make up the model, which is ultimately simulated
from the function called in MSF (sim = gpensim(pni)). The result of the generator is not only
the simulation parameters but also a graphical map of crossroads in the city defined in the
file by the user (Figure 9) and a graph where each crossroad is a node and the connections
between them are one-way paths (Figure 10). In Figure 9, the x and y axes are the cardinal
directions. The starting point of the city starts in the northwest and leads through subsequent
points with intersections (placed on the grid). Figure 10 only shows the connections between
intersections using the path model. You can therefore see possible connections, but without
their geographical location.

The result for the sample input data is shown in Figure 9. Map of the city with
crossings defined by the user in a spreadsheet. Simulation results for different times are
shown in Figure 11 (20 units) and Figure 12 (50 units). These graphs illustrate the number
of vehicles (tokens) at different locations. The graph in Figure 11 shows all geographic
directions of one selected crossroad. It can be seen that there are no vehicles in the west
direction; this is because there is no vehicle parking at this “location”—it is off-limits to
traffic, so no vehicles arrive there. It can be seen that there is an increase in vehicles both
in the parking lot located to the south and in the other directions, where this crossroad is
connected to the others (numbered 13 and 16).

Electronics 2024, 13, 683 13 of 18

Electronics 2024, 13, x FOR PEER REVIEW 13 of 20

Figure 8. Main simulation file.

The main simulation file references a number of other functions. Most of them are

elements of the GPenSIM environment, but it is necessary to prepare a PDF file (Petri net

Definition File) to build the model. In this file, all locations, places, and transitions are

defined. This can be carried out manually or by creating appropriate functions that define

all parameters from the input data, as was done. The PDF file is called from MSF as a

function that returns the Petri net model. The data for the PDF file is generated in the

crossgen.m file, which is the main component of the study. As described earlier, it gener-

ates all the data necessary for all the other functions that make up the model, which is

ultimately simulated from the function called in MSF (sim = gpensim(pni)). The result of

the generator is not only the simulation parameters but also a graphical map of crossroads

in the city defined in the file by the user (Figure 9) and a graph where each crossroad is a

node and the connections between them are one-way paths (Figure 10). In Figure 9, the x

and y axes are the cardinal directions. The starting point of the city starts in the northwest

and leads through subsequent points with intersections (placed on the grid). Figure 10

only shows the connections between intersections using the path model. You can therefore

see possible connections, but without their geographical location.

Figure 9. Map of the city with crossings defined by the user in a spreadsheet. Figure 9. Map of the city with crossings defined by the user in a spreadsheet.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 20

Figure 10. Diagram of the city with crossings used to define the shortest paths using Dijkstra’s al-

gorithm.

The result for the sample input data is shown in Figure 9. Map of the city with cross-

ings defined by the user in a spreadsheet. Simulation results for different times are shown

in Figures 11 (20 units) and 12 (50 units). These graphs illustrate the number of vehicles

(tokens) at different locations. The graph in Figure 11 shows all geographic directions of

one selected crossroad. It can be seen that there are no vehicles in the west direction; this

is because there is no vehicle parking at this “location”—it is off-limits to traffic, so no

vehicles arrive there. It can be seen that there is an increase in vehicles both in the parking

lot located to the south and in the other directions, where this crossroad is connected to

the others (numbered 13 and 16).

Figure 11. Results of the simulation.

Figure 10. Diagram of the city with crossings used to define the shortest paths using Dijkstra’s algorithm.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 20

Figure 10. Diagram of the city with crossings used to define the shortest paths using Dijkstra’s al-

gorithm.

The result for the sample input data is shown in Figure 9. Map of the city with cross-

ings defined by the user in a spreadsheet. Simulation results for different times are shown

in Figures 11 (20 units) and 12 (50 units). These graphs illustrate the number of vehicles

(tokens) at different locations. The graph in Figure 11 shows all geographic directions of

one selected crossroad. It can be seen that there are no vehicles in the west direction; this

is because there is no vehicle parking at this “location”—it is off-limits to traffic, so no

vehicles arrive there. It can be seen that there is an increase in vehicles both in the parking

lot located to the south and in the other directions, where this crossroad is connected to

the others (numbered 13 and 16).

Figure 11. Results of the simulation. Figure 11. Results of the simulation.

Electronics 2024, 13, 683 14 of 18
Electronics 2024, 13, x FOR PEER REVIEW 15 of 20

Figure 12. Results of the simulation (cars in selected ends’ parking places).

Figure 12, in turn, shows the attainment of maximum vehicle values for the parking

lots in question. This simulation had different input data, as cars could reach any point.

Therefore, both parking lots for crossroad number 15 (west and south) accumulate tokens

(unlike the earlier example). This graph only shows cars reaching their destinations at the

two selected crossroads (numbers 8 and 15). Reaching the limit resulted from limiting the

number of vehicles to 2000 for the entire city, which consists of 25 crossroads, as shown in

Figure 9. The final quantities of tokens vary because their endpoints were selected ran-

domly by the function that generates points for each car (discussed earlier). Both simula-

tions, therefore, involve the same Petri net layout but differ in the initial conditions and

simulation time. Figures 11–13 show the number of vehicles reaching randomly selected

locations on the map (these may be parking lots or intersection exits). The x-axis presents

the time flowing in the system, and the y-axis presents the number of vehicles at each

moment in time. In the initial phase, traffic begins to increase and stabilizes as the road

capacity becomes saturated, which can be seen for longer time intervals (e.g., Figure 12).

For parking lots, it will reach the set value for the number of vehicles that were supposed

to arrive there. For intersections, it will start to decrease over time (of course, if the number

of cars leaving the parking lots starts to decrease).

Figure 13 shows the result of a modular simulation of a colored Petri net simulated

in GPenSIM, showing the difference in the number of cars traveling on the road and ar-

riving at the final destination (crossroad number 23 north). It can be clearly seen that the

number of cars from the neighborhood arriving at the parking lot is clearly higher than

those present in traffic. These are, of course, simulations for a short duration due to the

computational complexity of the current solution. However, they show that the software

produces results that can be further analyzed, especially considering further model devel-

opment.

Figure 12. Results of the simulation (cars in selected ends’ parking places).

Figure 12, in turn, shows the attainment of maximum vehicle values for the parking
lots in question. This simulation had different input data, as cars could reach any point.
Therefore, both parking lots for crossroad number 15 (west and south) accumulate tokens
(unlike the earlier example). This graph only shows cars reaching their destinations at the
two selected crossroads (numbers 8 and 15). Reaching the limit resulted from limiting the
number of vehicles to 2000 for the entire city, which consists of 25 crossroads, as shown in
Figure 9. The final quantities of tokens vary because their endpoints were selected randomly
by the function that generates points for each car (discussed earlier). Both simulations,
therefore, involve the same Petri net layout but differ in the initial conditions and simulation
time. Figures 11–13 show the number of vehicles reaching randomly selected locations
on the map (these may be parking lots or intersection exits). The x-axis presents the time
flowing in the system, and the y-axis presents the number of vehicles at each moment
in time. In the initial phase, traffic begins to increase and stabilizes as the road capacity
becomes saturated, which can be seen for longer time intervals (e.g., Figure 12). For parking
lots, it will reach the set value for the number of vehicles that were supposed to arrive there.
For intersections, it will start to decrease over time (of course, if the number of cars leaving
the parking lots starts to decrease).

Figure 13 shows the result of a modular simulation of a colored Petri net simulated in
GPenSIM, showing the difference in the number of cars traveling on the road and arriving
at the final destination (crossroad number 23 north). It can be clearly seen that the number
of cars from the neighborhood arriving at the parking lot is clearly higher than those present
in traffic. These are, of course, simulations for a short duration due to the computational
complexity of the current solution. However, they show that the software produces results
that can be further analyzed, especially considering further model development.

Simulations with longer times are very time-consuming, and optimization of some
functions is still required to reduce the number of iterations while the simulation is running.
Future changes will introduce optimizations that reduce computation time and add new
functions for further research and simulation.

Electronics 2024, 13, 683 15 of 18

Electronics 2024, 13, x FOR PEER REVIEW 16 of 20

Figure 13. Results of simulation for cars on selected routes between crossroads and one (for 23

North) for an end parking place.

Simulations with longer times are very time-consuming, and optimization of some

functions is still required to reduce the number of iterations while the simulation is run-

ning. Future changes will introduce optimizations that reduce computation time and add

new functions for further research and simulation.

6. Discussion

There are many proposals for modeling the vehicle traffic system based on Petri net

models. Among them, we can distinguish those based on classic, hybrid, modular, or col-

ored networks [27–30,35–47]. There are detailed models of traffic lights taking into account

their control and optimization [20,32,38], but none of them is based on recognizing each

vehicle by its registration number. The reason may be the lack of infrastructure to analyze

such a case in real-world conditions. However, other results can be indicated (improve

traffic control) compared to those presented in this article, as presented in Table 1.

Table 1. Petri net methods for optimization traffic control.

Reference Number Type of PN Contributions

[27] CTPN
A model of a real intersection to optimize the timed–col-

ored Petri net for traffic control

[Error! Reference source

not found.]
HPN

Solve the problem of coordinating several traffic lights

with the aim of improving the performance of some classes

of special vehicles, i.e., public and emergency vehicles.

[39,40] DTPN
Minimize the number of vehicles in the network in PN

(mathematical).

[41] HPN
Applied model predictive control to predict the number of

vehicles (optimizing algorithm).

[42] CPN
A model with optimal routes for vehicles can be planned

independently.

Figure 13. Results of simulation for cars on selected routes between crossroads and one (for 23 North)
for an end parking place.

6. Discussion

There are many proposals for modeling the vehicle traffic system based on Petri net
models. Among them, we can distinguish those based on classic, hybrid, modular, or
colored networks [27–30,35–47]. There are detailed models of traffic lights taking into
account their control and optimization [20,32,38], but none of them is based on recognizing
each vehicle by its registration number. The reason may be the lack of infrastructure to
analyze such a case in real-world conditions. However, other results can be indicated
(improve traffic control) compared to those presented in this article, as presented in Table 1.

Table 1. Petri net methods for optimization traffic control.

Reference Number Type of PN Contributions

[27] CTPN A model of a real intersection to optimize the timed–colored Petri net for traffic
control.

[38] HPN
Solve the problem of coordinating several traffic lights with the aim of
improving the performance of some classes of special vehicles, i.e., public and
emergency vehicles.

[39,40] DTPN Minimize the number of vehicles in the network in PN (mathematical).

[41] HPN Applied model predictive control to predict the number of vehicles
(optimizing algorithm).

[42] CPN A model with optimal routes for vehicles can be planned independently.

[43] PA Traffic control is dependent on current density due to the traffic system’s
mechanisms being dependent on a fixed time.

[44,45] p-timed PN Implement traffic-responsive control by extending green time on main roads.

[46] TSPN Models reduce the system complexity in terms of combinatorial explosion, and
they could be adapted easily for any real intersection.

[47] TPN Optimization methods to manage the timing of traffic lights at intersections
and speed limitations.

Electronics 2024, 13, 683 16 of 18

7. Conclusions

This article describes the concept of a modular colored Petri net. The GPenSIM
tool operating in the MATLAB environment was selected for the simulation. Simulation
of a small city can be performed by manually entering data into simulation files, but
it is very time-consuming and carries a high risk of errors. It was decided to develop
functions that automatically prepare all data and parameters to build the proper simulation
model. Input files in the form of spreadsheets are used for this, where the user enters
data (the city topology, crossroads, and the number of vehicles at each point). These
data are processed when the main simulation file is run. The developed and discussed
algorithms and functions create a Petri net module based on two basic modules: crossroads
and roads. Coloring the tokens made it possible to distinguish the vehicles due to their
registration numbers, which makes them completely distinguishable in the model. Thus,
they can determine the start and end points of the route. There is a clear difference between
a colored and an uncolored Petri net, especially in the same example described in the
previous sections. The inability to distinguish between tokens allows traffic optimization,
but without the ability to individually direct vehicles to the optimal path (due to temporary
road congestion).

It can therefore be concluded, based on the above examples, that the uncolored Petri
net allows traffic optimization by changing the behavior of the signaling system. The
colored network, on the other hand, allows the same, transfers data directly to vehicles, and
influences them to optimize their movement. This can practically be performed through
rerouting in the navigation system or, in the case of autonomous vehicles, through dynamic
re-routing in real-time. Of course, in practice, it is possible to combine both of these
properties at the same time. All this will be the subject of further research on the proposed
traffic optimization solution using modular colored Petri nets.

Further work will focus primarily on the already-mentioned optimization and the
development of a mechanism to minimize the travel time for vehicles. It will therefore
be crucial here to minimize the ETA parameter discussed earlier. Timed–colored Petri
nets could be used for this purpose. They have the advantage of being able to control the
moments of time when tokens reach specific locations and direct them through transitions
relative to their lifetimes (or arrivals). The lifetimes of the tokens will also be a clear
indicator of how long the journey took, making optimization and comparison of results
more reliable [35,36].

The greatest achievements include the following:

- Development of crossroad and road modules (algorithms and their construction in a
simulation environment).

- Proposing the concept of a modular colored Petri net to solve the given problem.
- Comparison of the possibilities of a colored and uncolored network based on the

assumptions of universal modules.
- Allowing the user to define the appearance of the city and crossroads, as well as the

number of vehicles, in a transparent and convenient way.
- Visualization of the above data in graphical form.
- Development of functions that automatically generate data and parameters necessary

to perform simulations in the GPenSIM environment.
- Using this tool to create a model and simulate sample input data.
- Proposing further work related to the process of optimizing the control of both traffic

lights and autonomous vehicles (or navigation in conventional vehicles).

In the proposed variant, we no longer want to control traffic lights to relieve jams. We
want to prevent them. This is a completely different approach to the proposed solution
based on the model of a modular colored Petri net. The presented and discussed software
can be used for many different applications because it allows you to simulate traffic at
crossroads in the city using distinguishable tokens. It is, therefore, a fully working solution
that will be further developed.

Electronics 2024, 13, 683 17 of 18

Author Contributions: Conceptualization, T.K.; methodology, T.K. and S.S.; software, R.D. and T.K.;
validation, T.K.; formal analysis, T.K. and S.S.; investigation, T.K.; resources, R.D. and T.K.; data
curation, T.K.; writing—original draft preparation, T.K.; writing—review and editing, S.S. and R.D.;
visualization, T.K.; supervision, T.K. and R.D.; project administration, T.K.; funding acquisition, T.K.
All authors have read and agreed to the published version of the manuscript.

Funding: Research is funded by the University of Stavanger and by the Ministry of Science and
Higher Education of the Republic of Poland to maintain the research potential of the disciplines of
automation, electronics, electrical engineering, and space technologies.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Droste, M.; Shortt, R.M. From Petri Nets to Automata with Concurrency. In Applied Categorical Structures; Kluwer Academic

Publishers: Alphen aan den Rijn, The Netherlands, 2002; Volume 10, pp. 173–191.
2. Jensen, K.; Kristensen, L.M.; Wells, L. Coloured Petri Nets and CPN Tools for modelling and validation of concurrent systems. Int.

J. Softw. Tools Technol. Transf. 2007, 9, 213–254. [CrossRef]
3. Peterson, J.L. Petri Net Theory and the Modeling of Systems; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1981.
4. Rzonca, D.; Rząsa, W.; Samolej, S. Consequences of the form of restrictions in Coloured Petri Net models for behaviour of arrival

stream generator used in performance evaluation. In Proceedings of the 25th International Conference, CN 2018, Gliwice, Poland,
19–22 June 2018; Computer Networks; Proceedings 25. Springer International Publishing: Cham, Switzerland, 2018; pp. 300–310.

5. Wang, C.; Feng, X.; Li, X.; Zhou, X.; Chen, P. Colored petri net model with automatic parallelization on real-time multicore
architectures. J. Syst. Archit. 2014, 60, 293–304. [CrossRef]

6. Riemann, R.C. Modelling of Concurrent Systems: Structural and Semantical Methods in the High Level Petri Net Calculus; Herbert Utz
Verlag: Munchen, Germany, 1999.

7. Davidrajuh, R. Modeling Discrete-Event Systems with Gpensim: An Introduction; Springer International Publishing: Cham, Switzer-
land, 2018.

8. Reisig, W. Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case Studies; Springer: Berlin/Heidelberg,
Germany, 2013.

9. Davidrajuh, R. Modular Petri net models of communicating agents. In Proceedings of the International Joint Conference
SOCO’17-CISIS’17-ICEUTE’17, León, Spain, 6–8 September 2017; pp. 328–337.

10. Valmari, A. The state explosion problem. In Advanced Course on Petri Nets; Springer: Berlin/Heidelberg, Germany, 1996;
pp. 429–528.

11. Clarke, E.; Grumberg, O.; Jha, S.; Lu, Y.; Veith, H. Progress on the state explosion problem in model checking. In Informatics;
Springer: Berlin/Heidelberg, Germany, 2001; pp. 176–194.

12. Baier, C.; Katoen, J.P. Principles of Model Checking; MIT Press: Cambridge, MA, USA, 2008.
13. Davidrajuh, R. A New Modular Petri Net for Modeling Large Discrete-Event Systems: A Proposal Based on the Literature Study.

Computers 2019, 8, 83. [CrossRef]
14. Jensen, K. Coloured petri nets. In Proceedings of the IEE Colloquium on Discrete Event Systems: A New Challenge for Intelligent

Control Systems, London, UK, 4 June 1993.
15. David, R.; Alla, H. Discrete, Continuous, and Hybrid Petri Nets; Springer: Berlin/Heidelberg, Germany, 2005.
16. Davidrajuh, R.; Joseph, J.F. Towards Modeling Road Tunnels: A Petri Nets based Approach. Int. J. Simul. Syst. Sci. Technol. 2022,

23. [CrossRef]
17. Riouali, Y.; Benhlima, L.; Bah, S. Petri net extension for traffic road modelling. In Proceedings of the IEEE/ACS 13th International

Conference of Computer Systems and Applications (AICCSA), Agadir, Morocco, 29 November–2 December 2016; pp. 1–6.
18. Huang, Y.S.; Weng, Y.S.; Zhou, M. Modular design of urban traffic-light control systems based on synchronized timed Petri nets.

IEEE Trans. Intell. Transp. Syst. 2013, 15, 530–539. [CrossRef]
19. Davidrajuh, R. Petri Nets for Modeling of Large Discrete Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 95–105.
20. Wiseman, Y. Traffic Light with Inductive Detector Loops and Diverse Time Periods. Contemp. Res. Trend IT Converg. Technol. 2016,

4, 166–170.
21. Mulay, S.; Dhekne, C.; Bapat, R.; Budukh, T.; Gadgil, S. Intelligent city traffic management and public transportation system.

arXiv 2013, arXiv:1310.5793.
22. Eamthanakul, B.; Ketcham, M.; Chumuang, N. The traffic congestion investigating system by image processing from CCTV

camera. In Proceedings of the 2017 International Conference on Digital Arts, Media and Technology (ICDAMT), Chiang Mai,
Thailand, 1–4 March 2017; pp. 240–245.

23. Peppa, M.V.; Bell, D.; Komar, T.; Xiao, W. Urban traffic flow analysis based on deep learning car detection from CCTV image
series. In SPRS TC IV Mid-Term Symposium “3D Spatial Information Science–The Engine of Change”; Newcastle University: Newcastle
upon Tyne, UK, 2018.

https://doi.org/10.1007/s10009-007-0038-x
https://doi.org/10.1016/j.sysarc.2013.08.016
https://doi.org/10.3390/computers8040083
https://doi.org/10.5013/IJSSST.a.23.01.05
https://doi.org/10.1109/TITS.2013.2283034

Electronics 2024, 13, 683 18 of 18

24. Joo, H.; Lim, Y. Intelligent traffic signal phase distribution system using deep Q-network. Appl. Sci. 2022, 12, 425. [CrossRef]
25. Shi, Y.; Wang, Z.; LaClair, T.J.; Wang, C.R.; Shao, Y.; Yuan, J. A Novel Deep Reinforcement Learning Approach to Traffic Signal

Control with Connected Vehicles. Appl. Sci. 2023, 13, 2750. [CrossRef]
26. Feng, Y.; Huang, S.E.; Wong, W.; Chen, Q.A.; Mao, Z.M.; Liu, H.X. On the Cybersecurity of Traffic Signal Control System with

Connected Vehicles. IEEE Trans. Intell. Transp. Syst. 2022, 23, 16267–16279. [CrossRef]
27. Dotoli, M.; Fanti, M.P. An urban traffic network model via coloured timed Petri nets. Control Eng. Pract. 2006, 14, 1213–1229.

[CrossRef]
28. Tang, J.; Piera, M.A.; Guasch, T. Coloured Petri net-based traffic collision avoidance system encounter model for the analysis of

potential induced collisions. Transp. Res. Part C Emerg. Technol. 2016, 67, 357–377. [CrossRef]
29. List, G.F.; Cetin, M. Modeling traffic signal control using Petri nets. IEEE Trans. Intell. Transp. Syst. 2004, 5, 177–187. [CrossRef]
30. Wang, J. Timed Petri Nets: Theory and Application; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 9.
31. Statista. Available online: https://www.statista.com/statistics/1230664/projected-number-autonomous-cars-worldwide (ac-

cessed on 20 March 2023).
32. Luo, J.; Huang, Y.S.; Weng, Y.S. Design of variable traffic light control systems for preventing two-way grid network traffic jams

using timed Petri nets. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3117–3127. [CrossRef]
33. Kaid, H.; Al-Ahmari, A.; Li, Z.; Davidrajuh, R. Intelligent Colored Token Petri Nets for Modeling, Control, and Validation of

Dynamic Changes in Reconfigurable Manufacturing Systems. Processes 2020, 8, 358. [CrossRef]
34. Kaid, H.; Al-Ahmari, A.; Li, Z.; Davidrajuh, R. Single Controller-Based Colored Petri Nets for Deadlock Control in Automated

Manufacturing Systems. Processes 2020, 8, 21. [CrossRef]
35. Samolej, S.; Szmuc, T. Time Constraints Modeling And Verification Using Timed Colored Petri Nets. In Real-Time Programming

2004; Elsevier: Amsterdam, The Netherlands, 2005; pp. 127–132.
36. Bevilacqua, M.; Ciarapica, F.E.; Giovanni, M. Timed coloured petri nets for modelling and managing processes and projects.

Procedia CIRP 2018, 67, 58–62. [CrossRef]
37. Ng, K.M.; Reaz, M.B.; Ali, M.A. A review on the applications of Petri nets in modeling, analysis, and control of urban traffic. IEEE

Trans. Intell. Transp. Syst. 2013, 14, 858–870. [CrossRef]
38. Di Febbraro, A.; Giglio, D.; Sacco, N. Urban traffic control structure based on hybrid Petri nets. IEEE Trans. Intell. Transp. Syst.

2004, 5, 224–237. [CrossRef]
39. Di Febbraro, A.; Giglio, D. On adopting a Petri net-based switching modeling system to represent and control urban areas. In

Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems, Vienna, Austria, 13–16 September
2005; pp. 185–190.

40. Di Febbraro, A.; Giglio, D. Traffic-responsive signaling control through a modular/switching model represented via DTPN. In Pro-
ceedings of the IEEE Intelligent Transportation Systems Conference, Toronto, ON, Canada, 17–20 September 2006; pp. 1430–1435.

41. Basile, F.; Chiacchio, P.; Teta, D. A hybrid model for real-time simulation of urban traffic. Control Eng. Pr. 2012, 20, 123–137.
[CrossRef]

42. Liang, X.; Dang, Y.; Hou, Y. Modeling and Analysis of Urban Traffic System Based on Colored Petri Nets. In Proceedings of the
2021 IEEE International Conference on Networking, Sensing and Control (ICNSC), Xiamen, China, 3–5 December 2021; Volume 1,
pp. 1–6.

43. Anas, A.M.; Terzioğlu, H.; Durdu, A. Intelligent Traffic Signaling Control Using Petri Nets. Artif. Intell. Stud. 2020, 3, 1–13.
44. Soares, M.S.; Vrancken, J. A modular Petri net to modeling and scenario analysis of a network of road traffic signals. Control Eng.

Pract. 2012, 20, 1183–1194. [CrossRef]
45. Soares, M.S.; Vrancken, J. Responsive traffic signals designed with Petri nets. In Proceedings of the IEEE International Conference

on Systems, Man, and Cybernetics, Singapore, 12–15 October 2008; pp. 1942–1947.
46. Elidrissi, H.L.; Moh, A.N.S.; Tajer, A. Modular Design and Adaptive Control of Urban Signalized Intersections Systems Using

Synchronized Timed Petri Nets. Comput. Inform. 2022, 41, 590–608. [CrossRef]
47. Mohammadi, M.; Dideban, A.; Moshiri, B. A novel approach to modular control of highway and arterial networks using petri

nets modeling. Int. J. Eng. 2023, 36, 1578–1588. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app12010425
https://doi.org/10.3390/app13042750
https://doi.org/10.1109/TITS.2022.3149449
https://doi.org/10.1016/j.conengprac.2006.02.005
https://doi.org/10.1016/j.trc.2016.03.001
https://doi.org/10.1109/TITS.2004.833763
https://www.statista.com/statistics/1230664/projected-number-autonomous-cars-worldwide
https://doi.org/10.1109/TITS.2019.2925824
https://doi.org/10.3390/pr8030358
https://doi.org/10.3390/pr8010021
https://doi.org/10.1016/j.procir.2017.12.176
https://doi.org/10.1109/TITS.2013.2246153
https://doi.org/10.1109/TITS.2004.838180
https://doi.org/10.1016/j.conengprac.2011.10.002
https://doi.org/10.1016/j.conengprac.2012.06.005
https://doi.org/10.31577/cai_2022_2_590
https://doi.org/10.5829/IJE.2023.36.08B.17

	Introduction
	Concept of Modular Colored Token Petri Net (MCTPN)
	Colored Petri Net Modeling Algorithm
	Noncolored Petri Net Modeling Algorithm
	Results
	Discussion
	Conclusions
	References

