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Abstract: Information is pivotal in contemporary society, highlighting the necessity for a secure
cryptographic system. The emergence of quantum algorithms and the swift advancement of spe-
cialized quantum computers will render traditional cryptography susceptible to quantum attacks in
the foreseeable future. The lattice-based Saber key encapsulation protocol holds significant value
in cryptographic research and practical applications. In this paper, we propose three types of poly-
nomial multipliers for various application scenarios including lightweight Schoolbook multiplier,
high-throughput multiplier based on the TMVP-Schoolbook algorithm and improved pipelined NTT
multiplier. Other principal modules of Saber are designed encompassing the hash function module,
sampling module and functional submodule. Based on our proposed multiplier, we implement
the overall hardware circuits of the Saber key encapsulation protocol. Experimental results demon-
strate that our overall hardware circuits have different advantages. Our lightweight implementation
has minimal resource consumption. Our high-throughput implementation only needs 23.28 µs to
complete the whole process, which is the fastest among the existing works. The throughput rate is
10,988 Kbps and the frequency is 416 MHz. Our hardware implementation based on the improved
pipelined NTT multiplier achieved a good balance between area and performance. The overall
frequency can reach 357 MHz.

Keywords: hardware security; post-quantum cryptography; Saber key encapsulation protocol;
polynomial multiplication optimization

1. Introduction

Information is fundamental in modern society, demanding secure cryptographic
systems for protection. Traditional cryptographic systems rely on mathematical problems
that are computationally hard within a finite polynomial time [1,2]. For instance, the RSA
public key encryption algorithm relies on the hardness of integer factorization to ensure the
security of its private key [3]. However, with the emergence of quantum algorithms and
the rapid development of specialized quantum computers, it is expected that traditional
cryptography will be vulnerable to quantum attacks in the foreseeable future [4]. Post-
quantum cryptographic algorithms, such as CRYSTALS-Kyber, are standardized as the new
generation of cryptographic protocols designed to resist quantum attacks [5]. Similarly, the
Saber key encapsulation protocol, which is based on lattice problems [6,7], holds substantial
value for both research and practical applications in cryptography.

In the third round of evaluation by the National Institute of Standards and Technology
(NIST), failure to update the security of Saber with parameter sets to counter the DualAttack
led to inferior RAM model security in software compared to Kyber. Although eliminated
by NIST, the Saber algorithm retains valuable attributes suitable for research and imple-
mentation in academic and industrial settings [8]. Therefore, this study chooses the Saber
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algorithm for the overall hardware implementation of the protocol. The research provides
valuable insights for the future deployment of Post-Quantum Cryptography (PQC) in
various scenarios [9]. This is particularly important given the growing global concern about
the threat of quantum attacks. While Saber is no longer a standard of NIST, it remains an
algorithm that boasts clear advantages in hardware implementation, transmission band-
width and robust security. Overall, the ongoing research into the Saber algorithm continues
to hold significance and meaning, particularly within specialized fields.

This paper focuses on the hardware design and implementation of the Saber key
encapsulation protocol. In 2017, Jan-Pieter et al. designed the first version of the Saber
key encapsulation protocol and submitted it to NIST [10]. The main operation of the Saber
algorithm involves the multiplication of a ring polynomial matrix and a vector in the
modular domain. The NTT algorithm demonstrates commendable hardware performance,
effectively addressing the polynomial multiplication requirements of KEM schemes rooted
in the M-LWE or LWE problem [11]. Polynomial multiplication is no longer the primary
bottleneck in this context. The key bottleneck lies in the functions responsible for key
generation. These functions exhibit significant latency and consume considerable hardware
resources, necessitating optimization efforts.

Hardware implementation has a clear speed advantage due to its high level of par-
allelism. As a result, numerous researchers both domestically and internationally, have
utilized FPGA platforms and ASICs. In 2020, Sujoy Sinha Roy et al. designed the first
hardware implementation of the Saber algorithm using Xilinx’s Zynq UltraScale FPGA
platform [12]. In order to expedite polynomial multiplication, the author employed 256 low-
level operators simultaneously, leading to the Schoolbook algorithm being completed in
256 cycles. This approach effectively resolves the memory access bottleneck with minimal
impact on the overall area. The co-processing architecture is adopted, and a customized
32-bit instruction set is used for operator control, considering both flexibility and perfor-
mance. The peripheral control circuit of the SHA3 function is optimized simultaneously [13].
The hardware results show that the frequency reaches 250 MHz, and only 23.6 k LUT re-
sources are consumed. In 2022, Zhu et al. implemented the Saber algorithm using the
TSMC 28 nm process. The overall chip area is only 3.6 mm2, and it operates at a frequency
of 500 MHz. This is also the first complete implementation of the Saber protocol of ASIC
and has been verified by a fluidic chip. The ASIC implementation is superior to other cryp-
tographic algorithms in terms of power consumption and security [14]. Andrea Basso et al.
implemented the multiplication of Saber and Dilithium on Artix-7 in 2021 using the same it-
erative NTT polynomial multiplier. This implementation consumed 519 clock cycles, which
is lower compared to the NTT multipliers used in other cryptographic algorithms [15]. In
addition, Aikata et al. designed a unified coprocessor architecture that can implement both
Dilithium and Saber [16]. They aligned the data stream of hash function output random
numbers and conducted a thorough analysis of the impact of the bit width of polynomial
coefficients on the results of NTT. VietBaDang et al. presented a high-performance bench-
mark implementation of the Saber, Kyber and NTRU algorithms [17]. By integrating and
optimizing existing implementations, they determined that the Saber protocol at medium
security levels can be completed in 48.4 µs. Rentería-Mejía et al. presented the design of
LWE cryptoprocessors utilizing NTT cores and Gaussian samplers based on the inverse
transform method. The cryptoprocessors were synthesized on a field-programmable gate
array and subsequently validated in hardware, which exhibits noteworthy throughput [18].
In continued research, they proposed a lattice-based encryption scheme for Identity-Based
Encryption, alongside a lattice-based cryptoprocessor tailored for the encryption or de-
cryption of the suggested CCA Identity-Based Encryption scheme, specifically for security
parameters n = 512 and n = 1024. The hardware implementation demonstrated efficiency,
achieving a commendable level of throughput [19].

In this paper, we propose three types of polynomial multipliers for various application
scenarios including the lightweight Schoolbook multiplier, high-throughput multiplier
based on TMVP-Schoolbook algorithm and improved pipelined NTT multiplier. Other
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principal modules of the Saber protocol are designed, encompassing the hash function
module, sampling module and functional submodule. Based on our proposed multiplier,
we implement the overall hardware circuits of the Saber key encapsulation protocol. Exper-
imental results demonstrate that our overall hardware circuits have different advantages
compared with other existing works.

The following sections outline the structure of this paper. In Section 2, we provide
a description of the Saber key encapsulation protocol. In Section 3, we propose three
types of polynomial multipliers for various application scenarios including lightweight
Schoolbook multiplier, high-throughput multiplier based on TMVP-Schoolbook algorithm
and improved pipelined NTT multiplier. Moreover, other principal modules of Saber
are designed, encompassing the hash function module, sampling module and functional
submodule. In Section 4, we implement the overall hardware circuits of the Saber key
encapsulation protocol based on our proposed multiplier. In Section 5, we analyze the
results and compare with other existing works. Finally, we make a conclusion and reflect
on future work in Section 6.

2. Preliminaries

The Saber key encapsulation protocol is described in Algorithms 1–3 including key
generation, key encapsulation and key decapsulation [20].

Algorithm 1 KEM.KeyGen()

1: (PKcpa, SKcpa) = PKE.KeyGen()
2: hashpk = SHA3− 256(PKcpa)

3: z← u({0, 1}256)
4: SKcca = (z||hashpk||PKcpa||SKcpa)
5: SKcca = PKcpa
6: return (PKcca, SKcca)

In the key generation phase, step 1 involves invoking the Key.Gen function from
the public key encryption algorithm to generate a public-private key pair (PKcpa, SKcpa)
with IND-CPA security level [21]. The public key undergoes a hash function, specifically
SHA3-256, to obtain a 256-bit message digest, which is the hashed value of hashpk with
the public key information. In Step 3, z represents a 256-bit random number generated by
uniform sampling. Its purpose is to generate a random value in case of decryption failure.
The || operator performs bitwise concatenation, which does not consume any resources.

Algorithm 2 KEM.Encap(PKcca)

1: m← u({0, 1}256)
2: hashm = SHA3− 256(m)
3: hashpk = SHA3− 256(PKcca)
4: r||k = SHA3− 512(hashpk||hashm)
5: CipherTextcca = PKE.Enc(hashm, r, PKcca)
6: r′ = SHA3− 256(Ciphertextcca)
7: kr′ = (r′||k)
8: SessionKeycca = SHA3− 256(kr′)
9: return (SessionKeycca, Ciphertextcca)

The key encapsulation phase aims to obtain the public key from the key generation
phase and generate a session key. This phase also includes generating a ciphertext that
contains the random seed used to generate the session key. Unlike public key encryption,
there is no plaintext involved in the encryption process. The 256-bit message m is also
obtained by sampling from a uniform distribution and then hashed using a hash function
to obtain hashm. The public key is hashed to obtain hashpk, which is then concatenated with
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hashm to form a 512-bit hash value. The upper 256 bits of the hash value are utilized as input
for generating the random number r in Step 5, while invoking the public key encryption
function. This process results in an IND-CCA secure ciphertext called Ciphertextcca. The
session key is generated through two rounds of SHA3-256, and it is stored by the server [22].
Once the communication is closed, the session key is deleted, effectively protecting the key.

Algorithm 3 KEM.Decap(CipherTextcca, SKcca)

1: SKcca = Extract(z||hashpk||PKcpa||SKcpa)
2: m = PKE.Dec(CipheTextcca, SKcpa)
3: r||k = SHA3− 512(hashpk||m)
4: CipherText′cca = PKE.Enc(m, r, PKcpa)
5: c = Veri f y(Ciphertext′cca, Ciphertextcca)
6: if c = 0 then
7: |temp = (k||r′)
8: else
9: |temp = (z||r′)

10: end if
11: SessionKeycca = SHA3− 256(temp)
12: return SessionKeycca

In the decapsulation phase, the ciphertext received along with the private key from
the key generation phase, is used to derive the session key corresponding to the ciphertext.
The message m is obtained by decrypting the received Ciphertext. Then, m is concatenated
with the hash value of hashpk to form a 512-bit kr. In Step 6, the public key encryption
algorithm is invoked again to generate the ciphertext Ciphertext′cca on the client side. The
next step is to verify whether the client’s ciphertext matches the server’s ciphertext. If they
do not match, the output is k ∥ r′, and if they do match, the output is z ∥ r′. The session key
is then returned.

3. Proposed Design
3.1. Hardware Implementation of Polynomial Multiplier
3.1.1. Lightweight Schoolbook Polynomial Multiplier

The polynomial multiplier consumes most of the resources in the hardware implemen-
tation of Saber [23], which needs to be optimized for efficient hardware implementation.
In the previous work [24], we have designed a lightweight and efficient Schoolbook poly-
nomial multiplier for Saber. The architecture includes an efficient multiplication strategy,
enabling the computation of four coefficient-wise multiplications per cycle along with
the multiplication operand loading technique being designed for the compact multiplier.
The hardware architecture of the lightweight Schoolbook multiplier, as shown in Figure 1,
consists of several main components: a public polynomial data loading module, a control
module, two DSP units, four either multiplexers, four 13-bit accumulation registers, and
four adders. RAM_A serves as the storage BRAM unit for the entire protocol, enabling
immediate updates and overwriting unnecessary intermediate data, thereby conserving
resources. RAM_S, also a true dual-port BRAM, has a bit width of 4 bits and an address
depth of 786. In fact, if three lightweight multipliers are instantiated simultaneously and
operate in the same multiplication state and progress, they can share the output data
from a single RAM_S, reducing the required cycles for multiplication in the protocol and
improving throughput. During the multiplication computation, coefficients of the same
order are computed first, and then higher-order coefficients are calculated sequentially in
a serial manner. This approach enables the accumulation of new partial product results
within a restricted number of registers, considering the resource constraints in each cycle of
the lightweight implementation. The designed Schoolbook polynomial multiplier demon-
strates scalability, allowing for flexibility in its configuration. This adaptability is achieved
through the manipulation of the algorithm’s cycle count and the adjustment of bit width
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during the operational process. The polynomial data loading module is dynamically modi-
fied, introducing an additional stage to facilitate seamless integration with architectures of
varying sizes, specifically accommodating either a 512-point or a 1024-point architecture.
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Figure 1. Lightweight Schoolbook polynomial multiplier [18].

The multiplier receives input and generates an output signal. The control module
updates the address in each cycle. It reads the corresponding coefficient through the three
address lines: s0_addr, s1_addr, and a(x)_addr. RAM_A 64 outputs data flow through
the polynomial of the data load module, resulting in two streams of 2nd order difference
coefficient flow: Coeff_a1 and Coeff_a0. These signals are combined with the 19 com_s
signals and then multiplied by the two DSPs. A single DSP48E1 unit can handle signed
multiplication with a bit width of 25 × 18. Therefore, in the case of Saber, two point-to-
point unsigned multiplications can be executed simultaneously, enabling the multiplier to
perform four multiplications in a single cycle. This enhances parallelism. The upper 16 bits
and the lower 16 bits of the 32-bit output of the DSP (with 30 bits that will not overflow),
respectively, represent the absolute value of a partial product. In this case, we need to match
the four partial products with the four coefficients that correspond to the multiplication
result. Because the modules of Saber are all powers of 2, the modular reduction operation
can be completed by intercepting only the 16 bits and the lower 13 bits in the hardware
implementation, without consuming excessive resources for modular reduction. The
addition or subtraction of the value in the accumulation register is determined by the
pre-calculated sign bit and the original sign phase of the secret polynomial coefficient. The
output result is produced after 256 cycles, without an explicit result write-back cycle. The
global multiplier does not have any redundant clock cycles, except for a few cycles that are
initialized. After 16,384 cycles, the single polynomial multiplication is completed.

3.1.2. High-Throughput Polynomial Multiplier Based on TMVP-Schoolbook

As illustrated in Figure 2, the proposed high-throughput polynomial multiplier is
specifically designed for Saber based on the TMVP-Schoolbook algorithm. At the start of
the multiplication process, the multiplier initially retrieves the coefficients of the secret
polynomial from an external BRAM and stores them in the buffer. Once loaded, it performs
left cyclic shift operations on the coefficients in the buffer during each cycle [25]. It sequen-
tially loads groups of 4 bits into the underlying 256 computational units. The coefficient
loading module for the public polynomial simultaneously reads four coefficients, each
separated by 64 degrees. It then generates their multiples in the centralized multiplier,
which are subsequently inputted into the underlying computing units. The absolute values
of the coefficients in the secret polynomial serve as control bits for the four selectors in
each computing unit, selecting the corresponding sjai. During subtraction, the additive
inverse of the coefficient is computed in the finite field before performing the addition
operation. To further increase the efficiency of the multiplier, registers are inserted at the
blue dotted line, implementing a three-stage pipeline [26]. The multiplier is controlled by a
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finite state machine, and the top-level module includes an Acc_clear signal that determines
whether the 3328-bit accumulation registers should be cleared. This optimization can be
performed during the initial multiplication of the matrix polynomial to reduce the number
of cycles required for writing back two-thirds of the multiplication results and reading the
previous multiplication results. The TMVP-Schoolbook polynomial multiplier, as designed,
is parametrizable. According to the specific requirements of the bit width, it possesses
the capability to dynamically retrieve coefficients of the polynomial multiplier, making it
adaptable for various architectures with different parameters.
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Figure 2. Proposed high-throughput polynomial multiplier based on TMVP-Schoolbook.

3.1.3. Improved Pipelined NTT Polynomial Multiplier

For the Saber algorithm, a Solinas prime number with a module of 23 bits is selected as
the new module where q = 223− 212 + 1 [27]. As shown in Table 1, there are the NTT/INTT
parameters for the Saber algorithm.

Table 1. Parameters of NTT/INTT for Saber.

Argument n n−1 q ω ω−1 ζ ζ−1

value 256 8,387,681 8,380,417 169,688 534,437 1,239,911 4,231,948

The modulo multiplier circuit needs to reduce the result obtained by multiplying two
23-bit numbers back to a 23-bit number. Since the modulo q = 223 − 213 + 1 is a Solinas
prime, an iterative modulo reduction algorithm can be constructed iteratively using the
congruence property of 223 ≡ 213 − 1 (mod q). Firstly, the range of a 45-bit signed number
is
[
−244, 244 − 1

]
, which is sufficient to multiply two numbers in the range of [−q′/2, q′/2]

without causing overflow. Therefore, the temporary bit of the product is 45-bit. Then we
can obtain the following:

t = t4243 + t3233 + t2223 + t1213 + t0

= t4(233 × 210) + t3233 + t2(213 − 1) + t1213 + t0

= t4((223 − 210)× 210) + t3(223 − 210) + t2(213 − 1) + t1213 + t0

= t4(−220 + 213 − 210 − 1) + t3(213 − 210 − 1) + t2(213 − 1) + t1213 + t0

(1)

In Equation (4), t0 is the lowest 13-bit, t1 ∼ t3 is the middle 10-bit, and t4 is the highest
2-bit. These discrete bits correspond to the coefficients extracted from the formula. The



Electronics 2024, 13, 675 7 of 19

main idea is to approximate t from [−q′, q′] by simple shifts and additions and subtraction,
and then make a fine final adjustment. The final output result will be in the range of
[−q′/2, q′/2− 1]. It is noted that the reduced values will not be strictly evenly distributed
in the range of [−q′/2, q′/2− 1]. Most of the values will be far away from the boundary
values, which roughly corresponds to a normal distribution. In addition, there is a modular
reduction algorithm to consider. It involves reducing the 45-bit product into an unsigned
number and separately recording the sign bits. The unsigned number reduction algorithm
is used to reduce the value, and the final result will be in the range of [0, q′ − 1].

The proposed overall modulo multiplier circuit is replaced by the power multiplication
of 2 using the left shift operation in Figure 3. The remaining components mainly consist
of addition, subtraction, and a comparator. To improve frequency, the modulo multiplier
unit is divided into four pipeline stages, as it serves as the underlying module for NTT
transformation and can limit overall performance. Moreover, in order to minimize the
path length and resource consumption, one of the three-input adders is replaced by 10-bit
carry-save adders. The NTT polynomial multiplier, designed with a radix-2 architecture,
is easily scalable. Transitioning from a 256-point architecture to 512 points requires only
a single additional stage, and for a 1024-point architecture, just two additional stages are
needed. The implementation is both straightforward and minimally demanding in terms
of hardware resources.
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Figure 3. Proposed NTT modulo multiplier circuit.

3.2. Hardware Implementation of SHA-3 Hash Function Module
3.2.1. Permutation Iterative Wheel Function

SHA-3 is a cryptographic hash function introduced by NIST through a standardization
competition in its early stages [28]. It is capable of generating random numbers of any
length and provides resistance against collision attacks and second pre-image attacks. In
other words, knowing the hash value does not reveal the input message, and the hash
values of any two message sets will not be identical. Currently, the most advanced attack
methods can only target the fourth or fifth rounds of the iterative operation of SHA-3
functions. Therefore, SHA-3 functions are considered highly secure for applications such
as message digests and pseudo-random number generation. Hash functions are widely
used nowadays, and the lattice-based cryptographic key encapsulation protocol has chosen
SHA-3 functions as a generator of a large number of pseudo-random numbers and as a
message digest function to reduce transmission bandwidth while enhancing security.

The Saber key encapsulation protocol utilizes the extensible functions SHAKE-128,
SHA3-256 and SHA3-512. SHAKE-128 serves as a sampling algorithm for polynomial coef-
ficients, capable of generating pseudo-random numbers of any length. The hash functions
SHA3-256 and SHA3-512 are used for hashing and protecting public and private keys.
They generate 256-bit and 512-bit hash values for messages of any length. Regardless of the
specific function used, they all share an internal iteration function called Keccak, which
is controlled by different parameters in the external control logic. Therefore, optimizing
the performance of the Keccak function is crucial to ensure efficient operation of the hash
module and prevent it from becoming a bottleneck in the overall protocol circuit. In [19],
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two hash function cores are designed based on the SHA3-256 and SHAKE256 functions
for CCA-secure Identity-Based Encryption, which inserts two registers in the Keccak func-
tion. The architecture can simultaneously process multiple rounds of data, demonstrating
high performance. In this study, we implement the circuit of the Keccak function by pure
combinatorial logic without any pipelined designs. We design a dedicated hash function
structure for the Saber algorithm to achieve remarkable performance.

The Keccak iteration function consists of 24 rounds of the round function KECCAK-
f[1600]. Each round of the function performs a series of operations, including permutation,
XOR, and iteration on 1600-bit data. The 1600-bit data are derived from the state matrix A in
three-dimensional space. The round function is divided into five steps, which correspond
to five sub-functions. In the round function, it inputs the state matrix A and outputs the
state matrix A′. Here are the five steps:

1.θ(A) : C[x, y, z] = A[x, y, z]⊙ A[x, y + 1, z]⊙ A[x, y + 2, z]⊙ A[x, y + 3, z]⊙ A[x, y + 4, z]

A′ = r(C[(x− 1), z])⊙ r(C(x + 1), (z− 1))⊙ A[x, y, z].
(2)

2.β(A) : A′ = A[y, (2x + 3y)mod 5, (z− (t + 1)(t + 2)/2)mod w]. (3)

3.π(A) : A′ = A[(x + 3y)mod 5, x, z]. (4)

4.χ(A) : A′ = A⊙ ((A[(x + 1)mod 5, y, z]⊙ 1)× A[(x + 2)mod 5, y, z]). (5)

5.ι(A) : A′[0, 0, z] = A⊙ rc[t]. (6)

In the five steps mentioned above, the ranges for x and y are 0 to 4, while the range for z
is 0 to 63. The value of rc[t] varies based on the round number and is a 64-bit number. It can
be observed that most of the internal steps within the round function involve simple shift or
XOR operations, which are relatively straightforward and friendly to hardware. As a result,
even without specific optimization techniques, the implementation of KECCAK-f[1600]
demonstrates excellent performance. Therefore, this paper presents the hardware circuit
depicted in Figure 4. The circuit is implemented using pure combinatorial logic without
incorporating any pipelining design. The output of the previous sub-function directly feeds
into the next sub-function, and the five sub-functions are serially cascaded to form one
round. Unlike the other literature, this study does not involve simultaneous processing of
data from multiple rounds, resulting in a parallelism factor of 1. The circuit of the round
function processes 1600-bit data in one cycle, meaning that one round is completed within
a single cycle, and the KECCAK-f operation requires 24 cycles. The overall circuit synthesis
result is 2281 LUTs, consuming a reasonable amount of resources.

θ(A) ρ(A) π(A) γ(A) ι(A)
1600 1600 1600 1600

rc(t)
64

16001600

Keccak-f permutation 

wheel function

24-round 

counter

6

b b

Figure 4. The hardware circuit diagram of KECCAK-f[1600].

3.2.2. External Overall Control Logic

Utilizing the Keccak permutation function as a foundation, diverse SHA-3 functions
can be constructed by configuring different parameters through the sponge construction
Z = Sponge[ f , pad, r]. In the sponge construction, N represents the input message to the
iteration function, d is the length of the message digest and r is the bitrate which varies
depending on the function. The capacity c (twice the output message length, c = 2d) is
concatenated with r to form a 1600-bit value that is b = r ∥ c. The sponge construction
consists of three stages. The first stage is message padding named pad, where the original
input message is first processed with endian conversion. One ‘1’ is then appended to the
least significant bit of the bit stream, followed by a variable number of ‘0’s and a final
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‘1’. The padding must be positioned at the end of the original message, and the resulting
data stream N after padding should be an integer multiple of the bitrate. The rules for
pre-processing are shown in the equation as follows. It adds ‘01’ or ‘1111’ after the original
message M to form N, depending on the specific function.

SHA3− 256(N) = Sponge[ f , pad(10 ∗ 1), 1088](M||01, 256) (7)

SHA3− 512(N) = Sponge[ f , pad(10 ∗ 1), 576](M||01, 512) (8)

SHAKE− 128(N) = Sponge[ f , pad(10 ∗ 1), 1344](M||1111, d) (9)

After the message padding stage, the next phase is message absorption. The processed
message is divided into groups of the bitrate length, forming an integer multiple of the
bitrate. The KECCAK-f iteration function absorbs a group of messages after completing
24 rounds of iteration, and the incoming message needs to be XORed with the high r bits of
the data currently being processed. Once the messages are fully absorbed, the squeezing
phase begins. In this phase, the iteration function is again used to output the message
digest. If the desired data length d is shorter than the bitrate r, the high d bits are directly
taken. However, if the desired data length is greater than the bitrate, multiple rounds of
iteration are performed, with each round producing the high r bits to form the message
digest. For example, when generating a 256-bit random seed, SHAKE-128 requires only one
round of squeezing, while generating polynomial coefficients with SHAKE-128 requires
multiple rounds. After analyzing the protocol, the peripheral circuit designed based on the
Keccak core as the underlying iteration function is shown in Figure 5.
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Figure 5. Hash function module circuit.

The message M is inputted into the SHA-3 module as a 64-bit serial data stream. At
the same time, the module is informed of the length of the input data, which is assigned as
the initial value of the subtraction counter. The module is also configured with parameters
for the hash function, including r, c, and the padding constants. The original message M
is converted to a little-endian format. When the subtraction counter reaches 0, message
padding is performed, and the data are then entered into a shift register buffer. The buffer
checks for empty/full conditions based on the configured bitrate parameter and XORs the
r-bit data being iterated in KECCAK-f for message absorption. After being concatenated
with the capacity to form b, the data enter the iteration function for computation. In the
data writeback stage of squeezing, the data output by the iteration function is assigned
to the shift register and serially output as a 64-bit stream. When the desired output data
length is reached, the “done” signal is raised, and the internal registers are cleared, thus
achieving the implementation of three hash functions using a Keccak core in conjunction
with peripheral circuitry.

In the Saber protocol, when the security level is considered medium, the input data
length for SHA3-256 is divided into four categories: 64 bytes, 128 bytes, 992 bytes and
1088 bytes. During the sixth round of iteration in the KECCAK-f function, it is possible to
simultaneously read the data for the next round, saving some of the cycle overhead for data
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retrieval. In the data output stage, only SHAKE-128 in Saber requires multiple iterations
of the iteration function. For serially outputting 64 bits from a total of 1344 bits, it takes
21 cycles. Therefore, it is possible to perform the iteration function simultaneously during
the output stage. The time cost of the hash function can be considered as 24 × n cycles,
where n represents the number of iterations.

The overall circuit is controlled by a finite-state machine. Under the default circuit
synthesis strategy, the main clock is constrained to a period of 2.4 ns without any timing
violations. This indicates that the hash function module does not become a bottleneck, even
for the fastest 416 MHz frequency multiplier. The circuit consumes 5088 LUTs and 3068 FFs
in terms of resources.

3.3. Hardware Implementation of Functional Submodule
3.3.1. Binomial Distribution Sampling

Lattice-based cryptography requires sampling from an error distribution. In the case of
R-LWE, a Gaussian distribution is used. However, this approach suffers from the drawback
of variable sampling time, which makes it susceptible to timing attacks. With the emergence
of LWE problem variants such as M-LWE and M-LWR, the centered binomial distribution
has become the preferred choice. The centered binomial distribution is an approximation of
the Gaussian distribution and offers lower resource consumption while providing resilience
against side-channel attacks. In the Saber protocol, the coefficients of the secret polynomial
are primarily constructed using the binomial distribution. The specific method involves
grouping the pseudorandom numbers generated by SHAKE-128, which follow a uniform
distribution into groups of size µ. The Hamming weight of the first µ/2 bits and the last
µ/2 bits, which represent the number of bits equal to 1, is calculated separately. The lower
Hamming weight is then subtracted from the higher Hamming weight. The resulting
values are constrained within the range of [−µ/2, µ/2]. The specification of the Saber
algorithm mentions that it allows for efficient multiplication of large numbers by small
numbers, which facilitates circuit implementation.

Based on the security levels from high to low, µ is set to 6, 8 and 10. For the medium-
security level Saber-768 chosen in this paper, the coefficient range is limited to [−4, 4].
Therefore, a 4-bit binary complement representation is sufficient. However, for subsequent
polynomial multiplication, we suggest converting the complement representation of the
two to a sign-magnitude representation. The representation consists of a sign bit and the
absolute value, which is also represented in 4 bits. The advantage of this representation is
that the sign bit can be separated from the multiplication during the polynomial multiplica-
tion process. Additionally, considering that the secret polynomial coefficients in the NTT
multiplier are represented as signed numbers during the NTT transform, a multiplexer can
be used to select the corresponding data for inputting into the cache output. Therefore, by
using a sign-magnitude representation and employing a multiplexer, the Saber protocol en-
sures compatibility between the polynomial multiplication process and the NTT multiplier,
facilitating efficient operations such as Polynomial Weight Multiplication.

The sampling circuit design is illustrated in Figure 6. The sampling module retrieves
64-bit word blocks from the BRAM storage unit, housing pseudo-random numbers. Conve-
niently, these 64 bits are divided into eight groups for binary sampling. The eight resulting
coefficients, represented in two’s complement form, undergo conversion to sign-magnitude
representation through the encoding circuit. The obtained 32-bit data are temporarily
stored in a 64-bit buffer cache. In the next cycle, after filling the remaining 32 bits of the
buffer, various scenarios occur. The data can either be parallelly outputted to BRAM or
serialized for shifting. Serial shifting is necessary because the lightweight Schoolbook
multiplier directly indexes the coefficients of the secret polynomial, and the NTT transform
also requires a coefficient flow of 4 bits. Although serial output increases the cycle count,
it can work in parallel with the squeezing cycles of SHAKE-128, effectively reducing the
additional cycle overhead. The overall circuit is controlled by a state machine. The start
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flag of the sampling module signifies the effective cycle when the upstream module’s
pseudo-random data stream begins.
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Figure 6. Binomial distribution sampling circuit.

3.3.2. Remaining Submodules

In addition to the main polynomial multiplication module, hash function, and sam-
pling module, the Saber protocol includes several functional sub-modules with a time
complexity of O(n) to ensure the overall completeness of the protocol and reduce the
bandwidth requirements. These functional sub-modules combine specific steps outlined in
the Saber specification into a single module to improve efficiency. Specifically, these sub-
modules include the BS2POLY coefficient packing/unpacking module, the Addh module
for adding a constant h1, the Addpack module for encryption in the public key primitive,
the Unpack module for decryption, and the Veri f y module for verification.

The Addh module is responsible for multiplying a polynomial matrix by a vector,
adding the constant h1 = 4 to each coefficient, and then reducing the result modulo the
range of Rp. The purpose of the BS2POLY module is to unpack the public and private
keys, which are in the form of a continuous byte stream, into a coefficient stream. In this
context, each coefficient has a width of 16 bits. If it is insufficient, it is padded with either
three zeros or six zeros at the front. The coefficient stream is packed into a byte stream
in earlier steps to minimize the byte bandwidth needed for transmitting the public and
private keys between the server and the client. Therefore, after generating the keys in the
Saber.PKE.KeyGen stage, the coefficients are converted using the POLY2BS module. The
Addpack module expands a 256-bit message to 1024 bits, where each bit corresponds to
4 bits, and then performs linear operations with the inner product of the expanded message
and a single polynomial. The resulting data are then converted to the Rp range, which
represents the ciphertext. The purpose of the Unpack module is to compute the 256-bit
plaintext message from the received ciphertext during the decryption phase on the client
side. The Veri f y module compares the received ciphertext from the server to the ciphertext
obtained by encrypting the plaintext again on the client side during the unsealing phase.
If they match, a flag bit of 0 is output to demonstrate that the transmission process was
error-free. These small modules are essential in the protocol, and omitting certain steps,
such as packing coefficients or byte streams, in order to optimize overall performance
would result in incorrect subsequent results.

These modules, with very low time complexity, consume significantly fewer circuit
resources compared to the main multiplication module or hash functions. Therefore, the
key consideration in their implementation is to minimize their critical paths. This ensures
that they do not become the performance bottleneck of the overall protocol circuit, while
also reducing time and cycle overhead. Increasing the parallelism between modules and
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controlling the interface with flag bits are some of the challenges and focal points in the
overall implementation.

4. Overall Hardware Implementation of Saber

Based on the aforementioned work, this subsection presents the design of the overall
Saber protocol circuit. Different multiplication modules are optimized for each module
based on different application scenarios. Specifically, an analysis is conducted on the
resource consumption and clock cycle overhead of the lightweight Schoolbook multiplier,
resulting in an efficient implementation of the overall protocol circuit designed for resource-
constrained environments. Subsequently, a higher throughput multiplier is introduced, and
the data exchange between upstream and downstream modules is optimized. Furthermore,
improvements have been made to the coefficient-wise multiplication (CWM) and data-
loading modules of the NTT multiplier. Finally, high-throughput protocol circuits and
timing sequence diagrams for the NTT version of the protocol are provided.

4.1. Hardware Implementation for Resource-Constrained Scenarios of Saber

There are two main approaches to the hardware implementation of the mainstream
Saber lattice cipher. The first approach is the coprocessor implementation, which includes a
unified interface for each module [12]. Similar to the peripheral devices in a system-on-chip
(SOC) system, these modules are connected to a 64-bit bus. The progress of the flow is
driven by completion flags, and a dedicated 32-bit instruction set is designed to control
the module, enable/disable signals, and read/write the starting addresses of the BRAM.
External control is achieved through stimulus files, providing a high degree of flexibility
but introducing more redundant cycles. The second approach is dedicated implementation,
without the use of a bus [16,29]. The interface width between modules is not fixed, and the
overall system is controlled by a predefined state machine. This approach is more efficient
in terms of implementation, but it can only execute the predetermined flow defined by
the designer.

In this study, the two aforementioned implementation methods are combined to design
a resource-constrained Saber protocol circuit as shown in Figure 7. The design is based
on the specification process of the Saber key encapsulation protocol and the official C
language source code. The circuit is controlled by a predefined state machine and utilizes a
64-bit data bus. Although the state machine covers the entire flow of the key encapsulation
protocol, due to device limitations, communication between the sender and receiver is
not implemented due to device limitations. The state machine transitions between states
based on the completion flags of each module. It also arbitrates the usage permissions and
addresses of the main storage unit, RAM0, according to the state changes.

The overall circuit consists of three lightweight Schoolbook polynomial multipliers,
two 64-bit-wide BRAMs (RAM0 with a depth of 1024 and RAM1 with a depth of 256),
a 4-bit-wide dual-port BRAM with a depth of 2048, a hash function module, three addh
modules, and four other functional sub-modules, including Veri f y. During the operation
of the circuit, in the Saber.PKE phase, the hash function module requires a 256-bit random
seed as input. This seed is provided by the external user and is input into RAM0. The
hash function then reads the seed from RAM0 to generate an internal random seed. In
the PKE.KeyGen() and PKE.Enc() functions, the hash function SHAKE-128 first generates
pseudo-random numbers for the secret polynomials, which are stored in RAM0. It then
generates coefficients for the public polynomials, which are also stored in RAM0. At
the same time as generating the coefficients for the public polynomials, the binomial
distribution sampling module initiates parallel operation. It requires two cycles to read
data and in the write-back stage, 8 bits of data are serially shifted out per cycle. The total
sampling period requires (2 + 8) × 48 + 1 = 481 cycles, which is smaller than the 687 clock
cycles required for generating the coefficients of the public polynomials.
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Figure 7. Implementation for resource-constrained scenarios of Saber.

Although the lightweight Schoolbook multiplier for single polynomial multiplication
does not have the additional overhead cycles mentioned in other literature, it still requires
16,384 cycles due to its low parallelism. To evaluate the entire protocol, which involves
36 polynomial multiplications, it takes approximately 590,000 cycles. Especially in the case
of low-frequency implementation of the lightweight version, the delay can be relatively
long. Therefore, this paper parallelizes three identical lightweight polynomial multipliers.
Each multiplier performs different row-column multiplications during the matrix-vector
multiplication. This reduces the number of explicit multiplications to 18, cutting the cycle
count in half. The increased space for the additional multipliers is acceptable. Addition-
ally, it is necessary to analyze the inputs and outputs of the two additional multipliers.
During the generation of public polynomial coefficients, it is necessary to store the three
polynomials in RAM1. This allows for the simultaneous retrieval of the three rows of
public polynomials. Furthermore, since the three multipliers need to be synchronized, the
reading of secret polynomials only needs to be controlled by the first multiplier. The circuit
diagram shown in Figure 8 requires only one BRAM to meet the requirements of the three
multipliers. This not only reduces the consumption of BRAM but also enables the remain-
ing two multipliers to conserve logic for address generation and control signal generation
during implementation. The comprehensive results show that the area consumption of the
remaining two polynomial multipliers is 488 × 2 LUTs and 243 × 2 FFs. During the inner
product of polynomials and vectors, certain results of matrix multiplication are stored in
RAM1, requiring the retrieval of data from RAM1.

RAM0 serves as the primary storage unit and is constantly updated to overwrite
the computed data and store the recovered session key. Once the overall protocol flow
is completed, the “done” signal is raised. The overall performance of the Saber protocol
circuit in resource-constrained scenarios will be presented later.



Electronics 2024, 13, 675 14 of 19

SHA3-256   SHA3-512  SHAKE-128

θ ρ π γ ι

Shift register

p

a

d
State 

machine

Binomial

distribution sampling

RAM_0

RAM_1

64

di

BS2POLYp

Encryption

Unpack

Decryption

Add_pack

Verify

m

v

1023

255

State machine

arbitration

pk

64

di0

di1

do0

do1

bs_do

addh_do

unpack_do

SHA3_do

Addpack_do

d
o
n

e_
sh

ak
e

d
o
n

e_
m

u
lt

d
o
n

e_
v

er
if

y

d
o
n

e_
b

s2
p

o
ly

d
o
n

e

SHA3_do

RAM_A_do flag

done

Secret polynomial 

buffer

D
ata lo

ad
in

g
 

m
o
d

u
le

a0

a1

a2

a3

3328 bits

13 bits

S
tate m

ach
in

e

addh

64
diSampler_do

RAM_A_do

SHA3_do

p
h
as

e

Figure 8. High-Throughput implementation of Saber.

4.2. High-Throughput and Area-Time Balanced Implementation of Saber

An optimized Saber protocol circuit is designed specifically for the high-throughput
polynomial multiplier based on TMVP-Schoolbook in Figure 8. In this circuit, the “do”
signal is used as an output signal, while the “phase” signal is used to determine whether to
clear the accumulation registers within the multiplier. Only one multiplier and one addh
module is utilized. During the multiplication operation, the circuit simultaneously reads
the 4-way common polynomial coefficients from the two BRAMs. Instead of storing the
data back into the BRAMs before writing it, the data are directly processed in the addh
module. Additionally, the coefficients of the secret polynomial are read from RAM0, and
the binomial distribution sampling module writes them back to RAM0. To minimize the
number of cycles required for execution, it is necessary to reduce the cycle consumption in
data reading and writing between modules and increase parallelism. Therefore, careful
arrangement of data interaction between upstream and downstream modules is essential.
The timing sequence diagrams for key generation and key encapsulation phases of the key
encapsulation protocol are shown in Figures 9 and 10, respectively. The key generation
phase requires 2346 cycles, while the key encapsulation phase requires 3341 cycles.

The timing arrangement for the key decapsulation process is similar to the two dia-
grams, requiring a total of 4005 cycles. The key decapsulation phase consumes the most
cycles due to the additional operation of public key encryption. It can be observed from
the timing diagrams that parallelizing the modules and minimizing idle cycles within the
functional submodules significantly reduce the overall protocol execution time, thereby
increasing the circuit’s throughput rate.
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Additionally, the paper selects the pipelined NTT transformation structure for a better
balance between speed and area. The radix-2 Multi-path Delay Commutator (MDC) NTT
structure, as designed in the referenced work [18], is considered a classic approach. The
architecture has no complex memory control logic and fully utilizes spare cycles in each
stage, achieving high throughput. The radix-2 MDC pipelined NTT structure is employed
for the Saber algorithm in this paper. The implementation and improvement of the overall
NTT multiplier is illustrated in Figure 11. Based on a single MDC-NTT/INTT core, two
modular multiplication units are externally added for point-wise multiplication. These
modular multiplication units are similar to those in the NTT core, reducing the 45-bit
value to 23-bit through modular reduction. The loading module for the public polynomial
coefficients remains unchanged from the previous description. This module enables the
continuous reading of 13-bit or 16-bit coefficient data streams during the forward NTT
process. The “mode” signal selects the target of the NTT transformation. After performing
NTT on one polynomial operand, the two sets of coefficients are merged and stored
at the same address in the BRAM. During the NTT forward transformation of another
polynomial operand, the coefficients corresponding to the previous storage in the BRAM at
the respective order are read, point-wise multiplied, and accumulated when the data output
starts per cycle. The input to the INTT is the result of three polynomial multiplications,
followed by point-wise multiplication. The resulting polynomial is then reduced modulo
the modulus Rq or Rp of the Saber algorithm. Finally, the sequence of results is reversed,
bit by bit. The protocol circuit based on the NTT multiplier is similar to Figure 3, but
with the inclusion of two 36K-bit BRAM blocks to store the data after NTT transformation
and point-wise multiplication. The state machine of the entire circuit is configured to
achieve module parallelism. Similarly, the timing sequence diagrams for key generation
and key encapsulation are shown in Figures 12 and 13, respectively. The key generation
phase requires 3060 cycles, the key encapsulation phase requires 4961 cycles, and the key
decapsulation phase requires 5910 cycles.

The main cycle optimization strategy lies in performing the NTT transformation on the
secret polynomial coefficients concurrently with the generation of the public polynomial
coefficients. Therefore, when the coefficients of the public polynomial A00 undergo NTT
transformation and output the first set of data, they can directly engage in point-wise
multiplication with the already read ŝ0 from the BRAM. This way, the cycle of CWM can
also be concealed through parallel operations. The protocol flow for decapsulation is similar
to the previous two phases.
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5. Results

Table 2 provides three hardware implementation results of the overall circuit for the
Saber key encapsulation protocol, including their respective performance and resource
utilization. The “Cycles” column represents the number of cycles for the key generation
stage, key encapsulation stage and decapsulation stage, respectively. The “Latency” column
shows the corresponding latency in seconds based on the (1/ f req.)× Cycles data.

This paper proposes three kinds of hardware implementation of the Saber protocol
designed for resource-constrained, high-throughput and balanced scenarios. In addition to
the advantages and disadvantages of their respective focus areas, in order to make a fair
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comparison of hardware implementations, we evaluate the actual hardware efficiency of a
circuit by using a uniform index ATP (area-time product).

ATP = Latency(µs)× (ES) (10)

For the ATP index, equivalent slices (ES) refers to the logic units of an FPGA after
equivalence. In the circuit design, minimizing delay and resource consumption enhances
performance. Therefore, a lower ATP indicates higher hardware efficiency of the circuit
and faster completion of the protocol process with fewer slices.

Table 2. Implementation results of three kinds of Saber.Kem protocol circuits for different demand
scenarios and comparisons to other existing work.

Circuit Type Slice /LUT /FF DSP/BRAM Cycles Latency
(µs) Frequency (MHz) ES ATP × 103

[12] 3573/23,686/9805 0/2 20,105 80.40 250 3966 319
[16] 2807/18,300/9300 4/24 43,900 219.50 200 7925 1740
[30] 3991/28,169/9504 85/6 4223 26.40 160 13,872 366
[31] 2631/6713/7363 32/0 13,500 1083.40 125 5907 6400

Lightweight 1539/7554/5776 0/3 301,000 2313.00 130 2127 4920
High 7341/50,423/23,483 0/3.5 9692 23.28 416 8028 187

Balance 1868/10,473/6902 22/8 13,931 39.02 357 5661 543

The current lightweight hardware implementation for resource-constrained scenarios
is only available in the literature [31]. It has implemented two lightweight schemes, one
of which includes side channel defense and adds mask protection. This paper compares
the version without side-channel protection, which utilizes the Schoolbook algorithm with
adjustable parameters for polynomial multiplication, to the overall protocol circuit structure
described in this paper. However, only one multiplication module was instantiated and
the storage unit was designed manually. The clock cycle decreased by 55.15% compared to
the previous design. However, the equivalent slice increased by 64%, and the ATP index
increased by 23.4% simultaneously. From the perspective of high performance and high
throughput implementation, this implementation achieves a throughput rate of 10,988 Kbps
and a TPS value of 1.5, which is the highest. This indicates that the overall protocol circuit
maintains high throughput characteristics while optimizing hardware efficiency. At the
same time, the ATP index is also the lowest, indicating that the circuit has achieved a
good balance. The circuit architecture described in the literature [12] is a coprocessor. As
mentioned above, this architecture is highly flexible and can be controlled directly by the
user. It allows for the customization of specific data within the circuit to facilitate the desired
process. However, compared to a dedicated circuit, it has disadvantages in terms of clock
cycle delay, frequency, and overall performance. Although the equivalent slice is reduced
by 58% compared to this design, the clock period is increased by 51.8% and the overall
delay is increased by 71.04% compared to this design. The overall implementation of the
literature [30] is very efficient. Polynomial multiplication is performed immediately when
the hash function generates common polynomial coefficients. Additionally, a ping-pong
buffer is used, which allows the polynomial multiplication to omit the cycle cost of this part
through parallel operation. Therefore, the overall protocol process only takes 4223 cycles,
which is 56.4% less than the implementation. This shows that the implementation also
includes specific optimizations for the hash module, particularly in the input and output
sections. However, due to the critical path problem mentioned earlier, the frequency can
only reach 160 MHz, resulting in a 12.3% slower latency. The excessive DSP also resulted
in a 47.1% increase in equivalent slice and a 53.3% increase in ATP value compared to
this implementation. When compared with the literature [16], which also utilizes an NTT
multiplier, this design exhibits a 43.9% increase in frequency, a 70.8% reduction in clock
cycle and a 28.6% increase in equivalent slice consumption. But again, the disadvantage
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of Saber based on NTT multipliers is that the data bit width of the multiplier is larger
and consumes more resources compared to other lattice cryptography schemes that are
compatible with NTT.

6. Conclusions

In this paper, we propose three types of polynomial multipliers for various application
scenarios including the lightweight Schoolbook multiplier, high-throughput multiplier
based on the TMVP-Schoolbook algorithm and improved pipelined NTT multiplier. More-
over, other principal modules of Saber are designed, encompassing the hash function
module, sampling module and functional submodule. Based on our proposed multiplier,
we implement the overall hardware circuits of the Saber key encapsulation protocol. Exper-
imental results demonstrate that our overall hardware circuits have different advantages.
Our lightweight implementation has minimal resource consumption. Our high-throughput
implementation needs only 23.28 µs to complete the whole process, which is the fastest
among the existing works. The throughput rate is 10,988 Kbps and the frequency is 416
MHz. Our hardware implementation based on the improved pipelined NTT multiplier
achieved a good balance between area and performance. The overall frequency can reach
357 MHz. Regarding the actual circuit design strategy, despite Saber being eliminated by
NIST, the Schoolbook multiplier proposed in this paper is independent of parameters and
applicable to any lattice cipher. Further investigation into the applicability to other ciphers,
particularly CRYSTALS-Kyber, is essential.
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