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Abstract: The increasing penetration of photovoltaic (PV) and hydroelectric power generation and
their coupling uncertainties have brought great challenges to multi-energy’s coordinated dispatch.
Traditional methods such as stochastic optimization (SO) and robust optimization (RO) are not
feasible due to the unavailability of accurate probability density function (PDF) and over-conservative
decisions. This limits the operational efficiency of the clean energies in cascaded hydropower and PV-
enriched areas. Based on data-driven distributionally robust optimization (DRO) theory, this paper
tailors a joint optimization dispatching method for a cascaded hydro-PV-pumped storage combined
system. Firstly, a two-step model for a Distributed Renewable Optimization (DRO) dispatch is
developed to create the daily dispatch plan, taking into account the system’s complementary economic
dispatch cost. Furthermore, the inclusion of a complementary norm constraint is implemented to
restrict the confidence set of the probability distribution. This aims to identify the optimal adjustment
scheme for the day-ahead dispatch schedule, considering the adjustment cost associated with real-
time operations under the most unfavorable distribution conditions. Utilizing the MPSP framework,
the Column and Constraint Generation (CCG) algorithm is employed to resolve the two-stage
dispatch model. The optimal dispatch schedule is then produced by integrating the daily dispatch
plan with the adjustive dispatch scheme. Finally, the numerical dispatch results obtained from an
actual demonstration area substantiate the effectiveness and efficiency of the proposed methodology.

Keywords: data-driven DRO; cascaded hydro-PV-PSH system; pumped storage hydropower;
coordinated dispatch; hydro-PV complementation; C&CG algorithm

1. Introduction

The integration of large-scale wind power and PV into the power grid will bring
many problems to the power system, such as a sudden drop in regulation capacity, lack
of anti-interference ability, and increased risk of chain failure. In order to adapt to the
expanding penetration rate of renewable energy and weaken the impact brought by its
large-scale integration into the grid, research and exploration work is carried out on the
complementary optimization methods of various renewables complementary generation
dispatching. It has great practical engineering application value and far-reaching scien-
tific research value. When it comes to the coordinated dispatching of the complementary
generation system with multi-dimensional uncertainties containing wind, solar energy,
hydro resources and other renewable energies, stochastic optimization (SO) [1] and robust
optimization (RO) [2,3] methods are commonly adopted to the model and process. Both
domestic and foreign investigators conducted extensive research on this subject, which
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contributed to the development of several useful optimization methods, including multi-
stage robust optimization [4-6], scenario-based method [7], scenario tree method [8,9], and
chance constrained method [10,11]. By extracting scenarios according to the probability
distribution of random variables, SO discretizes the probability distribution and generates
a large number of discrete samples. It solves each discrete scenario as a deterministic opti-
mization problem separately [9]. The dispatching process of renewable energy generation
with multiple uncertainties can be quantitatively analyzed using SO. However, because it is
difficult to accurately describe the probability distribution law of the multiple uncertainties
in a hybrid renewable power system [12], SO needs to pre-set the probability distribution
type [13], which reduces its reliability to a certain extent. Due to the vast number of discrete
scenarios that form the basis of SO, calculations will be performed on an unnecessarily large
scale, resulting in a longer consuming time and a low calculation efficiency. In addition,
although the scenario reduction technology [14] and Benders decomposition acceleration
method [15] for discrete scenario can reduce the calculation scale, they cannot cover all
the actual scenarios, and the representativeness and typicality of the obtained scenarios
are doubtful, then the accuracy of the solution will also be reduced. RO does not need to
pre-set the probability distribution of random variables. It describes the random variation
characteristics through the boundary parameters of the uncertain variables [16], and a
feasible solution can be obtained from the RO model as long as the variable value is within
the boundary [17]. Compared with SO, RO can obtain feasible solutions for the uncertain
variables that take any value within its boundary, and can strictly ensure the reliability
of the decision-making. Besides, the calculation scale is greatly reduced, and the data
demand is reduced. One of the deficiencies of RO is that its optimized results tend to be
conservative, for that is based on the worst scenario to search the optimal value [3,18].
The chance-constrained method uses the probability index to measure the risk brought
by uncertainties in the optimization problem. Ensuring the strict validity of constraints
across all practical scenarios is not obligatory, and is receivable that the constraints are
valid at a certain confidence level, which will limit the risk caused by the uncertainties to
an acceptable range [10,11,17] and seek out the optimal solution on this basis. Different
from RO, the chance-constrained method allows for the specification of a desired level of
confidence or probability of satisfying constraints [19]. This can reduce the computational
overhead associated with considering a vast number of scenarios. The computational
effort of chance-constrained methods can be concentrated on relevant confident parts
of the uncertainty space. However, its optimization model is generally non-convex and
difficult to solve for random variables with complex probability distributions [20]. Ap-
proximate solution algorithms [21] and intelligent algorithms [22,23] are used to solve the
non-convex chance-constrained models in existing studies, but these algorithms generally
cause some problems, such as solution accuracy or calculation efficiency [20], that cannot
meet the standards.

To address the challenges associated with the SO, RO, and chance-constrained meth-
ods used to manage the uncertain characteristics of renewable energy sources like solar
and hydropower, relevant researchers have attempted to integrate SO and RO to create
complementary benefits while avoiding the disadvantages of each method separately.

In addition, since power system measuring technology has advanced continuously,
an enormous amount of multi-type production data have been generated. Addressing the
limited precision of the SO model and the overly conservative nature of the RO model in
this context, the emerging need is fulfilled by the innovative approach of data-driven distri-
butionally robust optimization (DRO) [24]. At present, DRO technology has been initially
applied in unit combination of power system [25], multi-energy complementation [26],
etc., and there are is related research on simplifying the complex calculation process of
DRO [27]. Differing from both SO and RO, DRO eliminates the necessity of obtaining
the exact probability distribution of variables. Instead, it only necessitates constructing
an uncertain set that encompasses the actual distribution and making decisions based on
the worst-case distribution. This approach circumvents the challenge of dealing with the



Electronics 2024, 13, 667

3o0f21

complexity associated with obtaining the exact probability distribution of variables. In
addition, techniques like linear decision rules [25] and Lagrangian dual processing [28]
can be employed to convert DRO problems into deterministic optimization problems. This
transformation helps address the issues of low computational efficiency associated with
S0, extensive sampling scale, and the chance-constrained method. A notable advantage
of DRO lies in its ability to encompass the probability statistical information pertaining to
uncertain parameters, thereby enhancing decision-making by reducing conservativeness.
DRO integrates not only the probabilistic statistical features of SO, but also adopts the
concept of RO. The decision outcomes exhibit anti-risk capabilities, offering distinct and
significant advantages in managing the uncertainties inherent in power systems [29].

In view of the unique advantages of data-driven DRO applied in the fields of uncer-
tain economic dispatching [30], low-carbon dispatching [31], and unit combination [25],
this paper suggests a coordinated dispatch approach for a combined cascaded hydro-
PV-pumped storage hydropower (CHPP) system, utilizing a data-driven distributionally
robust optimization (DRO) method. Initially, the approach constructs a DRO dispatch
model consisting of two stages using data-driven methods. The initial phase of the model
involves formulating a daily dispatch schedule for the CHPP system, considering the
associated economic dispatch costs. Moving on to the subsequent stage, the goal is to
confine the confidence set of the probability distribution related to uncertain outputs origi-
nating from solar or hydro sources. This stage aims to pinpoint the optimal solution within
the context of the most adverse distribution. Considering the adjustment cost linked to
real-time system operation, a scheme is formulated to modify the day-ahead dispatch
schedule. Finally, the model establishes a coordinated dispatch schedule for the CHPP
system. Building upon this foundation, the implementation of the Column and Constraint
Generation (CCG) algorithm is undertaken to solve the two-stage DRO dispatch model.
Using the actual operation data of the demonstration area to carry out example verification,
the outcome indicates that the suggested coordinated dispatch approach adeptly considers
the multifaceted uncertainties associated with the CHPP, swiftly achieving an economi-
cally optimized dispatch schedule which provides an efficient and practical approach for
the uncertain coordinated dispatching of the multi-renewables combined complementary
generation system.

2. Data-Driven DRO-Coordinated Dispatch Model

The structure and operational mode of the CHPP hybrid system is presented in
Figure 1. Balancing the local load is the main goal of CHPP, and the operation scenarios,
such as selling electricity to grid and purchasing electricity from grid to pump water for
energy storage purpose, are not taken into account. The cascaded hydropower system
has an inter-stage spatiotemporal coupling relationship. Outputs of the PV and cascaded
system can be used to balance local load and can also be used to pump water. The pumped
storage hydropower (PSH) system and the cascaded hydropower system share the upper
and lower reservoirs, and there exists an output coupling relationship between them.

2.1. Objective Function

When conducting the coordinated dispatching of the CHPP system, minimality of the
sum of the day-ahead economic dispatch cost and the real-time output adjustment cost
was regarded as the objective function of the DRO model. In the objective function, the
economic dispatch cost is composed of the electricity purchase cost from grid, the operation
cost of the cascaded hydropower system and PSH system and PV station, which is seen in
M~G):

cluetiend — Y77 (" + cff + PV 4 Cf5), (1)

b Q
Ct Y = 21‘:1 atpi,t'At/ (2)

it = X ot (0 v, o
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where CAayahead Cfuy ,CH, CPV and CP* are total cost of day-ahead economic dispatching,
electricity purchase cost in period ¢, operation cost of the cascaded hydropower system
and PV station, and PSH system, respectively. During the t period, () signifies the state
parameter related to purchasing electricity, while N/, N*V and NS represent the quantities
of cascaded hydropower facilities, PV facilities, and Pumped Storage Hydropower (PSH)
facilities, respectively. Furthermore, a;, a{{ , af v f and at denote the cost factors linked
to electricity procurement, cascaded hydropower generation, PV generation, PSH water
pumping, and PSH generation, respectively. The variable P;; denotes the purchased
power for the ii-th state during period t. Moreover, Pl b PH0 and PH"“”‘ denote the output
dispatch, day-ahead predicted output value, and maximum allowable output of the ii-th
stage cascaded hydropower facility in period t, respectively. For PV facilities, P¥ tV and

PP V0 represent the output dispatch and day-ahead predicted output value during period t,

respectlvely. Additionally, Pf ; and Pfi indicate the average pumping power and average
output of the ii-th PSH facility in period ¢, respectively. Additionally, 6 and 6"V function as
penalty factors for water curtailment and PV energy curtailment in the day-ahead market.
Lastly, z', and z§, i+ represent the pumping and generation state variables of the ii-th stage
cascaded hydropower facility in period ¢. These variables indicate pumping water and
generation when set to 1; otherwise, they are assigned a value of 0.
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Figure 1. Structure and operational mode of a CHPP hybrid power system.

The real-time adjustment cost of the coordinated dispatching of the CHPP comple-
mentary system is composed of electricity purchase adjustment cost, cascaded hydropower
generation adjustment cost, PV power generation adjustment cost, and PSH operation
adjustment cost, which is seen in Formulas (6)—(10):

Zt 1( b”]/ T€+CH ey CPV re+CPS re) (6)
Cfuyﬂ = 221 ctAP; s kAt, @)

H_ NH
" =Y AP At 8)

chV-re = E ) {’}’ AP! tkAt )
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where C’, Cbuy ¢, cH-re, CPV1¢ and CPS-" are real-time operation adjustment cost, elec-
tricity purchase ad]ustment cost, operation adjustment cost of cascaded hydropower, PV
power station, and PSH station, respectively.

Cct, c{{ , cf v ct and ct denote the factors influencing the adjustment cost related to
purchasing electricity, cascaded hydropower generation, PV power generation, pumping
water, and generation of the Pumped Storage Hydropower (PSH) station, respectively.
Additionally, AP, ; , AP Lk APlP x{, APP 1, and AP i correspond to the adjustment power
associated with electr1c1ty purchase for the kk- th scenario in period tt, the adjustment
power of the ii-th cascaded hydropower generation, the adjustment power of the ii-th PV
station, the average adjustment pumping power of the ii-th PSH station, and the adjustment
generation power of the ii-th PSH station, respectively. zf ¢ and Zic,;t,k signify the pumping
and generation state variables of the i-th stage cascaded hydropower station in period ¢ for
the k-th scenario, respectively. These variables indicate the pumping water and generation
when set to 1, while being assigned a value of 0 otherwise.

Within the CHPP system, the cost associated with economic dispatch in the day-ahead
and the adjustment cost for real-time operation are both considered. The objective function
of the DRO-coordinated dispatch model is established by minimizing the combined cost of
these two aspects, as outlined in the Equation (11):

mind C dayahead 4 gy [Zle prmin(C* )} , (11)
{pit

Formula (11) introduces a three-layered two-stage robust optimization problem in-
volving min-max-min. In contrast to traditional two-stage robust optimization, where the
focus is solely on optimizing for the worst-case scenario, the internal max-min function
in the DRO model calculates the most unfavorable probability distribution across K dis-
crete scenarios by optimizing decision variables {p;}. It then determines the maximum
expected cost value, which is utilized as a comprehensive adjustment cost for real-time
CHPP operation and is incorporated into the objective function.

2.2. Constraints

The constraints of the two-stage DRO model for CHPP are mainly divided into three
types: day-ahead dispatch constraints, real-time dispatch constraints, and data-driven
comprehensive norm constraints. These constraints will be discussed separately below.

2.2.1. Day-Ahead Dispatch Constraints

The day-ahead dispatch constraints are formed based on the forecasting information of
cascaded hydropower system and PV system, and the constraints mainly include power bal-
ance constraint, operation constraints of CHPP, grid constraint and reserve constraints, etc.

1. Power Balance Constraint

PV PS
21 1 1t+21 l ZN PiI,JV EN tzlf+z P1G G_ZI 1 zt’ (12)

where P, is the system load power of each state in period t.
2. Operation Constraints of the Cascaded Hydropower
a.  Water Storage Variation Constraint of Reservoir

Vimin < Vi,t < Vimaxl (13)

where, in period t, V;; signifies the reservoir’s water capacity, while V/"** and
V" represent the maximum and minimum capacity of the ii-th reservoir,
respectively.
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b.  Output Constraint
pHmin < pH < pfle, (14)

it —="1

where P/ denotes the lowest acceptable output value for the i-th cascaded
hydropower station.
c. Discharging Flow Constraint

Q"™ < Qf < Q™M™ (15)

where Q! denotes the outflow rate from the i-th reservoir during a specific

period. Q"% and Q?mi" represent the maximum and minimum outflow rates.
d.  Water Volume Balance Constraint

Vier = Vie+ (Lo — Qi) at = Viy + (L, — QG — Q5 )AL (16)

where I;4, th and cht are reservoir inflow, flow of power generation, and
outflow from the i-th reservoir.
e. Constraint related to hydraulic connectivity between stages

Tit1pec = Qf + Liy, (17)

where T and L;; represent the delay factors associated with the water flow
between stages and the interval inflow between stages.
f. Limit on the rate of change in output power for the hydraulic turbine
L H H u
otar < (Pl — Plf) < oat, (18)
where 6 and 6Y denote the minimum and maximum rates of change in output
for the cascaded hydropower system.

Constraints on the Output of PV Station

PV  pPV0
0< P, <P, (19)
Operation Constraints of PSH
a. Restriction on the Fluctuation of Reservoir Water Storage
ViLImm < Vzg < Villmax’ (20)
Lmi L L
Vi min < Vi,t < Vi mux’ (21)

where VY, VUmax and vUmin are the upper reservoir’s water storage volume in

period ¢, and the maximum and minimum reservoir capacities of the i-th PSH
station, respectively; VlLt, VZ.L’"”", Vime are the lower reservoir’s water storage
volume in period ¢, and the maximum and minimum reservoir capacities of the
i-th PSH station, respectively.

b. Water Volume Balance Constraint Constraint in Generation State

P
u u 1

Viper = Vi — A=, (22)
e
PG
L L t

Vi = Vi + A==, (23)

Ule
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Constraint in Pumping State
Vi = Vit + AP, (24)
Vi = Vii = DtnpPy, (25)
where 77 and 77 are the generation efficiency and pumping efficiency of PSH,
respectively.
c. Constraints of Generation Power and Pumping Power
. Vi
PE™m < PG < min (piGmﬂX, A“ﬁc) orPf; =0, (26)
: vk
pPmin < pE < min (P}’mﬂX, ”) orPf, =0, (27)
, Af’? 2
P

where Plei” and PS"™ are the minimum and maximum generation power
of the ith PSH station, respectively. PP and PP are the minimum and
maximum pumping power of the ith PSH station, respectively.

d.  Electricity Balance Constraint of Generation and Pumping

T T
thl Pz‘(,;tAt = WPWGZt:1 Pil,tht' (28)

e. Ramp Rate Constraint of PSH
skt < (PG — PG) <oliat, (29)

L P P u
opat < (P, —Ph) <dfat, (30)
where 6% and (55 are the minimum and maximum variation speed of generation
power, and 65 and JY are the minimum and maximum variation speed of
pumping power, respectively.

f. Operating State Mutual Exclusion Constraint
2y zfy =0, (31)

Grid Flow Constraint
The DC power flow constraints in the literature [32] are taken as the grid flow con-
straint of the hybrid system. Each branch flow should meet the following (32):

Puine = BaigLB~ (P + PH + PPV — PPl +PP2f — Pf)
_Pline < Ptline < Pline (32)

— 1; 1 1 1
Bdiag = dlag(gz X a)

For each branch, Py;,, represents the DC power flow, with B, L as the admittance
coefficient matrix and the node connection matrix of the network branch. Furthermore,
P, PtH , Ptp v Ptp , PtG and PtL serve as vector representations for the purchased power,
cascaded system output, PV system output, PSH system pumping power, PSH system
generation power, and load demand during period tttt, respectively. zI’ and z& denote

the PSH pumping state vector and generation state vector during period t, respectively.
Pjine stands for the maximum branch power, N is the reactance of the lI-th branch, and
zz indicates the branch number in the network.

Reserve Constraints
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The complementary generation system’s requirements for upward and downward
reserve capacity are fulfilled by the cascaded hydropower system and the PSH sys-
tem. The system’s reserve requirement is calculated as the sum of the partial output
from PV and the partial output from the cascaded hydropower, as specified in the
Equations (33) and (34):

NH NPS VU

H H ; G i, GG
.;1 (Pi,to - Pi,t) + ,;1 (mm [Pi " AttWG:| - Pi,tzi,t)
1= l;\]H NH (33)

>V L P+t g Pl
i=1 i=1
H . NPS .
L (Pl —plim) + % (PSf, — PG
i=1 i=1 (34)

NH NH
ENEP IR W
i= i=

where 1"V represents the spinning reserve factor for PV output, set at 10% in this
context, and v is the spinning reserve factor for the cascaded hydropower system,
set at 4%.

2.2.2. Real-Time Dispatch Constraints

Due to the uncertainties of the CHPP hybrid system in its real-time operation stage,

it needs to adjust the output of cascaded hydropower and PSH to regulate the random
real-time fluctuations of hydro and solar output. The real-time dispatch constraints include
power balance constraint, real-time operation constraints of cascaded hydropower, PV and
PSH system, grid flow constraint and reserve constraints, etc.

Regulated Power Balance Constraint

H PV
Y (P +APg) + XN (P{{ + AP}j’k> +rY (P}ftV +APEY ) -

35)
NPS NPS ) ’ (
Yiz1 KPZZ + Apzl,jt,k)zzl‘?t} +Lin Kpi(,;t + Apiﬁ,k)zic,;t} = L& P
Operation Constraints of the Cascaded Hydropower
a.  Water Storage Regulated Variation Constraint of Reservoir

VI < (Vig + AVigg) < V™, (36)

where AV}, is the water storage regulated variation of the ith reservoir under
the kth scenario in period t.
b.  Regulated Output Constraint

pfimin < (Pl + aPl1,) < P, (37)
C. Regulated Discharging Flow Constraint

Qlimin < (Qff + Al ) < @lfme, (38)

where AQF | is the regulated discharging flow of the ith reservoir under the kth
scenario in period t.
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d.  Regulated Water Volume Balance Constraint
Vies1 + AVigpe = Vig+ 8Visx + (L + Al — Q= AQH YAt
Lip+ DLy — Qfy — AQF (39)
=Vit +AVigp+ | 7 o vHE ) At
l ( - Qi, Qz tk
where Al x, AQth , and AQZ.Ct . are the regulated inflow, regulated generation
flow, and regulated discharging flow of the ith reservoir under kth scenario in
period t, respectively.
e.  Interstage Hydraulic Connection Constraint
litpre + Al = Qi+ Qpx + it + ALz, (40)
f. Ramp Rate Constraint of Hydraulic Turbine

3.

otar < (PlLy+ 8Pl — Bl - ABfL) < otat, (41)

Output Constraints of PV station

o< (PY +aPl%) < PI, (42)

Operation Constraints of PSH

a.

Water Storage Regulated Variation Constraint of Reservoir
Villmin < (VZBEI + AVi,LtI,k> < ViUmax’ (43)

ViLmin S (‘/I,L;f +A‘/1,Lt,k) S ViLmax, (44)

where AVuk and AV, k are upper reservoir regulated water storage and lower
reservoir regulated water storage of the ith PSH station in period ¢, respectively.
Regulated Water Volume Balance Constraint Constraint in Generation State

Vit T8Vl = Vi + AV — Atpcﬂ;ipcik (45)
PS + AP,
Vi + AV = Vi AV A=t =28, (46)
Constraint in Pumping State
Vi, + 8V =V + v at, (PL+APL,), @)
Vi + AV = VE+ AV — At (Pz{)t + APii,k)f (48)

Constraints of Regulated Generation Power and Regulated Pumping Power

. VY +AvVH
pemin < (P}j + APglk) < min (PZ-G’”’”‘, “tT’”‘UG orP5 =0, (49)

‘ VE 4+ AVE
Pipmm S (Pil,jt + API'I,Jt,k> = min (pipmﬂx, MTPZMC or Pl'li‘ =0, (50)
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d.  Regulated Electricity Balance Constraint of Generation and Pumping
T G G T
Yy (PG +8PG) At = npnc Yy (Ph+ PG, ) At (51)
e. Ramp Rate Constraint of PSH
‘%At < (P 1t API t+1,k Piﬁ - APS’k) < 5(L;IAtr (52)
opat < (Phy1+ APy, — PR — APL) < oAt (53)
f. Operating State Mutual Exclusion Constraint
25z =0, (54)
5. Grid Flow Constraint
Puine = Baiag LB | (P+Pyy) + (PH + AP{{() + P — (PP + APR ) 2b, + (PE + APG,) 25, — P ]
—Pline < Ptlme < Piie ’ (55)

Bdlﬂg - dlug<x1 xz o xN)

where AP, AP{“}(, APtP . and APG are the vector forms of regulated purchased power,

regulated output power of the cascaded system, regulated pumping power of PSH,

and regulated generation power of PSH under the kth scenario in period t respectively.
6.  Reserve Constraints

. vi+avd
Z (PHO le_f ) N ZNPS min [PiGmux b tk UG}
APH c c
Ltk - (Pi,t + AP k) ’ (56)

NH NH
> YPVZizl(PiI,JtV + APJ’th) +ME (PiI,_{ + Apﬁ,k)

G G
NH (ol H H NPS (P. + AP; )
Yt (P i T AP — P tmm) Lt " PGanrlk

(57)
> oPVENT (PRY + APEY) + 4PN (PH + AP/
Z i=1\"it itk v i=1 itk

2.2.3. Data-Driven Comprehensive Norm Constraints

Because the conventional solution method is too complex for solving the DRO-
coordinated dispatching model [27], this paper introduced a data-driven DRO algorithm
utilizing 1-norm and co-norm to solve the model. The algorithm takes the historical data of
uncertain parameters, such as hydraulic runoff and solar intensity, as reference, and screens
the hydropower and PV output of K discrete scenarios, as well as the initial probability of
each scenario by extracting hydraulic and solar historical data of limited typical days. Then,
centering on each initial probability distribution, the comprehensive norm constraint is
introduced to calculate the joint optimization problem so as to derive the most unfavorable
probability distribution for each discrete scenario, aiming to attain the maximum expected
objective value within this particular setting. Therefore, in the data-driven CHPP two-stage
DRO-coordinated dispatching model, in addition to the real-time dispatching constraints
and day-ahead dispatching constraints, it is necessary to take the comprehensive norm
constraints into consideration.

The comprehensive norm, which includes both the 1-norm and co-norm, places con-
straints on the discrete scenarios of hydro-solar random output. () denotes the region
where the comprehensive norm is feasible, and can be expressed as Equation (58):



Electronics 2024, 13, 667 11 of 21

kaO/ k:]-lzl"'/K

Z}Ile k=1
_ < 600
g@K!Pk Py <

where p? denotes the initial probability for k discrete scenarios; Y&, lpk — Y| < 61is
1-norm constraint and lmkaxK|pk - pg‘ < B is co-norm constraint; 61, 6. represent the
<k<

acceptable deviation limits for the probability of discrete scenarios.
The confidence coefficient of {p;} can be defined using Equations (59) and (60), as
outlined in references [33,34].

Pr{sflp—pl <on} > m

. (59)
Prs max |pr — p}| < 900} > oo

1<k<K

2M6;
{ ng =1—-2Ke &

Moo =1 — 2Ke 2Mb” (60)

where &1, & signify the confidence coefficients for the probability distribution within the
set of discrete scenarios under the 1-norm and co-norm constraints. M represents the count
of chosen days with limited typical hydro-solar output.

Based on Formulas (59) and (60), the allowable deviation limits 61 and 6., constraining
hydro-solar uncertain outputs can be obtained, as shown in (61):

61 = oy In 125~ o1
foo = 57 In 722—7 (61)

3. Solution Algorithm for the Dro Dispatch Model
3.1. Linear Treatment for Comprehensive Norm Constraints

The absolute value expression of the comprehensive norm constraints in Formula (58)
will bring a lot of in convenience to the solution of the model. The approach in litera-
ture [26] is adopted, and 0-1 auxiliary variables are introduced to convert the absolute
value constraints to equivalent linear constraints.

For 1-norm constraint, auxiliary variables x;r and x are introduced, and the details
are shown in (62) and (63). This constraint can be linearly converted to (64):

x,j + x < 1Vk, (62)
0 <p < x61Vk
0 <p <x 0V |, (63)

p
Pk = P+ pi + i VK

Yo (B +pp) <oy, (64)

where p/ and p, are the positive and negative offset of pj relative to the initial probability
pg respectively.

Similarly, 0-1 auxiliary variables ylj and y,  shown in Formulas (65) and (66), are
introduced to convert the co-norm constraint to its equivalent linear form, as shown in
Formula (67):

v +yp < 1k, (65)
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0 <pf <yj bV
0 <p <y 0Vk (66)
Pk p K

P+ pe < 0eYk, (67)

3.2. Model Solution for DRO Coordinated Dispatch

Common methods for two-stage RO model solution include Affine Policy (AP, also
called Linear Decision Rule, LDR) [35,36], Benders Decomposition [15], Column and
Constraint Generation (CCG) [37], etc. Compared with AP and Benders Decomposition,
CCG can achieve a faster solving speed and better convergence characteristics, and shows
a better optimality of the solution [17]. The CCG algorithm is employed for computing
the data-driven CHPP two-segment DRO-coordinated dispatching model. The first stage
of the model is the day-ahead dispatching decision based on decision variables such as
the output plan of CHPP under the water and PV forecast information. In the subsequent
stage, the objective is to determine the real-time output adjustment for the CHPP system,
utilizing the actual data of water and PV in the operational scenario.

The fundamental approach of the CCG algorithm involves breaking down the two-
stage DRO model into two components: the sub-problem (SP) and the master problem (MP),
which are then repeatedly solved. The Master Problem (MP) seeks an optimal solution
under the assumption of a known finite unfavorable probability distribution, thereby
establishing the lower limit value for the two-segment DRO model. The MP is represented
in Equations (68) and (69).

min Cd’lyahmd(x,yo, &0)+L, (68)
xeX,yo€ (x,E,g),y](cm) €Y(x,&),L

L 225:1 P](CM)CW (y](:ﬂ), E.k)rvm: 1,2,---,m, (69)

where x represents the choice variables, v, is the second stage choice variables in the kth
scenario, iy denotes the choice variables for the two-segment based on forecast information,
&p is the predicted values of water runoff and light intensity, & is the predicted values of
water runoff and light intensity in the kth discrete scenario, and m is the iteration count.

SP finds the probability distribution of the worst scenario under the situation that
the choice variables x in the first stage are given (x*), provides the upper limit value for
the model, and brings it to MP for the next iterative calculation. SP can be described by
Formula (70). In its inner min-function, since all scenarios are independent of each other,
the parallel algorithm can be introduced to accelerate the calculation process. If the inner
function is represented by f(x*, &), Formula (70) can be changed to Formula (71). The
continuous iterations and updates are carried out based on Formulas (68), (69) and (71)
until the calculation accuracy of the model reaches predetermined level.

K .
L(x*) = C™(yy, &), 70
(x*) {;thgﬂﬂkzl Pe, i C (i &) (70)
* K *
L(x*) = {;f;ngZkzl pi- f(xX*, &), (71)

The calculating process of the data-driven CHPP two-stage DRO coordinated dispatch-
ing model is shown in Figure 2.
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Parameters initialization
LB=0,UB=t+>, n=1;

v

Calculate the MP to obtain the optimal day-ahead dispatching
strategy (x", yo, ™, C T,y &) + L),

Update the lower limit value LB

LB = max {LB, C™"®(x" " &)+ L };

Fix x" and calculate the SP to obtain the optimal solution
{pi’} and the optimal output adjustment strategy L(x"),
Update the upper limit value UB.

UB = min{UB, C*""*"(x", ", &) + L'(@)};

1.update the worst probability

N distribution of MP pk””:pk*;
(UB-LB)<¢ 2.add variable y;" and its
constraint Y(x,&);

Y 3.n=ntl.

Output the potimal
dispatching strategy x"

v

End

Figure 2. Calculating process of the two-stage DRO model. * implies the optimal parameters.

4. Numerical Study

The improved 24-node test system, shown in Figure 3 [38], was introduced to test the
effectiveness and feasibility of the two-stage DRO-coordinated dispatch method for the
CHPP system. There are 11 renewable power stations located at 1#, 2#, 7#, 13#, 14#, 154,
16#, 184, 21#, 22#, and 23# node, respectively, and the main parameters of the stations are
shown in Table 1. The station located at node 7# belongs to run-off hydropower station,
power station without regulating reservoir, whose power generation capacity depends on
water flow upriver and lacks generation adjustment ability. The other hydropower stations
belong to regulated hydropower station and have daily adjustment ability. Generally, daily
regulation of this type of station is usually carried out only in the dry season, and runoff
power generation is often used in flood season. The cascaded hydropower station adopts a
cascade hydraulic development, which starts from the upper reaches of the river, and a
series of water conservancy hubs are drawn up from the top to the bottom in a ladder-like
distribution form. A series of hydropower stations built by cascade development are called
cascaded hydropower stations. In the test system, cascaded hydropower station 1 (CHS 1)
is the leading power station of the entire cascade system, and CHS 2-CHS 7 are downstream
stations in sequence. CHS 4 and CHS 5 are connected in parallel with CHS 6 and CHS 7,
respectively. Pumped storage hydropower station (PSH) uses the electric energy in the low
load to pump water to the upper reservoir, and then releases water to the lower reservoir to
generate electricity in the peak load. It can convert the excess energy when the power grid
load is low into high-value electric energy during the peak period of the power grid, and is
also suitable for frequency and phase regulation to stabilize the frequency and voltage of
the power system; it is also suitable for emergency backup. In the 24-node system, the PSH
is located at BUS 16.
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BUS 17
— 22:33
Rl |k // Jh_ | | | |
BUS 16
PSH BUS 19 BUS 20
BUS li. ‘-!
&= BUS 14 BUS 13
CHS3
HA
P BUS 11 | | suse2
BUS 3
Figure 3. Topology for 24-node test system.
Table 1. Main parameters of each station.
Installed Reservoir Power Working
Node Station Type Capacity Capacity Generation Flow
/MW /104 m3 Head/m /m3/s
1# PV1 50 - - -
2# PV 2 50 - - -
7# CHS 5 20 - 339.09 74
13# CHS 3 36 37.2 91 33
14# - - - - -
15# CHS 6 4.8 53 10.5 489
16# PSH 5 25.6/23.7 339.09 74
18# CHS 2 60 20.9 127 53.4
21# CHS 4 54 25.6 161 471
224 CHS1 45 16.1 123.65 43.32
23# CHS7 84 44.2 75

According to the climatic characteristics of typical regions and the characteristics of PV
and hydropower output, the sunny and rainy weather type that affects photovoltaic output,
and the dry and wet seasons that affect hydropower output, are selected here to form
four representative water-light operation scenarios: sunny/wet season, rainy/wet season,
sunny/dry season, rainy/dry season. They are considered to carry out the coordinated
dispatch applicating research. In each scenario, the forecast value of PV output, the forecast
value of the cascaded system’s natural runoff output, and the forecast value of local load
demand are shown in Table 2.
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Table 2. Forecast value of PV, cascaded system, and local.
Time/h PV Stations Cascaded System Local
Sunny Rainy Wet Season Dry Season Load
1 0 0 290.62 160.44 134
2 0 0 292.44 153.56 134
3 0 0 275.18 161.22 133
4 0 0 283.08 151.88 133
5 0 0 290.6 156.44 132
6 0 0 287.32 152.59 132
7 0 0 297.48 153.4 134
8 4.53 4.86 288.06 145.71 137
9 14.23 3.6 292.25 163.51 141
10 28.69 14.69 269.49 147.82 140
11 34.57 3.97 296.45 162.09 139
12 39.76 8.1 287.71 160.08 140
13 40.24 8.68 293.47 149.98 138
14 40.03 6.24 282.16 164.76 138
15 39.5 11.83 291.02 152.99 138
16 30.84 6.98 282.7 148.82 138
17 18.15 3.58 289.05 151.72 138
18 7.53 2.13 282.85 148.37 139
19 0 0.1 276.96 154.21 140
20 0 0 269.63 152.03 140
21 0 0 286.37 146.95 140
22 0 0 298.45 158.84 140
23 0 0 292.73 162.34 139
24 0 0 293.8 151.65 137

The confidence levels a1 and a« are set to 0.2 and 0.8, respectively. The number of
discrete scenarios, K, is 50, and the number of historical data, M, is set to 1000. Software
CPLEX 12.6 and a computing platform with a 3.10 GHz processor and 4 GB memory were
introduced to calculate the solution for the application example. The optimal result of the
CHPP-coordinated dispatching in four applied scenarios are shown in Figures 4-7.

49 —e—PSH —e—PV1 PV2

Output/MW
®

Sunny/Wet Season

CHS1 —e—CHS2 —o—CHS3 —e—CHS4 —e—CHS5 —e—CHS6 —e—CHS7

Time/h

Y.
4 )
1 23 4 5 6 708 9 10N 12 13 14 1516 17 18 19 20 21 22 23 2

Figure 4. Optimal dispatch result in sunny/wet season scenario.
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1 2 3 4 L 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 2 23 24
Time/h

Figure 5. Optimal dispatch result in sunny/dry season scenario.
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Figure 6. Optimal dispatch result in rainy/wet season scenario.
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Time/h

Figure 7. Optimal dispatch result in rainy/dry season scenario.

In Figure 4, since the local load is dominated by living load with gentle fluctuation,
and the cascaded hydropower system is in heavy output state with high-level PV output
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superimposed in sunny/wet season scenario, a considerable part of water energy needs
to be stored in the cascaded reservoir, and the PSH system starts the pumping mode for
energy storage at the same time. The power output from the natural runoff flow of the
cascaded system plays a decisive role in this scenario.

It can be seen in Figure 5 that in the sunny/dry season scenario, the natural runoff
flow of the cascaded system reduced sharply. In this case, if the PV system is without
power output, it needs the cascaded reservoir to increase discharge flow, and the PSH
station needs to start the generation mode to compensate the comprehensive power output.
If the PV output is in peak hours, the cascaded hydropower output is weakened, and the
cascaded reservoir and PSH station start to store energy according to the real-time load
demand. The power output in this scenario is mainly based on the PV output and the
compensating output of the cascaded system.

In the rainy /wet season scenario, PV stations generally have a weak power output,
as shown in Figure 6. The power output from natural runoff flow of the cascaded system
coordinating the regulating output from cascaded reservoir is mainly used to balance the
load demand.

As shown in Figure 7, in the rainy/dry season scenario, the cascaded reservoir in-
creases the discharge flow, and the PSH system starts the power generation mode to jointly
compensate for the power shortage caused by the sharp reduction of the natural runoff
flow of the cascaded system. The supplementary power output from the cascaded hy-
dropower reservoir, combined with the output of PSH system, is taken as the main body in
this scenario.

In order to test the effectiveness of the data-driven DRO-coordinated dispatch method
for the CHPP system proposed in this paper, the comparative analyses from three aspects
are carried out according to the results of the application example.

4.1. The Influence of Data Size

The confidence coefficients a1 and &« are set to 0.2 and 0.8, respectively, and calcu-
late the unit average generation cost covering day-ahead dispatching cost and real-time
regulation cost with different data size. The calculation results are shown in Table 3.

Table 3. The unit average cost with different data size.

Data Size/pcs Average Cost/¥MWh
100 221.0963
500 144.7245
1000 138.7216
2000 125.6966
5000 122.9082
10,000 109.9088

It can be seen from Table 3 that with the increase of the data size, the unit average cost
is gradually decreases. The reason for this situation is that the increase of data size reduces
the deviation of its probability distribution and makes it closer to the true distribution.
This will decrease the conservativeness of the DRO problem. In addition, when the data
size exceeds 1000, the decline of average cost slows, and it can be concluded that data size
1000 can ensure that the optimal solving process meets the corresponding economic and
robustness requirements.

4.2. The Influence of Confidence Coefficient

Coefficient a1 is set to 0.30, 0.60, and 0.90, and a., is set to 0.50, 0.75, and 0.99, respec-
tively; the configuration of the rest of the parameters remains unchanged. In this case, the
calculation for the unit average generation cost of the CHPP system covering the real-time
regulation cost and day-ahead dispatch cost of the different confidence combinations in
the sunny/wet season scenario is carried out, the results of which are depicted in Table 4.
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Table 4 reveals that the unit average cost gradually rises with an increase in the confidence
combination value. This is obvious to understand, because the high confidence level indi-
cates more uncertainties covered by the optimization problem. In coordinating the dispatch
of the complementary power generation system, a greater need for flexible generation
resources arises to handle the growing uncertainties, resulting in an increase in the unit
average generation cost. The influence trend of different confidence levels on the unit
average cost in Table 4 has confirmed the validity of the comprehensive norm constraint
and its linearization in the proposed DRO-coordinated dispatching method.

Table 4. The unit average cost with different confidences.

Types/¥/MWh o= 0.50 o= 0.75 &= 0.99
x1=0.30 138.4412 138.9613 139.1146
a1=0.60 138.8901 139.0761 139.2721
x1=0.90 139.1626 139.4247 139.4837

For the comparison between the comprehensive norm and single 1-norm or co-norm
constraint, & is set to 0.30, 0.60, and 0.90, respectively, and a is set to 0.99 to form the
norm constraint. The unit cost under each norm constraint is shown in the fourth column
of Table 4. When only considering co-norm constraint (xe= 0.99), the unit average cost
is ¥139.7633/MWh, which is larger than values in the fourth column. It means that due
to double norm taken into account, the conservativeness of the comprehensive norm
constraint has been improved. Similarly, a; is set to 0.90, and a, is set to 0.50, 0.75,
and 0.99, respectively to form the norm constraint. The unit average cost under each
formed comprehensive constraint is shown in the fourth row of Table 4. When only
considering 1-norm constraint (1= 0.90), the unit average cost is ¥140.5411/MWHh, which is
also larger than the values in the fourth row. It also means that the conservativeness of the
comprehensive norm constraint has been improved due to the double norm considered.

4.3. Comparative Study

To validate the accuracy and efficiency of the suggested coordinated dispatch method,
comparative analysis among SO, RO, and probabilistic chronologic production simulation
proposed in [39] and our study is carried out.

Taking sunny/wet season scenario as an example, the main parameters of the DRO-
coordinated dispatching method for CHPP a1, e, K, and data scale are set to 0.20, 0.80,
50, and 1000, respectively. The comparison results between DRO, SO, and traditional RO
are depicted in Table 5. As depicted in Table 5, the outcome of DRO falls between the
results obtained from the other two methods, which confirms that the coordinated dispatch
method has a better robustness. Compared with traditional RO, the DRO method shows a
better economy. In conclusion, the DRO-coordinated dispatch method presented in this
paper strikes a harmonious equilibrium between economic considerations and robustness.

Table 5. Comparison results of DRO, SO, and traditional RO.

Types DRO SO Traditional RO
Unit Average Cost
/%/MWh 138.7216 137.9051 191.3382

For the comparison between the DRO and probabilistic chronologic production simu-
lation method, the unit average cost of the two methods and the calculation time is listed
in Table 6. It can be seen that the maximum cost obtained by the DRO is smaller than that
of the production simulation method, and the average cost of the two is not much different.
This is because the results obtained by the probabilistic production simulation method are
closely related to the data scale, and the results fluctuate greatly, while the DRO has better
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stability. For another aspect, the calculation results of the two methods are close, and the
calculating efficiency of the data-driven DRO-coordinated dispatching method is slightly
better than that of the probabilistic chronologic production simulation method. The time
comparison in Table 6 verifies the accuracy and efficiency of the DRO method when it is
used in the CHPP-complementary-coordinated dispatch.

Table 6. Results and calculation time of the two dispatch methods.

Probabilistic Chronologic

Types DRO Production Simulation
Unit Maximum Cost/¥/MWh 146.8864 151.2611
Unit Average Cost/¥/MWh 138.7216 138.6383
Calculation Time/s 58.3 71.6

5. Conclusions

The CHPP complementary generation system’s multi-dimensional uncertainty and
intricate coupling characteristics have made it extremely challenging to optimize coordi-
nated dispatching. The outputs of typical optimization techniques like SO and RO are
always conservative and inefficient, and most of the time it is difficult to obtain a practical
dispatch strategy that satisfies the CHPP’s optimal dispatching requirements. Therefore,
this paper introduced a data-driven DRO technology and proposed a two-stage coordinated
dispatching method for the CHPP complementary system. The main conclusions of this
paper are as follows:

(1) A data-driven DRO two-stage dispatching model was established to meet the dispatch-
ing requirements of CHPP system, and an efficient C&CG algorithm was introduced
to divide the model into MP and SP for iterative cycling calculation.

(2) The conservativeness of the DRO dispatching model is inversely proportional to
data size, and proportional to the comprehensive norm confidence level. It is further
verified that DRO algorithm organically integrates the advantages of SO and RO, and
the algorithm achieves a better robustness (Unit Average Cost: ¥ 138.7216/MWh) than
SO (¥ 137.9051/MWh), and a better economy than RO (¥ 191.3382/MWh).

(8 The DRO-coordinated dispatching method for the CHPP system can realize the dis-
patching performance of the probabilistic chronologic production simulation method
while improving calculation efficiency. In the same calculation scale, the DRO can
save 18.6% calculating time, and achieved a higher efficiency.

Future research will focus on maximizing the power generation income of each subject
in the complementary combined power generation system, fully motivating each subject
to participate in the complementary power generation, and based on this, obtain a joint
optimal scheduling scheme for the CHPP system.
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