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Abstract: Intelligent vehicular networks can not only connect various smart terminals to manned
or unmanned vehicles but also to roads and people’s hands. In order to support diverse vehicle-to-
everything (V2X) applications in dynamic, intelligent vehicular networks, efficient and flexible routing
is fundamental but challenging. Aimed to eliminate routing voids in traditional Euclidean geographic
greedy routing strategies, we propose a hyperbolic-embedding-aided geographic routing strategy
(HGR) in this paper. By embedding the network topology into a two-dimensional Poincaré hyperbolic
disk, greedy forwarding is performed according to nodes’ hyperbolic coordinates. Simulation results
demonstrated that the proposed HGR strategy can greatly enhance the routing success rate through a
smaller stretch of the routing paths, with little sacrifice of routing computation time.

Keywords: intelligent vehicular networks; geographic routing; routing void; hyperbolic space

1. Introduction

With the rapid advancement of artificial intelligence, big data and 5G technologies,
the concept of intelligent vehicular networks has become a reality in recent years [1]. As an
increasing number of vehicles, especially autonomous self-driving cars, are becoming con-
nected in the intelligent vehicular network [2], the performance requirement of disseminating
transportation-critical information becomes much more stringent. In such a large-scale, het-
erogeneous, complex network, the design of a reliable and efficient routing strategy is of great
necessity but quite challenging [3–5]. Therefore, the study of routing strategies has long been
a hot topic in the research field of intelligent vehicular networks [6–8].

Unfortunately, traditional routing strategies [9–11] are often “topology-based” and
lack full consideration of the dynamic topological characteristics in intelligent vehicu-
lar networks. Distinguished from general wired networks, the wireless connections in
intelligent vehicular networks are impermanent and intermittent due to the mobility of
vehicles [12]. Given the dynamic nature of network topology, traditional topology-based
routing strategies are too sensitive to topology churns and are not well suited for intelligent
vehicular networks [13]. To address this issue, geographic routing strategies [13–18] are
introduced. Geographic routing strategies find routing paths based on nodal location,
rather than the network topology. Utilizing the geographic location information offered
by the global positioning system (GPS) on board, geographic routing strategies greedily
forward packets hop by hop in a destination-distance-descending manner until the desired
destination is reached. In this way, each node merely needs to know its location information,
its neighbors, and the destination node, thus removing the precise requirement of global
network topology information. This efficiency reduces the overhead of maintaining routing
tables and removes the limitation of scaling in large-scale networks. Therefore, geographic
routing strategies are more suitable for intelligent vehicular networks, and a plethora of
geographic routing strategies have emerged in the context of intelligent vehicular networks.
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However, existing geographic routing strategies suffer a lot from the problem of “rout-
ing void” [19,20]. That is, the current packet holder’s distance to the destination is closer
than any other neighbors, and the destination cannot be reached within one hop. When
the routing void occurs, it can lead to serious packet delivery failures, which is unaccept-
able for the information transmission service, with demanding performance requirements
in intelligent vehicular networks. Although efforts have been committed to developing
countermeasures, such as the “right-hand rule” or face routing, the improved routing
success rate is still lower than 100% [21]. Reliable and effective information dissemination
in intelligent vehicular networks is calling for a brand-new design of routing strategies.

Hyperbolic geometric space brings us new ideas. In recent studies in network science,
increasing evidence has been found that the hidden metric beneath many real-world
networks is hyperbolic [22–24]. In contrast, existing geographic greedy routing in intelligent
vehicular networks is typically in the Euclidean metric space, but the shortest path distance
in the network topology graph can not be well-represented by the distance in the Euclidean
metric space without distortion [25]. Experimental results also demonstrate that hyperbolic
embeddings of complex networks enjoy the property of lower distortion compared to
Euclidean network embeddings [26]. Most importantly, it is proved that every finite graph
has a greedy embedding in the hyperbolic space that guarantees that greedy forwarding
is always successful in finding a route to the destination, if such a route exists [27,28].
Inspired by this, we propose a hyperbolic-embedding-aided geographic routing strategy in
intelligent vehicular networks, termed HGR. We will elaborate on HGR in the remainder
of our paper, which is organized as follows. Section 2 discusses background and related
works. Section 3 presents our detailed design of HGR. The performance evaluation results
are reported in Section 4, and we draw conclusions in Section 5.

2. Background and Related Works
2.1. Background

The development of the intelligent vehicular network has gone through several stages.
Originally known as the vehicular network, it was proposed to realize coordination among
cars and roadside units. Thanks to rapid technological advances, vehicular networks are
evolving into the Internet of Vehicles (IoV), which is extended from the concept of the
Internet of Things (IoT). To avoid confusion with vehicle-mounted telematics, the term
Vehicle-to-Everything (V2X) is more widely used. As its name suggests, V2X includes
not only Vehicle-to-Vehicle (V2V) communications but also Vehicle-to-Infrastructure (V2I),
Vehicle-to-Pedestrian (V2P), and Vehicle-to-Network (V2N) communications. With the
rapid development of artificial intelligence in recent years, the intelligent vehicular network
has gained increasing attention due to the need for connected smart vehicles and driver-
less cars [1,2,29]. As a key enabler of intelligent transportation systems (ITS), intelligent
vehicular networks will ultimately shift the role of cars into no longer merely a simple
transportation tool, making our daily traveling safer, greener, and more convenient [30].
The networking scenario of intelligent vehicular networks is depicted in Figure 1.

Much effort has been made toward the standardization of vehicular networks across
countries. In the U.S., vehicular networks are developed following the dedicated short-
range communications (DSRC) technology [31]. DSRC is based on the IEEE 802.11p protocol
and uses the 75 MHz frequency band from 5.850 GHz to 5.925 GHz. The purpose of the
DSRC service is to improve traffic safety and reduce congestion. The European standard
for V2X communication is cooperative intelligent transportation systems (C-ITS). C-ITS
mainly focuses on one-to-one or one-to-many communication between cars, trucks, buses,
trains and infrastructures. And C-ITS is compatible with cellular communication networks,
Wi-Fi, and DSRC. In C-ITS, a frequency band of 70 MHz is reserved for DSRC, ranging
from 5855 MHz to 5925 MHz. At present, IEEE 802.11p is the mainstream access proto-
col for DSRC. However, DSRC requires too much on building roadside infrastructures,
resulting in a high cost of deployment. China promotes the Long Term Evolution V2X
(LTE-V) technical route. Compared to DSRC, LTE-V utilizes the existing infrastructure and
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spectrum resources of cellular networks; hence, LTE-V is also often called cellular V2X
(C-V2X). There are two types of air interfaces in C-V2X, i.e., Uu and PC5. The Uu interface
uses the base station as the control center, providing wide-range, large-bandwidth commu-
nication services. The PC5 interface can support direct data transmission between vehicles.
Recently, a new global organization, 5G Automotive Association (5GAA), has been formed
to facilitate C-V2X standardization. C-V2X is becoming more and more popular, and it is a
promising trend for future intelligent vehicular networks.

V2V

V2P

V2I

V2N

Internet

self-driving car

ordinary car

smart vehicle

Figure 1. An illustration of intelligent vehicular networks.

In contrast to DSRC, which is more mature, the development of C-V2X started rel-
atively late. With the proliferation of vehicular networks, multi-hop routing between
vehicles in C-V2X is common, especially when using a PC5 interface. In this context,
the design of a reliable and effective routing strategy is a fundamental issue that deserves
more academic attention.

2.2. Related Works

Major challenges in designing routing strategies to provide reliable and efficient infor-
mation services for intelligent vehicular networks result from the stringent requirements
of delay-sensitive vehicular applications, as well as the inherent dynamics in vehicular
network topology [12]. Taking both timeliness and reliability into consideration, routing
strategies need to compute the shortest paths in dynamic vehicular networks. Existing
routing strategies can be categorized into topology-based routing strategies and geographic
routing strategies with respect to their shortest-path calculation methods [16]. Topology-
based routing strategies [9–11], which need to collectively discover the current state of the
network topology by exchanging information among nodes, have oblivious limitations
when applied in intelligent vehicular networks. Alternatively, geographic routing strategies
are much more suitable considering the time-varying topology characteristics of intelligent
vehicular networks [21]. Geographic routing strategies transmit packets in a greedy manner
by successively forwarding packets to the neighbor closer to the destination according
to coordinates given by an embedding into some metric space, typically Euclidean. Ge-
ographic routing strategies are thus simple to implement but robust to topology churns,
for only local information, rather than global topology, is required for routing decisions.

With the above advantages, as well as the proliferation of GPS-capable communication
devices, geographic routing is a favorable choice for routing strategy design in intelligent
vehicular networks [13–18]. In [13], the authors propose a connectivity-aware transmission
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quality guaranteed geographic routing in urban IoVs. In [14] transmission quality is
guaranteed through an intersection-based geographic routing scheme. A geographic
routing protocol based on trunk lines for vehicular networks is designed in [15]. And a
delay-aware backbone-based geographic routing for IoV is proposed in [16]. There are also
some intelligent routing methods using machine learning techniques, such as adaptive
UAV-assisted geographic routing with Q-learning in [17] and reinforcement learning-based
geographic routing in [18], to name a few.

Although geographic routing strategies are widely deployed in intelligent vehicular
networks, they are based on the Euclidean distance metric and can hardly guarantee that
greedy forwarding always succeeds in reaching the target destination. When there exists a
node nearer to the destination than all of its neighbors, greedy forwarding is susceptible to
failing into routing voids. Figure 2 offers an instance of a routing void, in which the current
packet holder, the red-colored node v can not find a next-hop neighbor that is closer to
destination node d (colored green) than itself according to the greedy forwarding rule.

d

v

x

w

y

z

Figure 2. An instance of a routing void.

At first glance, routing voids are likely to occur when nodes are sparsely distributed.
But after a deeper investigation, the core reason for routing voids lies in the fact that the
Euclidean distance can not reflect the distance on the topology graph without distortion.
Greedy routing can find the shortest paths only if the network topology is congruent with
the metric space with respect to distances. Advances in network geometry have shown that
structural properties observed in scale-free complex networks derived from real networks
can emerge as a consequence of the geometrical properties of hyperbolic space [22–24].
Models in hyperbolic space can reproduce the basic topology properties of real-world
complex networks, suggesting that the hidden metric space underlying practical networks
is hyperbolic [32,33]. Hence, hyperbolic space can be an ideal metric space for real-world
network embedding to solve network problems.

In recent years, there has been a plethora of hyperbolic embedding algorithms pro-
posed. For instance, the paper [34] constructs an efficient quasi-linear time maximum
likelihood estimation algorithm that embeds scale-free graphs in the hyperbolic space.
In [35], the authors propose a method for embedding directed networks into hyperbolic
space. In [36], a Laplacian-based hyperbolic embedding scheme is proposed. The paper [37]
modified the Laplacian-based hyperbolic embedding scheme for temporal complex net-
works. Coalescent hyperbolic embedding was proposed in [38] based on manifold machine
learning. A reliable embedding algorithm, Mercator, that maps real complex networks into
their latent hyperbolic geometry, was introduced in [39]. And the D-Mercator method for
the multidimensional hyperbolic embedding of real networks is designed in [40]. These
hyperbolic embedding algorithms have been implemented in numerous kinds of down-
stream application tasks, such as community discovery [41,42], link prediction [43,44] and
network routing [27,28,45–48], which proves their efficiency and effectiveness.

The combination of hyperbolic embedding and greedy routing turns out to be power-
ful. In 2007, Robert Kleinberg’s groundbreaking work [27] proved the existence of greedy
hyperbolic network embedding such that greedy forwarding can achieve 100% reachability.
In [28], an online embedding and routing scheme for arbitrary connected network graphs
is proposed. A novel hyperbolic embedding scheme for efficient computation of path
centralities and adaptive routing in large-scale complex commodity networks is proposed
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in [46]. The paper [47] presented hyperbolic embedding algorithms that are well-suited for
greedy routing and demonstrated that hyperbolic embedding can facilitate maximally effi-
cient greedy routing in complex networks. In [48], the authors developed an optimization
scheme for improving the greedy routing score in the hyperbolic space. Inspired by these
works, in this paper, we present and implement a hyperbolic-embedding-aided greedy
routing strategy for performance enhancement in intelligent vehicular networks.

3. Hyperbolic-Embedding-Aided Geographic Routing Strategy

In this section, we explain the proposed hyperbolic-embedding-aided geographic
routing (HGR) strategy, including some preliminaries about the hyperbolic network model
and the algorithm design.

3.1. Preliminaries

In this paper, we formally model intelligent vehicular networks as complex networks.
We assume that each node in the network is equipped with a positioning system. By pe-
riodically sending location beacon messages to their neighbors, nodes become aware of
the connectivity state around them. The connectivity state information is broadcast to all
other nodes and finally converges into a network topology graph. If the connectivity state
information changes, then a broadcast update is performed and the aggregated network
graph will be updated accordingly. Let the undirected graph G(V, E) be the topology of
the intelligent vehicular network, where V and E represent the node sets and edge sets,
respectively. The total number of nodes |V| is denoted as n, and the total number of edges is
denoted as |E| = m. Suppose that the node degree distribution of the intelligent vehicular
network follows a power-law distribution with scaling exponent γ.

In our HGR, the network graph G(V, E) is embedded into its latent hyperbolic space.
Hyperbolic space is a non-Euclidean metric space that has constant negative curvature.
Different from the Euclidean distance metric, the distance between nodes u and v in
hyperbolic space is

hdis(u, v) = arccos h(cosh ru cosh rv − sinh ru sinh rv cos(θu − θv)), (1)

where ru and rv denote the radial coordinates of nodes u and v in hyperbolic space, while
θu and θv represent the angular coordinates of nodes u and v, respectively.

Hyperbolic space is even larger than the flat Euclidean space, for both the area and
circumference of a disk in the hyperbolic space expand exponentially with the increase in
the radius. This geometric property makes it hard to visualize on paper. In this work, we
use the two-dimensional Poincaré hyperbolic disk to represent the embedding target space.
The Poincaré disk is a hyperbolic model that represents the hyperbolic plane by mapping it
to the interior of a Euclidean unit disk. Figure 3 shows a triangulation on a Poincaré disk,
in which all triangles are equilateral, and all of them are of the same size.

Figure 3. An instance of a triangulation on the Poincaré disk.

The core of our hyperbolic-embedding-aided geographic routing strategy is to assign
an appropriate virtual hyperbolic coordinate for each node in the network. Before pre-
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senting our embedding algorithm, we would like to introduce the popularity-similarity
optimization (PSO) model [33], which serves as a null model of our embedding algorithm.

The PSO model includes the following four parameters:

(1) µ > 0, which is equal to half of the average node degree;
(2) β ∈ (0, 1], defining the power-law degree distribution exponent γ = 1 + 1

/
β;

(3) T ≥ 0, which controls the network clustering;
(4) ζ =

√
−K > 0, where K is the curvature of the hyperbolic plane. Since changing ζ

rescales the node radial coordinates and this does not influence the network topology
structure, we set K = −1 without loss of generality.

To construct a network of n nodes on the Poincaré hyperbolic disk plane with curvature
K = −1, the PSO model works as follows. Initially, the network is empty. At time t ≥ 1,
add a new node vt at (rt, θt), in which radial coordinate rt = 2 ln t and angular coordinate θt
is uniformly sampled in [0, 2π]. At the same time, all existing nodes vs(s < t) added before
time t increase their radial coordinates according to rs(t) = βrs + (1 − β)rt. Then, link the
newly-added node vt with an existing node vs that is not connected to it with the probability
ps(t) = 1

/[
1 + e(hdis(s,t)−Rt)/2T

]
, in which hdis(s, t) is the hyperbolic distance between

node vt and node vs. And Rt = rt − 2 ln
[

2T(1−e−(1−β)rt/2)
µ(1−β) sin(πT)

]
, which is the current radius of

the hyperbolic circle containing the network. If T = 0, then Rt = rt − 2 ln
[

2T(1−e−(1−β)rt/2)
µπ(1−β)

]
.

Repeat this random connecting process until node vt is connected to µ different nodes.
Keep adding new nodes to the network as described above, and stop adding nodes when
there are a total of n nodes in the network.

As its name suggests, the PSO model maintains a trade-off between node popularity,
abstracted by the radial coordinate, and similarity, represented by the angular coordi-
nate difference. It has been proven that the PSO model can generate random complex
network topologies, reproducing common features of many realistic complex networks,
including scale-free degree distributions [33]. Therefore, it is possible to implement the
hyperbolic embedding method in the geographic greedy routing strategy in intelligent
vehicular networks.

3.2. Algorithm Design

Our design for the proposed HGR is composed of two main steps. In the first step,
we embed the network topology into the Poincaré hyperbolic disk based on the graph
Laplacian. And in the second step, greedy forwarding is performed in the the Poincaré
hyperbolic disk according to nodes’ embedded hyperbolic coordinates. Figure 4 illustrates
the design overview of the HGR strategy.

G(V,E)

Poincaré hyperbolic disk

Laplacian 

Embedder
Greedy 

Forwarding

s
t

Figure 4. The design overview of HGR.

As is shown in Figure 4, the network graph G(V, E) is embedded into the hyperbolic
space via network embedding, and each node in the network is assigned to a virtual
hyperbolic coordinate. When node s wants to deliver a data packet to node t, the packet is
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forwarded in a greedy manner based on the hyperbolic distance metric, as is shown in the
arrow-annotated path.

3.2.1. Laplacian-Based Hyperbolic Embedding

Hyperbolic embedding refers to the process of mapping nodes back to their corre-
sponding coordinates in the latent hyperbolic space. In fact, hyperbolic embedding is the
inverse problem of generating complex network topologies by the PSO model.

For a network topology graph G(V, E), hyperbolic embedding aims to assign nodes
with coordinates x = (r, θ) = {xi} = {(ri, θi)}(i = 1, 2, . . .) by maximizing the posterior
probability L

{
(xi)|aij,P

}
under the premise that the network is generated as the PSO

model. P denotes the set of parameters of the PSO, and P = {µ, β, T, ζ} . According to the
Bayes’ rule, the probability is

L
{
(xi)|aij,P

}
=

L
{

aij|{xi},P
}

prob(xi)

L
{

aij|P
} , (2)

where L
{

aij|{xi},P
}

is the likelihood that a network with adjacency matrix A =
{

aij
}

is
generated as PSO, prob(xi) is the prior probability of node coordinates generated by PSO,
and L

{
aij|P

}
is the network that has been generated by the PSO model.

To solve this reverse problem, in the proposed HGR, we embed the observed network
topology G(V, E) of intelligent vehicular networks into a two-dimensional Poincaré disk
via the Laplacian Embedder. The Laplacian Embedder was originally proposed in the
paper [36] for dimension reduction in the context of manifold learning, and it is used here
to recover the hyperbolic coordinates of nodes.

Given a network topology graph G(V, E), the Laplacian matrix of it is

L = D − A, (3)

where A is the adjacency matrix, and D is the degree matrix of G(V, E).
In the proposed scheme, the radius R of the embedded Poincaré disk is calculated by

R = 2 log

(
n2(γ − 1)2T

m sin(πT)(γ − 2)2

)
. (4)

in which n is the total number of nodes in G(V, E), and m is the total number of edges
in G(V, E). The power law index of the complex network is denoted as γ. And T is the
temperature parameter of the complex network.

For node vi in G(V, E), it is inferred that the radial coordinate ri is

ri = min
{

R, 2 log
(

nT(γ − 1)
deg(vi) sin(πT)(0.5γ − 1)

)}
, (5)

in which deg(vi) denotes the node degree of vi.
Next, we will determine node angular coordinate θi. To do so, we use a n × 2 matrix

Y = [y1, y2] in the interior of a Euclidean circle to represent the two-dimensional Poincaré
disk. The ith row of Y denotes the embedding coordinates of node vi. According to the
PSO model, the connected probability of node pairs in the network is negatively correlated
with the embedding coordinate distance. In this sense, the basic criterion for solving the
embedding coordinates is to minimize the distance between the connected node pairs of the
network in the embedding space. This is equivalent to minimizing the sum of the distances
of all connected node pairs in the network. The objective function can be interpreted as

1
2 ∑

i,j
aij
∥∥Yi − Yj

∥∥2
= tr

(
YT LY

)
, (6)
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in which tr
(
YT LY

)
is the trace of the matrix after a Laplacian transformation. Considering

the additional constraint YTY = I, this optimization problem can be formulated as{
min tr

(
YT LY

)
s.t. YTY = I

. (7)

According to the Rayleigh–Ritz theorem, the solution to this is formed by the two
eigenvectors corresponding to the two smallest non-zero eigenvalues of the generalized
eigenvalue problem LY = λDY. Since the smallest eigenvalue is zero, the generalized
eigenvalue problem can be solved via the truncated spectral decomposition. And the
solution is

Y = [y1 = µ2, y2 = µ3], (8)

in which µ2, µ3 denote the two smallest non-zero eigenvalues, respectively.
Based on conformal properties, the node angular coordinates are approximated by

θ = arctan
(

y2

y1

)
, (9)

in which θ = [θ1, θ2, . . . , θn] represents the angular coordinates of nodes sorted in a degree-
descending order.

Up till now, each node’s hyperbolic coordinate (r, θ) is determined.

3.2.2. Hyperbolic Greedy Forwarding

After embedding, each node in the network is assigned a virtual coordinate in the
hyperbolic plane. To perform greedy forwarding, every node in the network not only needs
to know its own hyperbolic coordinate but also the hyperbolic coordinates of its neighbors
and the destination. In HGR, the data packet is encoded in IP format. And Figure 5 shows
our design for the encapsulation format of data packets in intelligent vehicular networks.

Header 

Length

Type of 

Service
IP Version Total Length

Identification Fragment Offset

TTL Protocol Header Checksum

Source IP Address

Destination IP Address

Flags

Visited Node List

Data Content

Padding

Check

Figure 5. The packet encapsulation format of data in HGR.

In Figure 5, the orange field is the data packet header. The packet header stores the
information about the packet’s destination IP address, and it can be translated into the
hyperbolic address by table lookup. In the packet header, the option field of the traditional
IP packet is used to store the visited node list, which is colored a darker orange. At the
source node, the packet’s visited node list is empty. When a packet arrives at node vi from
vj, the former forwarder, node vj will be added to the visited node list. In addition to
containing the packet’s data content, the packet encapsulation format also contains a check
field for calibration.

To avoid routing loops, we stipulate that the packet’s next hop should be selected from
the neighbors that haven’t been visited. The hyperbolic distance between every unvisited
neighbor of the current packet holder and the packet’s destination is computed by the
hyperbolic distance formula of Equation (1). Then, the neighbor with the closest distance
to the destination is selected as the packet’s next hop. Following this rule, packets are
forwarded in a greedy manner until eventually reaching the desired destination. This
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scheme is referred to as hyperbolic greedy forwarding, and the operation flow chart is
summarized in Figure 6.

Start

Already destination?

Packet header parsing

Transmission ends 

with success

Transmission ends 

with packet drop

Is the unvisited neighbor set empty?

Yes

No

Yes

No

Forward packet to the unvisited 

neighbor with the nearest hyperbolic 

distance to destination

Within TTL?

Yes

No

Figure 6. Flow chart of hyperbolic greedy forwarding.

4. Performance Evaluation

In order to verify the effectiveness of the proposed HGR strategy for intelligent
vehicular networks under different network scenarios, a co-simulation was produced using
EXata 5.3 and Mathematica 12.1 software. EXata is a popular simulation platform for
emulating or simulating wireless networks, while Mathematica is an excellent software for
scientific programming. EXata is used for generating vehicular networks, and Mathematica
is used for routing calculation. The above two simulators are coupled with each other
and work together as follows. Firstly, we randomly spread a certain number of nodes
on the entire map canvas using the Node Placement Tool in EXata. Then, the location and
connectivity information of these nodes are collected and abstracted as a network graph.
Afterward, we input the network topology graph into Mathematica for network embedding
and routing calculation, according to which the forwarding rules are configured in EXata.
At the same time, the contrastive routing algorithm is calculated and configured under
the same conditions. From the obtained experimental statistics, one can analyze routing
performances and draw some conclusions.

In our work, we randomly sample 40 network topologies using the Node Placement
Tool in EXata. These topologies of vehicular networks cover 10 different network scales,
i.e., the total number of nodes ranges from 20 to 200, with a step length of 20. For each
network size, four different topologies were randomly generated according to the random
seeds of 1234, 2341, 3412, and 4123, respectively, to avoid the influence of specific network
topology structures.

The node mobility model uses the Random Waypoint Model. And the packet size was
set as 128 bytes. Other parameters were set as default in EXata 5.3. Under the same network
settings, we compare the performance of our HGR strategy with the traditional Euclidean
geographic greedy routing strategy (EGR). In this paper, we mainly use routing success
rate and routing stretch as two indexes to evaluate the performance of the above routing
strategies. And the simulation results are reported in the subsequent two subsections.
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4.1. Routing Success Rate

Firstly, we analyzed the routing success rate of HGR and EGR. Routing success rate
refers to the ratio of the number of packets that are successfully delivered to the destination
to the total number of transmitted packets in the network. In order to quantitatively
measure the effectiveness of our proposed routing strategy in mitigating the routing void,
experiments were carried out in the 40 randomly sampled vehicular network topologies
under the full communication demand matrix, where one unit of packet is assumed to be
transmitted between each node pair in the network. We counted the routing success rate of
each network scenario, and the results are plotted in Figure 7.
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Figure 7. The bar charts of routing success rates comparing the above two routing strategies in
different networks. (a) Random seed = 1234; (b) random seed = 2341; (c) random seed = 3412;
(d) random seed = 4123 .

From Figure 7, we can see that no matter the network size or the topology structure,
the routing success rate of the proposed HGR strategy is always higher than that of EGR.
Moreover, the routing success rate of HGR is always close to 1. This indicates that our
hyperbolic embedding is effective in alleviating routing voids.

As the network scale increases, the routing success rate of EGR presents a more signifi-
cant descending trend than that of HGR. The performance of HGR will not significantly
degrade when the network size increases. Therefore, HGR is scalable, and its application in
large-scale networks, like future intelligent vehicular networks, is promising. All in all, our
HGR outperforms EGR in terms of routing success rates.

4.2. Routing Stretch

Geographic routing strategies can find nearly optimal paths through greedy forward-
ing, but this does not guarantee the exact shortest routing paths between them. To quanti-
tatively evaluate the approximation degree of routing path length versus the shortest path
length, we define Stretch as

Stretch =
l

lspr
, (10)

in which the numerator represents the greedy forwarding path length between the source
node and the destination using the geographic routing strategy, and the denominator
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represents the shortest path length on the topology graph between the source node and the
destination. Hence, Stretch is equal to the ratio of output greedy routing path length to the
shortest path length. For a given network topology and a certain greedy routing strategy,
the value of Stretch between every node pair in the network is no less than 1. The closer the
value of Stretch is to 1, the similar the output routing path length is to the optimal shortest
path. A smaller value of Stretch indicates a lower greedy embedding distortion and a better
routing performance.

In this experiment, we compare the routing paths obtained from our HGR and the
EGR strategy under the same network conditions. The value of Stretch between all node
pairs in the network are calculated and analyzed, and the distribution charts are shown in
Figure 8.

In Figure 8, statistics of Stretchs are depicted using box and whisker diagrams. The box
and whisker diagrams can graphically depict groups of numerical data through their
maximum, minimum, and median, as well as their 25% and 75% quartiles. Figure 8
contains 10 subplots, each of which corresponds to a certain network size. In Figure 8a,
when the network size is 20, the minimum, median, and quartiles of Stretchs in HGR are all
equal to 1 and coincide in the diagram. This demonstrates that HGR can forward packets
along the shortest routing paths for most of the node pairs when n = 20. In contrast, the
EGR strategy can not ensure that the routing paths between all node pairs in the network
are strictly the shortest. Moreover, the maximum value of Stretch in the EGR strategy is
higher than that in HGR, especially under the random seed of 3412, wherein the maximum
value is 6. As the network size grows, from Figure 8a to Figure 8j, the maximum, minimum,
median, and quartiles of all Stretch values remain relatively small. Hence, we can draw
the conclusion that the output routing path lengths of HGR are generally very close to the
optimal shortest paths. The routing stretch performance of HGR is also more stable than
that of EGR, for the overall distribution of Stretch values of HGR is relatively concentrated,
whereas, in EGR, the box and whisker diagrams have a higher length, suggesting that the
distribution of the Stretch values are more scattered.

It can be seen from Figure 8 that regardless of the network size and the network
topology, compared with the EGR routing strategy, the Stretch values of the HGR routing
strategy’s output greedy routing paths are closer to 1. This is due to the fact that hyperbolic
embedding can better approximate the shortest paths on the graph. Therefore, the forward-
ing path length of the HGR routing strategy is closer to the ideal shortest routing paths and
thus achieves better performance than the EGR routing strategy in terms of routing stretch.

To make the above statistics in Figure 8 more intuitive, we also record the experimental
data in Table 1. For the decimal values of Stretch with infinite loops, we only keep the first
two decimal places by rounding in Table 1.

In Table 1, we can see that the minimum Stretch values of both HGR and EGR are all 1
under all network scenarios. This yields that geographic routing strategies have the ability
to find the shortest routing paths via greedy forwarding, although they do not acquire
global topology information. The 25% quartiles of the Stretch values in HGR are all 1. But in
EGR, under the network size of 180 and 200, there are some cases where the 25% quartiles of
the Stretch values are 1.33. This implies that HGR can always forward the packet along the
shortest routing paths between more than 25% of the node pairs. The median Stretch values
of HGR are all 1 when the network size is not larger than 60 nodes. However, the median
Stretch values of EGR are generally more than 1, except in the case that the network size
is 20. In addition, the median Stretch values of HGR are all smaller than 2, while there
are a few cases where the median Stretch values of EGR are no less than 2. This indicates
that HGR can guarantee that the routing path length between more than half of the node
pairs in the network is no more than two times the shortest path. The 75% quartiles of the
Stretch values in HGR are all below 3. However, in EGR, the 75% quartiles of the Stretch
values are higher than 3 in the majority of cases. Nevertheless, in the network size of 200
with a random seed of 2341, the 75% quartile is even 5. The maximum of the Stretch values
in HGR is no larger than that in EGR under the same conditions. Although, along with
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the increase in the network size, the maximum of the Stretch values in HGR shows an
upward trend, both the increase rate and speed are much lower than that in EGR. To recap,
our HGR strategy can achieve a lower routing stretch, regardless of the network size and
network structure.
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Figure 8. The box and whisker diagrams of Stretch comparing the above two routing strategies under
different network scales. (a) n = 20; (b) n = 40; (c) n = 60; (d) n = 80; (e) n = 100; (f) n = 120; (g) n = 140;
(h) n = 160; (i) n = 180; (j) n = 200.

Table 1. Routing stretch results.

Network Size Random Seed Max 75% Median 25% Min
HGR EGR HGR EGR HGR EGR HGR EGR HGR EGR

n = 20

1234 3.00 3.00 1.00 1.50 1.00 1.00 1.00 1.00 1.00 1.00
2341 2.50 3.00 1.00 1.50 1.00 1.00 1.00 1.00 1.00 1.00
3412 4.00 6.00 1.00 1.50 1.00 1.00 1.00 1.00 1.00 1.00
4123 2.50 2.50 1.00 1.50 1.00 1.00 1.00 1.00 1.00 1.00

n = 40

1234 5.00 8.50 1.33 2.00 1.00 1.00 1.00 1.00 1.00 1.00
2341 5.00 7.00 1.50 2.00 1.00 1.00 1.00 1.00 1.00 1.00
3412 6.50 8.00 1.50 3.00 1.00 1.50 1.00 1.00 1.00 1.00
4123 7.00 8.00 1.50 2.00 1.00 1.33 1.00 1.00 1.00 1.00

n = 60

1234 8.00 9.50 1.50 2.00 1.00 1.33 1.00 1.00 1.00 1.00
2341 8.00 9.50 1.67 2.50 1.00 1.50 1.00 1.00 1.00 1.00
3412 6.50 10.00 1.67 3.00 1.00 1.67 1.00 1.00 1.00 1.00
4123 7.00 8.50 1.67 2.00 1.00 1.33 1.00 1.00 1.00 1.00

n = 80

1234 14.00 14.50 1.67 2.50 1.00 1.50 1.00 1.00 1.00 1.00
2341 9.00 11.50 1.67 2.67 1.00 1.67 1.00 1.00 1.00 1.00
3412 9.50 15.00 2.25 3.33 1.33 2.00 1.00 1.00 1.00 1.00
4123 8.50 16.00 2.00 2.67 1.33 1.67 1.00 1.00 1.00 1.00

n = 100

1234 14.00 17.00 2.00 3.00 1.00 1.67 1.00 1.00 1.00 1.00
2341 9.00 13.00 2.00 3.00 1.33 1.67 1.00 1.00 1.00 1.00
3412 9.50 17.00 2.33 3.33 1.50 2.00 1.00 1.00 1.00 1.00
4123 9.00 16.00 2.00 2.67 1.33 1.67 1.00 1.00 1.00 1.00

n = 120

1234 14.00 17.00 1.75 3.00 1.33 1.67 1.00 1.00 1.00 1.00
2341 9.00 15.50 2.00 3.00 1.33 1.67 1.00 1.00 1.00 1.00
3412 9.50 18.00 2.33 3.33 1.50 2.00 1.00 1.00 1.00 1.00
4123 9.00 18.50 2.00 3.00 1.33 1.67 1.00 1.00 1.00 1.00

n = 140

1234 14.00 19.00 2.00 3.00 1.33 1.67 1.00 1.00 1.00 1.00
2341 15.00 27.50 2.00 3.33 1.33 2.00 1.00 1.00 1.00 1.00
3412 9.50 22.00 2.33 3.50 1.50 2.00 1.00 1.00 1.00 1.00
4123 9.00 18.50 2.00 2.75 1.33 1.67 1.00 1.00 1.00 1.00

n = 160

1234 14.00 19.00 2.00 3.33 1.33 1.67 1.00 1.00 1.00 1.00
2341 16.00 27.50 2.00 3.50 1.50 2.00 1.00 1.00 1.00 1.00
3412 9.50 22.00 2.33 3.33 1.50 2.00 1.00 1.00 1.00 1.00
4123 9.00 18.50 2.00 3.00 1.33 1.67 1.00 1.00 1.00 1.00

n = 180

1234 14.50 22.00 2.00 3.33 1.33 2.00 1.00 1.00 1.00 1.00
2341 24.50 34.50 2.33 4.50 1.50 2.33 1.00 1.33 1.00 1.00
3412 10.00 22.00 2.33 3.50 1.67 2.00 1.00 1.00 1.00 1.00
4123 9.00 19.50 2.00 3.00 1.50 2.00 1.00 1.00 1.00 1.00

n = 200

1234 18.00 29.00 2.00 3.75 1.33 2.00 1.00 1.00 1.00 1.00
2341 24.50 36.50 2.67 5.00 1.50 2.33 1.00 1.33 1.00 1.00
3412 11.00 32.00 2.33 3.33 1.67 2.00 1.00 1.00 1.00 1.00
4123 18.00 26.00 2.50 4.33 1.50 2.33 1.00 1.33 1.00 1.00
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4.3. Scalability

In order to further evaluate the scalability of the HGR routing strategy and test the ac-
tual effect of the HGR strategy in networks of different scales, simulation experiments were
conducted to study the changing trend of routing computation time with the increase in
network scale. Meanwhile, control experiments were conducted under the same conditions
to compare the HGR routing strategy with the EGR routing strategy.

The experiments were carried out on a personal PC manufactured by HUAWEI of
China with Intel Core i5 CPU , 2.40 GHz frequency, 16 GB memory, and a 64-bit Windows
10 operating system. The routing algorithms were compiled using Mathematica 12.1
software. Experiments were carried out in 40 different networks, covering 10 different sizes
of networks, and the number of nodes is from 20 to 200 with a step size of 20. For each size
of the network, four different random network topologies were generated. The average
value of the routing computation time of the above two routing strategies in different scale
networks was calculated, respectively. The curve of routing computation time with the
increase in the total number of network nodes is plotted in Figure 9.
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Figure 9. Routing computation time in networks of different scales.

From Figure 9, we can see that with the increase in the network size, the routing
computation time of both HGR and EGR increases. However, the increased speed of EGR is
slower than that of HGR. This is because EGR uses the original node position information in
the Euclidean space, whereas additional embedding in hyperbolic space is required in HGR.
And the time complexity of the embedding algorithm in HGR is O

(
n2). Considering the

enhancement in the routing success rate and routing stretch, the time sacrifice is worthwhile,
for even in a huge network with 200 nodes, the routing computation time is within 4 s.
The computation time can be further reduced by using high-performance computers.

5. Conclusions

In this paper, a hyperbolic-embedding-aided geographic routing strategy (HGR) was
proposed to tackle the problem of routing voids in intelligent vehicular networks. Unlike
traditional geographic routing strategies, HGR transfers the metric space of greedy forward-
ing from the classical Euclidean space into a two-dimensional Poincare hyperbolic space
by Laplacian embedding techniques. The effectiveness of the proposed HGR design was
demonstrated through multiple sets of comparative simulation experiments. Simulation
results have shown that the proposed HGR strategy can significantly improve the routing
success rate with a much lower routing stretch compared to the Euclidean geographic
greedy routing strategy.
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