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Abstract: This study presents a charge-domain SRAM-based in-memory computing (IMC) architec-
ture. The multiply-and-accumulate (MAC) operation in the IMC structure is divided into current-
and charge-domain methods. Current-domain IMC has high-power consumption and poor linearity.
Charge-domain IMC has reduced variability compared with current-domain IMCs, achieving higher
linearity and enabling energy-efficient operation with fewer dynamic current paths. The proposed
IMC structure uses a 9T1C bitcell considering the trade-off between the bitcell area and the threshold
voltage drop by an NMOS access transistor. We propose an energy-efficient summation mechanism
for 4-bit weight rows to perform energy-efficient MAC operations. The generated MAC value is
finally returned as a digital value through an analog-to-digital converter (ADC), whose performance
is one of the critical components in the overall system. The proposed flash-successive approximation
register (SAR) ADC is designed by combining the advantages of flash ADC and SAR ADC and
outputs digital values at approximately half the cycle of SAR ADC. The proposed charge-domain
IMC is designed and simulated in a 65 nm CMOS process. It achieves 102.4 GOPS throughput and
33.6 TOPS/W energy efficiency at array size of 1 Kb.

Keywords: in-memory computing; static random access memory; charge-domain SRAM–IMC;
flash-SAR ADC; deep neural network

1. Introduction

Artificial intelligence (AI) is significantly contributing to technological progress as it
can be applied to various fields. As a result, the amount of data to be processed is rapidly
increasing [1]. However, in the von Neumann architecture, data movement overhead
occurs because of limitations in separating memories and processors [2,3]. To address
these limitations, in-memory computing (IMC) is considered the most promising next-
generation computing architecture [4]. IMC has the advantage of significantly reducing
the number of accesses to memory by directly performing computing work inside the
memory. This can significantly reduce the energy consumption of well-known bottlenecks.
The implementation of IMC is divided into digital and analog techniques. In the case of
digital IMC, MAC operations are predominantly carried out using logic gates. However,
this approach not only consumes a large area due to wide adder trees, but also requires
more clock cycles since the operations are executed step by step. On the other hand, analog
IMC achieves efficient MAC operations by leveraging Ohm’s law and Kirchhoff’s laws [5].
This results in reduced area consumption and allows for faster computation [6].

In an IMC environment, data stored in memory must be directly accessed and pro-
cessed. Therefore, static random access memory (SRAM), which can read/write at high
speed, is the best choice for implementing an IMC structure. In addition, unlike dynamic
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random-access memory (DRAM), SRAM provides high endurance because no data is lost
owing to the physical characteristics of the memory cell [7]. Therefore, SRAM is preferred
in IMC environments where fast processing speed and energy efficiency are required.
SRAM–IMC uses the current domain computing approach [8–16]. Generally, the current
domain computing method using a 6T-SRAM bitcell enables high-speed calculation ow-
ing to parallel processing and fast calculation. However, the current domain computing
approach has several limitations, as shown in Figure 1. First, a constant current must
be discharged between bitcells sharing a bitline (BL). However, non-linearity may occur
due to process variation. Second, the word lines (WL) of each bitcell sharing the BL can
be activated simultaneously for logic operations, causing read disturbance problems. To
address these problems, 8T-SRAM cells with separate read and write paths are used, as
shown in Figure 2b [8]. However, 6T-SRAM cells feature two read paths (BL and BLB),
while 8T-SRAM cells have only one read path (RBL), thereby limiting the available methods
of computation. As illustrated in Figure 2c, ref. [12] utilizes 10T-SRAM cells to achieve two
read paths without encountering read failures. Nevertheless, this approach results in a
larger footprint due to the inclusion of additional transistors. Owing to the aforementioned
challenges, current-domain computing continues to face issues of low accuracy in the
inference stage, attributed to nonlinearity, and high power consumption resulting from
dynamic computation.
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Figure 1. Comparison of current and charge-domain SRAM–IMC.

Recently, the SRAM–IMC of charge-domain computing has been reported to address
the limitations of current-domain computing [17–27]. As shown in Figure 1, charge-domain
computing uses capacitors added inside individual bitcells to perform analog multipli-
cation. Although concerns about large areas caused by the capacitor inside the bitcell
arise, this issue is addressed by placing metal–oxide–metal capacitors above the bitcell,
eliminating the need for an extra area [18]. Additionally, analog multiplication of charge
sharing method by capacitors inside each bitcell achieves higher linearity than that of
the current domain [23]. However, the charge-sharing schemes reported in [18,19] are
typically implemented using switched-capacitor structures and, as a result, require extra
input signals. Additionally, the switching process may cause charge injection, potentially
reducing computation accuracy. Figure 2d,e provide an overview of charge-domain bitcells.
Although 10T1C bitcells [25] achieve high linearity in large arrays, they occupy a substantial
individual cell area. The 8T1C bitcell utilized in the literature [27] occupies a relatively
smaller area, but suffers from threshold voltage drop caused by NMOS access transistors.
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In this study, we propose an SRAM-IMC structure employing capacitive coupling to
address issues present in the existing switched capacitor-based systems. This configuration
enables summation without the need for additional signals, and 4-bit calculations are
executed through a capacitive voltage divider. Also, as shown in Figure 2f, the 9T1C bitcell
is selected considering the trade-off between area and threshold voltage drop. The bitcell
area is minimized by configuring the access transistor that transport the activation input as
the transfer gate and the transistor that connects to the ground as a single NMOS.
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One of the key components in SRAM–IMC is the analog-to-digital converter (ADC),
which converts the analog MAC results generated in the memory array into digital values.
Among the various ADC types, the most widely used in SRAM–IMC are flash ADCs and
successive approximation register (SAR) ADCs. Flash ADCs use multiple comparators
to convert analog inputs to digital during one clock cycle. However, conventional flash
ADCs require numerous comparators (2N − 1, where N is the resolution) as resolution
increases, resulting in significant area and power consumption. As a result, Flash ADCs
need to allocate sufficient area and can only be used at low resolutions. Contrarily, SAR
ADCs can achieve high resolution with a single comparator and relatively energy-efficient
data conversion. Nonetheless, SAR ADCs are slow to convert because they process 1 bit
per cycle. To address the distinct limitations of both ADC types, a hybrid structure termed
flash-SAR ADC (FS ADC) has been proposed [28,29]. By combining the advantages of flash
ADC and SAR ADC, FS ADC can output digital values in half the clock cycle compared with
conventional SAR ADCs, alleviating the slow conversion speed of SAR ADCs. Additionally,
energy efficiency can be maximized by utilizing a flash ADC for a fraction of the resolution.

Our main contributions are as follows:
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• The proposed capacitive coupling is free from charge injection and additional input
signals that occur based on switched-capacitor. Thus, the summation mechanism
proposed in this paper can reduce the required capacitance substantially.

• Proposed an energy-efficient 7-bit flash-SAR Hybrid ADC (FS ADC) that merges the
strengths of both flash and SRA ADC architectures to address the limitations associated
with each ADC.

• The proposed coarse–fine architecture of the flash ADC reduces the number of com-
parators from 2N − 1 to 2N − 1, minimizing the impact of the comparator’s input gate
capacitance. This not only reduces errors in the MAC generated by capacitive coupling
in in-memory arrays, but also enables 4-bit summation with low capacitance.

The remainder of this paper proceeds as follows. Section 2 describes the proposed
charge-domain computing architecture. Section 3 explains the proposed Flash-SAR Hybrid
ADC. Simulation results are described in Section 4. Finally, Section 5 concludes the paper.

2. Proposed Charge-Domain Computing Architecture

In this study, the proposed SRAM–IMC employs a charge-domain methodology for
digital–analog mixed-signal processing, performing the inner product operation between
a binary weight vector and an input vector. This approach converts digital input signals
into analog voltages and accumulates them continuously based on the values of the binary
weight row, resulting in the computation of the inner product. This methodology offers
low power consumption and high speed, while minimizing the number of logic operations
required to calculate the inner product between the binary weight and input vector. Figure 3
shows the overall structure of the proposed charge-domain IMC. The structure consists of a
32 × 32 9T1C array, an address decoder, thirty-two 4-bit input DACs, and eight flash-SAR
ADCs. Each of the thirty-two 4-bit input DACs takes a 4-bit input and applies it to 32 binary
weight columns, and the 32 binary weight rows compute the vector-matrix multiplication
with the input DACs. Four weight rows perform the MAC operation using a 4-bit analog
summation method. The flash-SAR ADCs convert analog 4-bit summation values received
from the 9T1C array into 7-bit digital output values.
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2.1. Binary Weighted Capacitor DAC

Figure 4 shows the 4-bit capacitor DAC used in the proposed structure. This DAC
utilizes four capacitors to generate analog output values for 16 input codes ranging from
0000(2) to 1111(2). These capacitors are connected in descending order of size, with ratios
of 8CD, 4CD, 2CD, and CD, corresponding to the most significant bit (MSB) to the least
significant bit (LSB) of a 4-bit input signal. The 4-bit capacitor DAC has both the top and
bottom plates grounded in the initial stage and later generates VIN by the DACEN signal.
At VDD = 1 V, the voltage increment per 1 LSB is 62.5 mV, and among the 16 possible
input codes, including 0, the 4-bit DAC can represent the highest voltage of 937.5 mV. The
generated VIN is provided as input to the 9T1C bitcell.
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2.2. 9T1C Bitcell

Figure 5 shows the 9T1C bitcell used in the proposed architecture. It comprises a 6T-
SRAM cell for weight storage, a transmission gate, and an NMOS controlled by the stored
weight. Additionally, it includes a capacitor (Ccell = 1.3 f F) that performs multiplication
operations within a single bitcell. When the Q value of the bitcell is 0, Q_B stores the
opposite value 1, and the NMOS is activated by Q_B, causing the top plate of Ccell to be
grounded. Conversely, when the Q value of the single bitcell is 1, the Q value is applied to
the gate of the NMOS that forms the transmission gate, whereas 0 is applied to the gate of
the PMOS. This activation of the transmission gate enables VIN to be transferred to the top
plate of Ccell without any voltage drop, sending it to the VPS row. The individual inputs
and weights of the bitcells perform multiplication within Ccell coupled with the VPS row.
Moreover, all Ccell values coupled with the row are accumulated in the VPS row through
charge redistribution, as expressed in

VPS =
∑31

i=0 VIN,i × Ccell,i

32 × Ccell
. (1)

2.3. Proposed Capacitor Summation Mechanism

In [27], the total capacitance of the bridge capacitors used for 4-bit summation is re-
markably high, reaching 272 times that of a single-bit cell capacitor. Given that a capacitor’s
charge/discharge current is directly proportional to its size, an increase in size leads to
higher power consumption. Consequently, reducing the size of the capacitor used for
summation becomes crucial for mitigating power consumption. The proposed structure
introduces a capacitive coupling summation method, depicted in Figure 6, which diverges
from the approach presented in [27]. The summation mechanism involves VPS [3] and
VPS [2], each contributing in an 8:4 ratio in the capacitive voltage divider due to capacitive
coupling by Csum = 32 × Ccell ∥ CAtt, resulting in a cumulative ratio of 2:1. Similarly,
VPS [1] and VPS [0] are combined in a 2:1 ratio, and the sum of VPS [3–2] and VPS [1–0]
is aggregated in a 4:1 ratio using the capacitor in Csum/2. Finally, VMAC, representing
the 4-bit sum value in the ratio 8:4:2:1, is transmitted to the FS ADC. The significance of
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CAtt (23.1 f F) lies in its effective reduction in Csum’s capacitance by connecting directly
with 32 Ccell in parallel to VPS. This results in the capacitance of Csum being equal to the
series combined capacitance of 32 Ccell and CAtt. The total capacitance required for 4-bit
summation is approximately 53 times that of a single bit cell capacitor, a significantly lower
value compared to previous studies. Capacitance of CAtt is carefully set to a level that
ensures the total capacitance required for summation does not lead to errors caused by the
gate capacitance of the FS ADC. While directly connecting summing capacitors to the ADC
input might cause errors due to low total capacitance, this is acceptable in our proposed FS
ADC due to its low gate capacitance, as discussed in Section 3.1.
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3. Architecture of Flash-SAR Hybrid ADC

Figure 7 shows the structure of the proposed 7-bit FS ADC, comprising a 3-bit coarse-
fine flash ADC, SAR logic, a 7-bit C-DAC, thermometer to binary encoder (TM2B), and
an output register. Initially, the VMAC formed by the summation capacitors is input to the
coarse-fine flash ADC for conversion of the upper 3-bit. Once the conversion is completed,
the MSB of the upper 3-bit, which is also the MSB stage of the entire ADC, is stored in
the output register while being connected to the 4CU of the C-DAC in the FS ADC. The
remaining 2-bit of the coarse-fine flash ADC are connected to the capacitor units (CUs) of the
MSB stage in a thermometer code format before passing through the TM2B. This method
prevents any delay in the start of the SAR ADC for the lower 4-bit. This delay would otherwise
have occurred if the TM2B were connected to the C-DAC after going through SAR logic. A
detailed description of the coarse–fine flash ADC is discussed in Section 3.1.
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To address the challenge of implementing a 7-bit C-DAC, which requires large capaci-
tors of approximately 128CU as the resolution increases, the proposed FS ADC employs
divided capacitors to limit the capacitor size used in the C-DAC to a maximum of 4CU.
Moreover, as the FS ADC must differentiate between the MSB and LSB stages, the use of
divided capacitors becomes an appropriate choice from various aspects.

Figure 8 shows the timing diagram of the FS ADC, including the operation of the
IMC. Initially, the RST signal grounds both the top and bottom plates of the summation
capacitor used in MAC operation to reset VMAC. Simultaneously, during RST = 1, the
DACEN signal is temporarily held at 0. When RST = 0, 4-bit activation inputs for MAC
operation are supplied to each column to generate VMAC. Subsequently, the SET signal
becomes 0, preparing to form a reference voltage in the C-DAC, and at the same time,
the coarse–fine flash ADC operation begins by CEN. Once the comparison results for the
coarse stage are obtained, forming the reference voltage for the fine stage, the FEN rises
to 1, starting the fine stage comparison (coarse–fine flash ADCs are discussed in detail in
Section 3.1). Simultaneously, through the FEN_B, the SAR logic forms the reference voltage
on the C-DAC. Subsequently, when the conversion for the lower 4-bit is completed via the
SAR comparator operating on the falling edge, the End-of-Converting (EoC) signal from
the SAR logic triggers TM2B, ultimately storing a 7-bit digital value in the output register.
Additionally, to ensure a stable settling time of the MSB stage CU, the frequency of the FS
ADC is limited to 500 MHz. The overall IMC structure can reset and generate the VMAC
result within one clock cycle of the FS ADC. Therefore, the 50 MHz frequency represents
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the operational frequency of the entire IMC structure, including resetting and storing the
ADC output in registers. If the FS ADC operates at a lower frequency, it may provide more
stability, but considering the potential decrease in the throughput of the overall architecture,
the frequency of the FS ADC is determined with this aspect in mind.
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3.1. Coarse–Fine Flash ADC

Conventional flash ADCs that require 2N − 1 comparators also use a significant
number of comparators at low bits. Furthermore, owing to the summation capacitor
attenuation mentioned in Section 2.3, VMAC, the input of the FS ADC, can be reduced by the
parasitic capacitance of the metal and the input gate capacitance of the comparator. Thus,
the choice of resolution for the flash ADC, which requires many comparators, becomes
a critical issue in the design of the FS ADC. In the proposed FS ADC, the upper 3-bit is
controlled by the flash ADC, and to minimize the number of comparators, a coarse–fine
structure is adopted to perform flash ADC operation with only 2N − 1 comparators. As only
four comparators are consumed, the effect of the gate capacitance on the VMAC formed by
the summation capacitor can be minimized.

Figure 9 shows the structure of the 3-bit coarse–fine flash ADC. The voltage divider,
designed as a R-ladder structure, forms a total of seven reference voltages from [6] to [0]. In
the coarse stage, the VMAC formed by the summation capacitors is fed as an input to the
coarse comparators, and its comparison with [3] determines the MSB of the 3-bit flash ADC.
Then, based on the comparison result of the coarse comparators, the reference voltages
for the three fine comparators are determined and the conversion for the remaining 2-bit
begins. When VMAC < [3], the output of the coarse comparators is 0 and the reference
voltages for the three fine comparators are set to [2]–[0]. Conversely, when VMAC > [3],
the output of the coarse comparators is 1 and the reference voltages for the three fine
comparators are set to [7]–[5]. As the MSB of the flash ADC is identical to the MSB of the
entire FS ADC structure, it is directly stored in the output register while the remaining 2-bit
is passed on to the next stage in the form of a thermometer code.
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3.2. High-Speed Rail-to-Rail Comparator

Conventional comparators typically use a differential input pair consisting of NMOS
transistors for comparison. However, in some cases, when the reference voltage closest to
GND does not exceed the VTH of the input gate, it may result in incorrect output values.
This is also the case when VMAC fails to exceed VTH. Therefore, to support data conversion
across the entire dynamic range, the proposed FS ADC requires comparators that can
perform rail-to-rail detection and high-speed operation. Figure 10a shows the comparator
proposed in the literature [30]. It utilizes both NMOS and PMOS differential input pairs,
enabling operation over the full dynamic range and achieving sufficient speed, rendering
it suitable for the proposed architecture. However, because the number of input pairs is
higher than when using only NMOS, kickback noise due to gate capacitance increases. To
minimize kickback noise, the sizes of the differential input pairs consisting of NMOS and
PMOS are designed using the minimum size in the 65 nm CMOS process. In addition, to
prevent comparison result loss caused by CLK, a latch is added to ensure accuracy.
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Figure 10b shows the simulation result of the comparator with the latch under worst-
case. The simulation of the worst-case delay is performed from the time when CLK becomes
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VDD/2 until the comparison result value becomes VDD/2. The simulation result shows that
the worst-case delay is approximately 0.472 ns, and the result can be obtained within half
of the 500 MHz CLK period used in the FS ADC.

4. Simulation Results

In this section, we describe the simulation results conducted at the pre-layout stage to
evaluate the performance of the proposed charge-domain IMC structure. The proposed
structure is designed using a 65 nm CMOS process and operated at VDD = 1 V. To achieve a
capacity of 1 Kb, a 32 × 32 array of 9T1C bitcells is constructed and the operating frequency
of the IMC is set to 50 MHz. Additionally, the internal SAR ADC within the FS ADC is
operated at a frequency of 500 MHz, ultimately converting the analog signal into a 7-bit
digital output value.

The proposed SRAM-IMC mainly operates with capacitors, and the biggest impact is
capacitor mismatch. However, capacitors with metal-oxide-metal (MoM) structure possess
very good matching properties [31,32]. As reported in [18], the capacitor mismatch for
in-memory computing using MoM capacitors in 65 nm CMOS was found to be only 1%.
This is lower than the quantization error of a 7-bit ADC. Additionally, while the charge
sharing method must consider the charge injection and capacitor mismatch characteristics
due to the MOS switch, the proposed method can only consider the capacitor mismatch.
Therefore, high linearity can be expected even after post-layout and chip measurement.

4.1. Linearity of 4-bit DAC

The proposed charge-domain SRAM–IMC structure forms a path between the individ-
ual bitcells, the summation and 4-bit input DAC, which can cause output voltage variations
using coupling capacitors. Moreover, with additional paths between the weight row and
each bitcell, a 4-bit input DAC may induce poor linearity. Figure 11a shows the linear graph
of the 4-bit input DAC when the FS ADC outputs the final digital values in the overall IMC
structure. Moreover, we conducted experiments with all weight values in the weight row
set to 1 to explore the worst-case. The worst-case occurred when the 4-bit input value was
1111(2), resulting in approximately 5% distortion compared with the ideal analog value of
the 4-bit DAC.
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linear inputs from 4-bit DAC.

4.2. Linearity of Charge-Domain MAC Operation

In the proposed IMC structure, MAC operations are finalized through a 4-bit summa-
tion for each row group. Figure 11b shows the transfer curve of VMAC, computed using
thirty-two 4-bit input DACs and summation capacitors. Additionally, the weight of the
entire array is stored as 1 to simulate all possible values that VMAC can represent. The
simulation consisted of sequentially incrementing the first 4-bit input DAC from 0000(2) to
1111(2), and then following the same increasing pattern for the subsequent 4-bit input DACs.
This process generated a total of 480 VMAC outputs corresponding to the 32 input DACs.
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The charge-domain MAC operation in the proposed design exhibits excellent linearity
with a coefficient of determination (R2) of 0.9999. The root mean square error (RMSE)
represents the average error between the expected VMAC results using Equation (1) and the
actual simulated values. The simulated RMSE shows a significantly satisfactory value of
0.963 LSB, which remains less than 1.

4.3. Performance of FS ADC

The R-ladder of the FS ADC utilizes resistive voltage division, and the selection
of resistor values is closely related to the overall performance. Larger resistor values
lead to lower power consumption, but linearities decrease because of kickback noise.
Conversely, smaller resistor values result in higher power consumption but increased
linearity. Figure 12a shows the dynamic power consumption with respect to resistor values.
In the 7-bit FS ADC, resistor values were selected to prevent missing digital output values.
Considering the trade-off between power consumption and linearity, the proposed FS ADC
adopts a resistance of 500 Ω.
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Figure 12b illustrates the final output of the entire process, from the 4-bit C-DAC
to the FS ADC, by combining the FS ADC with the memory array. In other words,
Figures 11a and 12b represent results obtained through the same simulation over a long
period of time. The resulting R value is 0.9993, demonstrating a linearity similar to the R2

value of the previous VMAC.
The performance evaluation of the FS ADC was conducted using both the linearity

assessment of the MAC operation and the final digital output values obtained through the
ADC. Figure 12c shows the simulated results of integral non-linearity (INL) and differential
non-linearity (DNL) for the FS ADC. Ideal DACs were connected and extracted using
Cadence Spectre to convert the final digital output values into analog values. The extracted
analog output values were computed in MATLAB R2017b, and the evaluated max/min
values for INL and DNL were +0.32/−0.67 and +0.2/−0.9, respectively.

4.4. Performance Comparison

The proposed charge-domain SRAM–IMC operates in parallel with 32 inputs and
32 individual weight rows at a maximum frequency of 50 MHz. The throughput (GOPS)
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is calculated as 2 × 32 × 32 × 1/(20 ns) = 102.4. The factor of 2 is multiplied to account
for processing one MAC operation, which involves one multiplication and one addition
performed simultaneously. For energy efficiency, the weights of all individual bitcells were
set to 1, and the power consumptions for all possible cases represented by the thirty-two
4-bit input DACs were simulated. The average power consumption was 3.04 mW, achieving
an energy efficiency of 33.6 TOPS/W. In the proposed architecture, the dominant power
consumption is due to the R-ladder. The dynamic power consumption of eight R-ladders,
each corresponding to an ADC, is 2 mW, accounting for approximately 66% of the total
power. For example, if the array size of the proposed architecture is expanded to 128 × 128,
32 ADCs are used, and 32 R-ladders consume 8 mW of dynamic power. When R-ladder
is accounted for, the average power consumption is calculated to be 12.12 mW, and the
throughput and TOPS/W are 1638.4 GOPS and 135.2 TOPS/W, respectively.

Table 1 compares the performance of the proposed charge-domain IMC with those
of previous studies. To ensure an accurate comparison, we utilized Figure of Merit (FoM)
based on input precision × weight precision × energy efficiency (scaled to 65 nm) [33].
Despite the relatively smaller 32 × 32 array size of the proposed structure than those of
previous studies, it demonstrates superior performance in terms of FoM.

Table 1. Performance comparisons with previous works.

Parameter This Work * JSSC’19
[12]

JSSC’20
[16]

TCAS’23
[17]

JSSC’20
[21]

JSSC’21
[23]

Technology 65-nm 65-nm 65-nm 28-nm 65-nm 65-nm

Bitcell Structure 9T1C 10T 12T 6T 10T1C 6T

Array Size 32 × 32 256 × 64 256 × 64 128 × 128 2304 × 256 512 × 256

Supply Voltage 1 V 0.8~1.2 V 0.6~1.0 V 0.6~0.9 V 0.85/1 V 1.2 V

Frequency 50 MHz 5 MHz 100 MHz 50 MHz 100 MHz N/A

Computing Type Charge Current Current Charge Charge Charge

ADC Type Flash-SAR Integrating Flash Flash SAR ciSAR ADC

Bit Precision
(Input/Weight/Output) 4/4/7 6/1/7 1/1/3.46 4/4/4 1/1/8 4/1/7

Throughput ** (GOPS) 102.4 8 N/A 204.8 2185 573.4

Energy
Efficiency(TOPS/W) 33.6 40.3 403 16.9

(3.13) *** 192 49.4

FoM **** 537.6 241.8 403 50 192 197.6

* Pre-layout simulation result. ** One MAC is counted as two operations (1 multiplication + 1 accumulation).
*** Scaled to 65-nm, assume energy ∝ (Tech.)2 [12]. **** FoM = input precision × weight precision × energy
efficiency (scaled to 65-nm) [33].

5. Conclusions

The proposed SRAM–IMC performed MAC operations based on charge and achieved
a reduced total capacitance for summation by utilizing capacitors. Additionally, to ad-
dress the limitations of flash and SAR ADCs, we proposed an energy-efficient FS ADC
that combines both ADCs, resulting in approximately half the cycle time compared with
conventional SAR ADCs. Although a smaller total capacitance for summation could render
the IMC sufficiently sensitive to noise when utilized as an input for the ADC, we minimize
noise by employing a coarse-fine flash ADC inside FS ADC. The proposed structure is
designed using a 65 nm CMOS process and simulated at a 1 V operating voltage. For the
linear input of the 4-bit DAC, the proposed summation capacitor mechanism achieved high
linearity and the data conversion in the FS ADC also demonstrated high accuracy. Despite
having a smaller array size than those previous studies, the overall proposed structure
achieves a throughput of 102.4 GOPS and an energy efficiency of 33.6 TOPS/W. Continuous
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active research is ongoing to further explore the applications of IMCs, and we anticipate
that our proposed structure will be a promising alternative solution.
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