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Abstract: Cloud manufacturing is an evolving networked framework that enables multiple manufac-
turers to collaborate in providing a range of services, including design, development, production,
and post-sales support. The framework operates on an integrated platform encompassing a range
of Industry 4.0 technologies, such as Industrial Internet of Things (IIoT) devices, cloud computing,
Internet communication, big data analytics, artificial intelligence, and blockchains. The connectivity
of industrial equipment and robots to the Internet opens cloud manufacturing to the massive attack
risk of cybersecurity and cyber crime threats caused by external and internal attackers. The impacts
can be severe because the physical infrastructure of industries is at stake. One potential method to
deter such attacks involves utilizing blockchain and artificial intelligence to track the provenance of
IIoT devices. This research explores a practical approach to achieve this by gathering provenance data
associated with operational constraints defined in smart contracts and identifying deviations from
these constraints through predictive auditing using artificial intelligence. A software architecture
comprising IIoT communications to machine learning for comparing the latest data with predictive
auditing outcomes and logging appropriate risks was designed, developed, and tested. The state
changes in the smart ledger of smart contracts were linked with the risks so that the blockchain peers
can detect high deviations and take actions in a timely manner. The research defined the constraints
related to physical boundaries and weightlifting limits allocated to three forklifts and showcased the
mechanisms of detecting risks of breaking these constraints with the help of artificial intelligence. It
also demonstrated state change rejections by blockchains at medium and high-risk levels. This study
followed software development in Java 8 using JDK 8, CORDA blockchain framework, and Weka
package for random forest machine learning. As a result of this, the model, along with its design and
implementation, has the potential to enhance efficiency and productivity, foster greater trust and
transparency in the manufacturing process, boost risk management, strengthen cybersecurity, and
advance sustainability efforts.

Keywords: provenance; blockchain; smart contract; predictive auditing; cloud manufacturing risks;
industrial internet of things

1. Introduction

Cloud manufacturing, as the name suggests, is a framework of operational planning,
scheduling, monitoring, and control of manufacturing operations using hosted applications
through cloud computing [1–3]. Traditional manufacturing systems were controlled by
programmable logic controllers (PLCs) operated by the local on-plant computers, which
could run manufacturing operations in limited physical spaces. The software systems
used for materials planning, operations scheduling, monitoring, and control were also
hosted within the data centers of the manufacturing plants. These systems were not con-
nected to the Internet as they were networked using proprietary protocols and connections.

Electronics 2024, 13, 660. https://doi.org/10.3390/electronics13030660 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13030660
https://doi.org/10.3390/electronics13030660
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0009-2000-2170
https://orcid.org/0000-0002-2079-3234
https://doi.org/10.3390/electronics13030660
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13030660?type=check_update&version=1


Electronics 2024, 13, 660 2 of 20

Hence, the manufacturing operations were not exposed to cyber security threats in their
traditional designs. To develop dynamic capabilities to respond to rapid demand and
supply changes, manufacturers entered strategic alliances to cover larger customer bases
and meet demands during normal times as well as during uncertainties and shocks [4–6].
For collective operations, manufacturers needed to integrate their operations, which was
possible by creating digital values using digitalization systems in Industry 4.0 technolo-
gies [7,8]. The digital value proposition could be achieved by making the PLCs operate
with open communication protocols by transforming them into cyber-physical systems.
The newly evolved Industrial Internet of Things (IIoTs) was used to transform the PLCs
into cyber communication devices that could interface with the Internet and be controlled
remotely. With this technological development and the already recognized problem of
disconnected manufacturing silos and crunch of resources in computing, memory, and
storage capacities of the data centers operated and maintained by manufacturing orga-
nizations, cloud manufacturing became a viable option for the future of manufacturing.
However, connectivity to the Internet opened the gate for cybersecurity threats to cloud
manufacturing; these had not been a factor in general manufacturing environments as
they had not been connected to the Internet [9]. Cloud-based PLCs were vulnerable to the
same cybersecurity threats that caused vulnerabilities on the Internet-exposed computing
systems. In general manufacturing, the PLCs were shielded from all such threats as their
computing systems were not Internet-exposed.

Interfacing PLCs with the Internet in order to control them through cloud manu-
facturing applications hosted on cloud computing opened the gate for cyber threats to
manufacturing organizations [9]. Cyber security threats are already prominent in the man-
ufacturing industry. By 2017, about 75% of oil and gas industry businesses had suffered
at least one successful attack causing measurable business impacts. Power grids have
suffered about 15% of the total number of cyber attacks in 2017. More recent statistics
reported by the Varonis and Forbes websites [10,11] reflect the ongoing trends of cyber
attacks on manufacturing systems. Their reports stated that malicious power shell scripts
targeted at cyber physical devices (detected and blocked) increased by 1000% to about
5200 monthly average attacks in 2021 and 2022 [10,11]. Normally, protection against remote
code execution tactics is robust but rogue IIoT devices installed by insiders can cause a
major loophole, especially by using malicious and non-transparent algorithms [12–14]. The
more worrying trend is about insiders creating deliberate loopholes in the cyber physical
systems of manufacturing plants, thus opening an attack surface for external exploits to
penetrate and use the compromised cyber physical systems as launch pads [15–17]. The
activity is reported to be about 30% of the overall number of attacks [10,11]. The extent to
which unsolicited IIoT devices can be sneaked into manufacturing networks has not yet
been estimated. However, 30% of the 5200 cyber attacks on IIoT devices in 2021 and 2022
were carried out through insider activity, which suggests a significant trend that is expected
to increase [10,11]. In order to address these challenges, cyber security threats need to
be visualized with a different perspective as compared with those threats in self-hosted
manufacturing and supply chain computerized control systems [17].

This research presents design, prototyping, and testing of controls employing Artificial
Intelligence (AI) and Provenance Blockchain framework for protecting organizations using
cloud manufacturing applications against cyber security risks. As these organizations
are having their PLCs transformed to cyber physical systems, they should be certified
and accounted for at the time of inception and during their operations. As shown in
the literature review, provenance is the dynamic metadata of systems and devices that
captures their “data about their manipulation history” (including change of ownership
and assignment to various roles). As further reviewed in literature review, blockchains
can be used to form trusted networks of partners operating their assets in supply chains
and logistics to serve common demands and orders. It is hereby emphasized that if
the provenance system can be deployed on such blockchains to capture the “real-time
operational data about the manipulation history” of cyber physical systems used in logistics
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and supply chain operations for cloud manufacturers, it can help in mitigating cyber
security risks to them by conducting AI-enabled predictive auditing. The research questions
of this study are as follows:

1. What are the risks associated with cloud manufacturing in Industry 4.0?
2. How can provenance blockchain be used to provide greater transparency and trace-

ability in the cloud manufacturing process using AI-enabled predictive auditing?
3. How can this system help in mitigating cloud manufacturing risks in Industry 4.0?

In this study, the first research question is answered through literature review, the
second research question is answered through designing, developing, and testing a software
prototype, and the third research question is answered through a critical analysis of the
software prototype, keeping in context the findings in the answer to the first research
question. The next section presents a review of the literature.

2. Literature Review

The modern era for the manufacturing sector is highly competitive, dynamic, and
complex, with uncertainties beyond the controls of individual companies [4,5]. To compete,
survive, and flourish in this environment, manufacturing organizations need to develop
“dynamic capabilities” to manage rapid changes as per the demand and competitive
dynamics of their target markets [4–6]. Building dynamic capabilities requires strategic
alliances among multiple manufacturing organizations and the use of modern technology
to develop incremental improvements and rapid adjustments of manufacturing resources,
processes, knowledge, and skills through management controls. The strategic alliances can
be executed by creating a joint cloud manufacturing portal of applications that can monitor
and control the manufacturing processes of the plants of the collaborating companies in
the strategic alliance [1–3]. Industry 4.0 technologies and processes are viewed as the
foundation for developing dynamic capabilities for cloud manufacturing [3,4,7,8]. Industry
4.0 technologies and processes have an influence on digitalization, digital value creation,
real time knowledge of markets and demands, quick production and marketing, the ability
to use and reuse materials and resources optimally, and sustainable development [4].

As stated in the introduction, cloud manufacturing comprises PLCs transformed
into cyber physical systems running the manufacturing controls of several plants and
collaborating through cloud-hosted applications to serve the demand dynamics. As these
cyber physical systems are interfaced with the Internet, they are prone to cyber threats. The
necessary criterion for risk assessment in cloud manufacturing is to identify the Internet-
enabling interfaces and maintain a database of risks facing them [15–19]. Some of the
known cyber security risks to cloud manufacturing systems are the following [12,15–19]:

4. Eavesdropping attack: an attack mechanism in which the communications from
authorized devices to others like them are captured in between by eavesdropping
devices (called listeners);

5. Masquerading attack by capturing packets of unsecured IIoTs: an attack mechanism in
which an unauthorized cyber physical system captures packets from unsecured IIoTs and
masquerades as an authorized controller to the cloud hosted manufacturing applications;

6. Distributed Denial of Service (DDoS): an attack mechanism in which massive scale
storms of packets are bombarded to the cyber physical systems through unprotected
Internet connections compromised by the attackers, thus overloading the computing
systems, networking links, and cyber physical controllers;

7. Side channel attacks: these are penetration attacks through the side channels into the
manufacturing network, which are less monitored or ignored by the monitoring systems;

8. Cross-side scripting attacks: these are Trojan scripts that can be mixed with the
running scripts through SQL injection;

9. Automated code-based attacks (such as Bots): these are penetration attacks caused by
pre-programmed automatic codes;

10. Exploit-based attacks: these are attacks orchestrated through open-source programs
created by hacking experts;
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11. Identity thefts (of authorized IIoT devices): these are caused by eavesdropping attacks
to capture authentication and authorization details of IIoT devices;

12. Insider trading and proliferation: insiders engaged in malicious activities such as
injecting Trojan codes in running programs or opening firewall ports for external
attackers to launch their exploits;

13. Fake sensor data feeding and actuation attacks in control systems: these are well
planned targeted attacks. For example, the attacker may send false signals to lower
valve pressure in a key pipeline, thus causing the control system to gradually increase
the pressure in the pipeline and lead to an explosion.

The above list provides the answer to the first research question. However, maintaining
a database of risks that exposure to the Internet-enabled cloud manufacturing system
allows is insufficient for risk management. This is because the controls for protecting
the PLCs that have been turned into IIoT devices need to be different from computing
systems, keeping in mind their limited processing and storage capacities [17–21]. The
cloud manufacturing partners using blockchain technology for smart contracts to execute
logistics and supply chain operations can integrate provenance data of IIoT devices with
the blockchain [20–22]. Blockchains are comprised of nodes integrated in the form of a
chain such that contracts signed for logistics and supply chain operations can be stored in
them in the form of encrypted blocks identified and integrated through hash functions. The
provenance of computing devices and software systems is a separate database describing
the characteristics, ownership, operational modes, and several other such details about
those computing devices [23]. Provenance on cloud computing can help in running forensic
analysis of past events if recorded separately in addition to the data generated by the
events [24]. This can ensure transparency, data fidelity and protection, privacy issues
of the data collected, quality control, and intellectual property protection [25]. In cloud
manufacturing, the IIoTs and the cyber physical systems enabled by them can be tracked
closely using their provenance data [26–28]. Cyber physical systems can be compromised
by hackers in several ways. Some known concerns are the following [15–19]:

14. Validating the identity of cyber physical system enabled with IIoT communications;
15. Tracking rapid deployments and Internet-enabling of millions of cyber physical systems;
16. Traceability of cyber physical systems added, modified, and removed, especially

installed on mobile assets;
17. Validating fidelity of sensor data sent for influencing process events interpreted out of

the sensory data and the decision-making algorithms running the actuation commands;
18. Establishing accountability and liability of individuals owning the cyber physical systems;
19. Inter-cloud assurances of cyber security;
20. Algorithmic transparency (accountability of performance and behaviors of algorithms

deployed for controlling operations of cyber physical systems);
21. Cyber physical systems indulging in erroneous or malicious processing, thus affecting

the execution of smart contracts negatively.

These six concerns form the problem for which the prototype solution is designed
and tested in this research. When manufacturers integrate their cyber physical systems
driving their manufacturing processes for cloud manufacturing, they can also integrate
their Enterprise Resource Planning (ERP) systems through blockchains [29]. Modern ERPs
have interfacing to popular blockchain frameworks such as Hyperledger and Ethereum.
In this manner, the IIoTs and their enabled cyber physical systems are also hooked to
the blockchain [30,31]. The data collected from them can be stored on big data systems
to monitor their events through continuous auditing. By using artificial intelligence, the
predictions can be carried out such that actual events versus predicted events can be
compared [32]. To understand how this can work, a design scenario of a blockchain-
controlled manufacturing network for creating, executing, and monitoring smart contracts
using Hyperledger Fabric (based on explanation in Reference [33]) is presented in Figure 1.
This design can help visualize where the provenance data streams and artificial intelligence
can be positioned in this blockchain.
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Figure 1. A design scenario of a blockchain-controlled manufacturing network for creating, executing,
and monitoring smart contracts using Hyperledger Fabric (drawn based on the detailed explanation
provided in Reference [33]).

In the scenario shown in Figure 1, four cloud manufacturing organizations (R0, R1,
R2, and R3) decide to setup a manufacturing blockchain network (BN) for signing, sharing,
and monitoring smart logistics and supply chain contracts. R0 is the contracting authority
and others are contracting vendors. They agree to establish two network channels (C1
and C2) governed by policies-based network configurations (CC1 and CC2, respectively).
C1 is shared by R0, R1, R2, and R3, and C2 is shared by R0, R2, and R3. Thus, R1 has no
business relation with C2 and is therefore denied access to it. A1, A2, and A3 are cloud
applications deployed by R1, R2, and R3, respectively, to interact with the network through
the authorized channels. To interact with the network, R1, R2, and R3 need to authorize
peers P1, P2, and P3 representing them, respectively. R0 authorizes O for managing orders
to R1, R2, and R3 through the peers P1, P2, and P3. The peers P1, P2, and P3 are authorized
to access the block chain network BN using cryptographic keys issued by certification
authorities CA1, CA2, and CA3, respectively. The ordering authority manages C1 and
C2 network channels to interact with P1, P2, and P3. P1 has access to C1 only whereas
P2 and P3 have access to both C1 and C2. When orders are placed, the smart contracts
are signed digitally using signatures issued by CA1, CA2, and CA3 to P1, P2, and P3 for
the contracting vendors, and the digital signature issued by CA0 to O for the contracting
authority. Further to digitally signing the contracts, CA1, CA2, and CA3 issue X.509
certificates to the components identified as belonging to the organizations R1, R2, and
R3, respectively. The certification authorities are also used to sign transactions to affirm
their approvals. On signing, the smart contracts are stored in the smart ledgers L1 and L2
belonging to the network segments C1 and C2, respectively. P1 stores a copy of L1 only
(as it and its company, R1, do not have any business connection with C2), whereas P2 and
P3 store a copy each of L1 and L2. The events related to the smart contracts L1 and L2
(such as approved logs of works completed as per the contractual terms) are stored in state
databases S1 and S2, respectively. P1 maintains a copy of S1, and P2 and P3 maintain a copy
of S2 and S3 (as per their access rights). All copies of state databases are synchronized. The
ordering authority O need not maintain a copy of the state databases because organization
R0 is not contributing to state changes. However, O can inspect S1 and S2 at will.

The above design scenario represents a vanilla blockchain network for creating, ex-
ecuting, and monitoring smart contracts and the events linked with their closure. This
research added provenance capturing in real time and predictive analytics using artificial
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intelligence, for which the random forest algorithm was used. The blockchain framework
selected for this research was CORDA [34,35], which is lightweight and can be installed, pro-
grammed, and executed in a personal laptop containing an i5 or i7 processor and 16 GB of RAM.
The blockchain contract rules were configured in the form of predictive auditing such that the
updates are accepted only when the risks predicted by AI are within the prescribed limit.

With massive expansion of cloud manufacturing domains, IIoT devices have prolif-
erated in huge numbers. The security and trustworthiness of IIoT devices are currently
not built into the manufactured IIoT devices given their limited computing and storage
capacities [17–21]. Hence, the security concerns raised by References [15–19] cannot be ad-
dressed by implementing the traditional controls of firewalls, intrusion detection, and web
services security as majority of the IIoT devices may not have capacities to implement them.
Provenance is an approach to identify, authorize, and authenticate the IIoT devices using
secured socket layer and cryptographic keys exchange, which are light weight instruments
possible to be implemented in the limited computing capacities of the IIoT devices.

Provenance blockchain on cloud computing and the concept of predictive auditing
using artificial intelligence has been studied significantly in the academic world. However,
they have been studied as separate themes, providing insights into their applicability
for addressing cloud manufacturing cybersecurity risks. The goals of the studies on the
two themes are different. Provenance blockchain helps in authenticating and authorizing
continuous trustworthiness of IIoT devices, and predictive auditing helps in keeping track
of the processes in operation in cloud manufacturing. This research integrates the themes of
predictive auditing using artificial intelligence and provenance blockchain. The proposed
solution can expand the scope of provenance from authenticating and authorizing the
continuous trustworthiness of IIoT devices to complete operational compliance based
on rules set by smart contractors in a blockchain dedicated to provenance. Artificial
intelligence can help in achieving risk management in real time such that non-complying
or even compromised IIoT devices can be detected in advance and long before they could
cause actual damage. Thus, the eyes of risks monitoring and control shall not merely be
looking at the times when the devices are being inducted, reallocated, and retired, but
will be focused on IIoT operations continuously in real time with the power of predictive
auditing. Every variable related to IIoT devices allocated to the smart contracts can be
monitored and controlled through the proposed solution. The methodology for conducting
the primary research is presented in the next section.

3. Methodology

This research was conducted with an understanding that cloud manufacturing, which
leverages the IIoT devices (cyber-physical systems) for networking over the Internet, might
be vulnerable to cyber security risks [9–15]. The cybersecurity systems for IIoT devices
need to account for complexities in design and the known limitations of the devices (power,
computing, and local storage). The studies [27,28,36,37] clearly highlighted the limitations
of capacity and computing power of the IIoT devices, making them inadequate to run
sophisticated security programs independently.

The methodology process that follows is comprised of seven steps: study of literature,
designing the prototype, selection of software tools, encoding, integration, testing, and
evaluation of results.

This research is an original conceptualization of solutions to the concerns related to
the employment of cyber physical systems in cloud manufacturing networks, identified by
references [15–19]. This research was designed to learn by experiencing a conceptualized
design of provenance in the CORDA blockchain framework available with open-source
codes. The knowledge was developed through experiencing the coding process and
running tests by simulating scenarios of provenance data anomalies using simulated
production data collection in logistics processes. The random forest machine learning
algorithm was coded in such a way that it could predict numerical values of operating
parameters and detect risk levels based on boundary parameters. The risk levels were
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appended to the event records confirming work-in-progress and completion as per the
terms of the smart contracts. Thus, the operations manager monitoring the event records can
view the risk levels and investigate the specific IIoT devices in question. As the events data
may be collected from a group of IIoT devices, the entire group may require investigation
until a rogue IIoT device is located by the investigators. It requires learning through several
rounds of trials and experiences until the results obtained are satisfactory. Keeping this
approach in mind, the philosophy selected is pragmatic and the data collection and analysis
shall be both qualitative and quantitative [37–39]. The learning was both inductive and
deductive. The knowledge gained from literature sources and technical documentation
of Hyperledger and CORDA frameworks were qualitative. The knowledge gained from
machine learning actions when inbound data are manipulated was quantitative. The
accuracy analysis of machine learning was quantitative, as well. Inductive research was
required to learn the design and operations of blockchains from the technical documentation
of Hyperledger and CORDA frameworks, and programming techniques from the CORDA
manuals. Deductive research was required to test the design idea of the researcher by
appending the provenance control based on anomaly detection by machine learning. This
system can be evaluated by building a prototype in a Linux or Windows environment in
a powerful computer and generating data transmission through terminals in the same or
other laptops simulating MQTT clients as the IIoT devices. First, a sizeable database needs
to be created, comprising 500 to 1000 records, and the artificial intelligence needs to be
tested by simulating test cases of IIoT breaches occurring on the manufacturing network.
More details on this testing process are provided later in this section.

The state databases S1 and S2 are the main ERP-linked systems receiving regular
updates on events completed as per the smart contracts stored in smart ledgers L1 and L2.
State changes in the S1 and S2 are facilitated by the ERP applications A1, A2, and A3 on
behalf of organizations R1, R2, and R3, respectively, serving R0 through their respective
smart contracts. Hence, the responsibility and accountability for the accuracy and integrity
of events data being fed to S1 and S2 state databases inside the manufacturing blockchains
lies with the administrators of A1, A2, and A3, which are positioned as ERP data systems
outside the blockchain. In this research, A1, A2, and A3 are the focal points for building
strong provenance security controls. The provenance in this research is not merely static
metadata or occasional changes to it; instead it comprises operational and allocation data
and rules. In this research, three forklifts are assigned to different physical zones and are
assigned to carry different ranges of weights. The location and weight data streams are
considered as dynamic provenance feeds.

The proposed modification makes the network a blockchain network with provenance
(BNP). The applications A1, A2, and A3 have Message Queuing Telemetry Transport
(MQTT) interfaces on which they receive provenance data from IIoT devices attached to
the three forklifts. The data from the IIoT devices were used to change the states of state
databases inside the blockchain by the blockchain peers P1, P2, and P3. Machine learning
(ML) was implemented to make predictions of risk levels by comparing the latest data
arriving with their predicted values. The provenance data were stored by ML in a database
called ProvDB. The algorithm planned for machine learning was random forest. The reason
for using this algorithm is that it is based on supervisory training. As cloud manufacturing
provenance data collection is expected to be structured, using supervisory algorithms
should be preferred. Other algorithms fitting this space are recurring neural networks, long
short-term memory, deep learning, and reinforcement learning [40].

The machine learning shall be trained using historical data in the ProvDB database.
To begin a credible learning cycle, around 500 records are planned to begin with in the
ProvDB database. The initial records were considered as IIoT inputs from the three forklifts
identified as Asset01, Asset02, and Asset03. The random forest was tasked to make asset-
wise independent predictions. Hence, it was coded to first export the asset-wise data in
separate files and then makes separate and independent predictions about their next state
values. The risk levels were calculated by comparing the next state predicted values with
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the current state values received. The risks were defined as per the physical boundaries
within which the assets were allowed to operate and the loading limit on each asset. The
physical boundaries of movements of Asset01 (A01) were: X = 1 to 200, Y = 1 to 200,
and Z = 1 to 200 feet, and weight = 100 KG. The physical boundaries of movements of
Asset02 (A02) were: X = 201 to 400 feet, Y = 201 to 400 feet, and Z = 201 to 400 feet, and
weight = 125 KG. The physical boundaries of movements of Asset03 (A03) were: X = 401
to 600 feet, Y = 401 to 600 feet, and Z = 401 to 600 feet, and weight = 150 KG. In the real
world, the location could be a multi-story warehouse in which reach truck forklift machines
have been assigned to fixed boundaries. If they breach these boundaries, they will enter the
zones of other forklifts and cause accidents. There can also be issues of the wrong forklifts
being assigned for jobs not suitable for them (such as capacities of weightlifting). The extent
of breach defines the level of risk. For example, if a forklift has breached only the boundary
of another forklift, the risk level will be logged as LOW, but if a forklift breaches all the way
to the center of the zone of another forklift, the risk level will be logged as HIGH. Four risk
levels were assigned: NONE, LOW, MEDIUM, and HIGH.

The state data were entered along with the predictive risks estimation made by the
machine learning (ML) by the blockchain peers. Once authorized based on risk levels
within acceptable limit, the IIoT devices were trusted to provide genuine events updates
from the running processes, which can be used for changing the states in the state databases
of the blockchain. However, if the risks are not in the acceptable range, the blockchain state
changes would not occur and the peers will be suggested to conduct investigations. The
CORDA rules in the blockchain were programmed as follows:

For all assets:

• X should be less than or equal to 600;
• Y should be less than or equal to 600;
• Z should be less than or equal to 600;
• Weight should be less than or equal to 150;
• Risk level should be either NONE or LOW;

To simulate IIoT data transfers, a Message Queuing Telemetry Transport (MQTT)
server called Apache ActiveMQ was used. The data in the ProvDB were sent from the
Apache ActiveMQ in the form of topic publisher data sent by a publisher file coded as
Publisher.Java, which have records matching the database structure of the ProvDB database.
The first column is comprised of device keys used for registration and the remaining
columns constituted the numerical data collected from the sensors in the running processes.
The topic publisher data sent to a subscribed listener code called Listener.java represented
the numerical data collected from the sensors. For the purpose of this research, the topic
publisher data were constructed manually and sent through the Apache ActiveMQ MQTT
Broker server. In real industrial applications, the Publisher.Java shall be embedded as
a firmware deployed in physical IIoT devices such that the topic publisher data will be
constructed automatically by the industrial sensors integrated in the IIoT devices. For this
research, the values are changed manually in the code itself to test different risk levels.
The smart contract monitoring can be performed with two quality objectives: the correct
forklifts should be assigned to the correct zones and the correct weight loading capacities,
and the forklifts should not breach their operating boundaries and enter the zones of other
forklifts (unless reallocated operationally).

In this research, deploying real IIoT devices in a laboratory environment was avoided
because the study is about detecting anomalies in the data collected from them and not
about the engineering of the IIoT devices. The provenance data need to be streamed to
the big data systems through highly secured and encrypted channels with appropriate
key exchanges, as stated in the studies by References [39–41]. It should be noted that
streaming data from IIoTs may not be possible through encrypted links from the devices.
IIoT devices are low-capacity low-end systems. Implementing cryptography at the level
of cyber physical systems may not be feasible. Hence, chances of breaches are possible.
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Provenance data validation is needed in Industry 4.0. This is the value addition proposed
and tested in this research.

The topic publisher data constructed manually is comprised of a set of data values
tagged to a process at periodic intervals. At every transmission, the values were varied
slightly, as is expected in a stable industrial process (up to 10 percent). Intermittently, larger
variations were also injected into the data. Machine learning was programmed to learn
from the ongoing data streams and predict the next combination of data. A decision rule
using the Random Forest algorithm was programmed to compare the predicted versus
actual arrival of the next combination of the data. The risks were logged in the form of
alerts about four variables: X-axis movement, Y-axis movement, Z-axis movement, and
weight lifted. There were boundaries assigned to the four variables. At no breach, the risks
were marked as NONE; at one breach the risks were logged as LOW; at two breaches risks
were logged as MEDIUM; and at three and above breaches, risks were logged as HIGH.
The risks were logged in a log file but were not passed on to the blockchain immediately.
Their information was passed onto the state databases of the blockchain only when ten
consecutive risk detection events of at least medium level had been logged by the rules
engine. The log in the blockchain was not intended to take any automated action but to
inform the peers P1, P2, and P3 to begin investigation about specific devices identified as
changing their behaviors. The machine learning predictive algorithm was coded using
Weka package of JDK 8 and the rules engine were coded using core Java 8 coding.

The framework can be acceptable only if a dynamic range of scenarios is tested within
the numerical constraints programmed in the rules engine of the machine learning code.
The constraints of physical boundaries and the constraints of weights should be tested in
several combinations to generate compliant as well as non-compliant results to the smart
contract rules. The behavior of the system can be understood and accepted only if it works
satisfactorily under a wide range of dynamic values commensurate with several operating
scenarios. Details on the dynamic ranges used for testing are presented in Section 5.

The primary research environment and the tests conducted are reported in the next
section. The primary research followed the design of Figure 2 and the scenario explained
in this section.
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4. Primary Research

The primary research was conducted by building the software architecture within a
laptop environment running Ubuntu 22.04 operating system (a popular distribution of
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Linux). The software architecture and runtime flow used for the research project is shown
in Figure 3.
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Six main components were created and interfaced in the software architecture:

22. MQTT Broker Server using Apache ActiveMQ: The package ActiveMQ-5.15.0 was
used to setup a MQTT broker server in Ubuntu 22.04. This package was selected
because of its compatibility with Java 8 version.

23. Publisher Java code: Java 8 was selected because CORDA for open-source develop-
ment is available with packages compatible with up to Java 8 version only. Profes-
sional versions of CORDA are available on higher versions of Java. As stated in the
previous section, this code should be embedded in the firmware of the IIoT devices.
However, for the purposes of testing, this research executed the code several times
through Ubuntu 22.04 terminal by manipulating the input data at every event.

24. Listener Java code: programmed using Java 8: this file is responsible for receiving the
data transmitted through the MQTT connections and saving them to a ProvDB file to
be read by the machine learning algorithm.

25. Provenance database in the ARFF format: The file was created by the Listener java
code in ProvDB.csv;

26. Machine Learning code in Java with and in-built rules engine (WEKA): The pack-
age selected was weka-3.7.0 because it is compatible with Java 8; the rules or risk
assessment and logging were defined as detailed in the previous section. The machine
learning code picks up the latest data from the ProvDB and then compares them with
the latest next state predictions, using 80% records for training and 20% for testing.
Based on the predictions, the machine learning code populates the respective state
files of Assets A01, A02, and A03 along with the latest risk values. The verbose report
to be analyzed by the blockchain peers is entered in conclusion.txt file in append
mode (new records added to the older records).

27. CORDA blockchain framework with state rules defined in Java 8: To create smart contract
state rules in CORDA, six Java files were configured: IOUState.java, IOUContract.java,
IOUSchemaV1.java, ContractTests.java, ExampleFlow.java, and FlowTests.java. IOU is
the name of smart contract tested in this experiment. While configuring these files, a
database file named “iou.changelog-v1.xml” is configured automatically. This is the
change log database comprising state changes of the smart contract named IOU. All
the variables created in Schema and other files such as States and Flow should have
an existing record in the change log database.
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The tests were run several times following the steps stated below. These steps are the
main steps comprised of several technical sub-steps for each.

Step 1: Run the ActiveMQ console;
Step 2: Run the Listener.java file; this opens the MQTT connections in the ActiveMQ

console;
Step 3: Run the Publisher.java and transmit data for location coordinates and weight

carried out by a Forklift;
Step 4: Run the machinelearning.java file;
The outputs will be generated in ProvDB (Provenance database with the latest record

of assetplain.txt appended, asset01.arff, asset02.arff, asset03.arff, output.txt, prediction.txt,
and finally, Conclusion.txt;

Step 5: Open the CORDA console through IntelliJ Idea;
Step 6: Try entering the latest values received in assetplain.txt, and analysing the risk

log in conclusion.txt and entering the appropriate risk value (updates sent to the smart
ledger of the smart contract);

Step 7: Observe the responses from the CORDA smart ledger and write the full report
by analyzing it and all the files generated by the machine learning code.

There were some challenges during implementation of the system, though these
were solved before running the tests. The Java framework implemented in the laptop
was Java 8 because CORDA community edition is currently fully functional and reliable
up to this version. Hence, all software frameworks were configured to run on Java 8.
The ActiveMQ-5.15.0 package was selected for establishing the MQTT server because it
is compatible with Java 8. The other more popular framework for MQTT is RabbitMQ,
which was rejected because of incompatibility with Java 8. Further, the weka-3.7.0 package
for machine learning was selected for the same reason, although higher versions were
available. Implementing them on Ubuntu 22 was not a challenge. These challenges will
not appear in the production rollout because the professional edition of CORDA supports
higher versions of Java. Further, to keep the sessions alive for MQTT connections during
the machine learning session, separate terminals for Publisher.java and Listener.java were
kept active while the machine learning code was executed. During this runtime, the
laptop’s CPU utilisation (four core Intel i5 8th generation CPUs) reaches 100%, reflecting
the significant resources required for implementing this solution in practice. Significant
hardware resources will be required on cloud computing to run the system stably during
such spikes, which is expected to become an almost continuous phenomenon.

Steps 1 to 7 were run for several combinations of input data values about the position
and weight carried by three forklifts, identified as Asset01, Asset02, and Asset03 in the
blockchain database. The results are discussed in the next section.

5. Discussion

The results of all the tests conducted revealed two main states:

28. the machine learning algorithm decides that risk is either at NONE or at LOW level,
such that the state change in the CORDA smart contract is allowed;

29. the machine learning algorithm decides that risk is either at MEDIUM or at HIGH
level, such that the state change in the CORDA smart contract is prohibited, instructing
the blockchain peers to conduct investigations.

One hundred tests were conducted by varying the values following a structured
approach. The programming of data concerned a scenario in which three reach truck
forklifts (a type of forklifts suitable for high rise warehousing for vertical storage) are
allocated to three different operating zones in a warehouse. All the three zones have
dimensions of 200 × 200 × 200 feet. They are touching each other but are not interconnected.
They were called Zone1, Zone2, and Zone3 in the testing. Zone1 is on the ground, Zone2 is
located on a landfill about 200 feet high, and Zone3 is located on an adjacent landfill about
400 feet high. A simple schematic created in Blender 3D software is presented in Figure 4:
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As discussed in Section 3, the three reach truck forklifts, named as Asset01, Asset02,
and Asset03, were allocated to Zone1, Zone2, and Zone3, respectively. The physical
boundaries of movements of the three assets were:

• Asset01 (A01): X = 1 to 200, Y = 1 to 200, and Z = 1 to 200 feet, and weight = 100 kg;
• Asset02 (A02): X = 201 to 400 feet, Y = 201 to 400 feet, and Z = 201 to 400 feet, and

weight = 125 kg;
• Asset03 (A02): X = 401 to 600 feet, Y = 401 to 600 feet, and Z = 401 to 600 feet, and

weight = 150 kg;

It may be observed that the forklifts can be shifted between zones only when they
are removed because Zone2 and Zone3 are accessible through ramps. Hence, breach of
boundaries is possible only through planned allocations. The forklifts cannot breach their
boundaries on their own. This is the reason this scenario was designed (that is, having no
inadvertent breaches unless human actors are involved). The risk levels were defined based
on how serious the breach of these constraints was. If a forklift is found to be breaching X
or Y, the risk may be LOW because it might have been taken out from the warehouse in a
parking place just to give it some rest to cool it down or for some maintenance and repairs.
However, if there is a breach in Z-axis constraints (which will occur alongside breaches in
the X and Y axes because the forklifts have to be taken out and shifted through ramps),
the risk level logged will be MEDIUM to HIGH depending upon how far they have been
taken away. The breach in weight levels along with location breach shall generate HIGH
risk logging only.

The 100 tests conducted were conducted by entering location data with incremental
changes; later even the permissible weights were also breached. Initially, the forklifts were
kept within their zones with no breach in weight as well. The risk logs were found as
NONE. Thereafter, the forklifts were breached only at X and Y axes by imagining their
locations outside their zones but not entering other zones. For example, the forklifts were
positioned at various locations on the ground outside Zone1 and on the landfill or the
ramps outside Zone2 and Zone3. The risks were found to be logged as LOW. Thereafter,
forklifts were entered into other zones and the risk levels were logged as MEDIUM to
HIGH depending upon how far they were taken. Finally, when the weights were also
breached, the risk levels of HIGH were logged.

In this research, the machine learning code was written in such a way that at every
data set received, it conducts prediction of next state values and then compares them with
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the data received to log the risks. However, in reality there would never be an abrupt jump
to risk levels MEDIUM or HIGH. The transition will be gradual as the assets are moving
along their respective paths. This is the reason the tests were conducted by following paths
defined in a test scenario. When entering data into blockchain, the blockchain peers should
not jump to conclusions. They should follow the trends carefully to see if there are real
risks. The use of predictive analytics by AI helps in reducing unnecessary false positives.
For example, if the reallocations have happened quite a few times in the past, they will
reflect in the predicted values. Thus, the differences between the predicted and actual
values will vary significantly only when sudden outliers are caused in the data streams. If
a forklift has never been taken to another zone but has been taken out for cooling down or
repairs several times in the past, the predictive values will detect a breach only when the
Z-value crosses its normal operating range.

The system was found to abide by the rules and produce either of the above two
states (a) and (b) without failing on even one of the tests. There were no false positive
and false negative risks identified during the tests. However, the actual decision on true
positives should be with the blockchain peers as they will compare the risk values with
other data available, such as reallocations recorded in the ERP. Normally, the blockchain
peer may come across occasional false positives and hence enter NONE and LOW risks in
the smart contract state updating. The blockchain peers may agree and establish criteria
before they come across real MEDIUM and HIGH risks. As the data flows and risk logs are
recorded every second, occasional MEDIUM and HIGH risks can be ignored. For example,
they may consider a real MEDIUM risk only after ten or more continuous occurrences,
indicating something genuinely wrong with the operations of the specific IIoT asset. Unless
a trend is formed and no self-correction is evident, there may be false positives for some
reasons (such as a communications failure). If prolonged trends of MEDIUM and HIGH
risks are detected, the blockchain peers may correlate them with risk logs of other IIoT
assets allocated to the same smart contract and look for causes in the ERP. A quick video
conference with the operations team may solve the ambiguity. When they come across real
MEDIUM and HIGH risks, they cannot enter them in the smart contract as it will refuse to
change the states. In such instances, the blockchain peers will be left with no option but to
investigate the risks.

For such responses, documented response and mitigation processes should be imple-
mented showing clear allocation of roles and responsibilities. Perhaps, such processes may
be included in the smart contracts.

At this stage, the third research question is answered by explaining how this system
can solve the concerns raised by References [15–19] stated in the literature review. This
research addresses the concerns, to some extent, as follows:

30. Validating the identity of cyber physical systems enabled with IIoT communications:
This concern is clearly addressed in this research as the identity of the cyber physical
system is registered in the MQTT broker server, in the ProvDB of the machine learning,
in the training and testing database of machine learning, and in the smart contract of
the blockchain.

31. Tracking rapid deployments and Internet-enabling of millions of cyber physical sys-
tems: With the system of smart contracts and smart ledgers in place, millions of
cyber physical systems can be registered and prepared for tracking and tracing before
assignment to smart contracts. However, the IT capacities of cloud manufacturing
and network bandwidth should be sufficient to handle volumes of data generated by
millions of cyber physical systems in real time.

32. Traceability of cyber physical systems added, modified, and removed; especially
installed on mobile assets: The machine learning code shall continuously track the op-
erational state changes of the cyber physical systems and log risks accordingly for the
blockchain peers monitoring the system. Major changes like addition, modification,
and removal cannot go unnoticed by the machine learning code. There may be false
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alarms because of communication interruptions (like data received in a topic stops
temporarily) but the traceability and tracking will always be ON.

33. Validating fidelity of sensor data sent for influencing process events interpreted
out of the sensory data and the decision-making algorithms running the actuation
commands: This is a tough challenge. The validity of fidelity of sensor data can
only be made by decision-making algorithms comprising of integrated engineering
knowledge. This system can, however, report inconsistencies in the state changes
through its predictive capability and log risks. This may be of some help to the
engineers operating the cyber physical systems.

34. Establishing accountability and liability of individuals owning the cyber physical
systems: This concern will be addressed by the system designed. At the time of
registration of the assets, the ownership and accountability details will be recorded
in the blockchain. The smart contracting parties will be fully liable for the assets
registered and allocated to the contract. Further, blockchain peers from all contracting
parties will monitor the operations, thus ensuring timely detection of risks logged by
the machine learning code.

35. Inter-cloud assurances of cyber security: Inter-cloud assurance is possible in this solu-
tion if the same MQTT broker and machine learning systems are implemented for all
the contracting parties interfacing through multi-cloud blockchain. If multiple brokers
and machine learning systems need to be implemented in a multi-site environment
then replication of data between the Conclusion.txt files implemented in multiple
clouds should be implemented.

36. Algorithmic transparency (accountability of performance and behaviors of algorithms
deployed for controlling operations of cyber physical systems): This is another tough
challenge to be addressed. Performance and behaviors of algorithms require much
deeper monitoring and control by sophisticated systems with full knowledge about
the operating behaviors and performance metrics of the algorithms. This system can
help by detecting changes in the already progressing patterns and reporting them as
risks at different levels depending upon the rules defined in the machine learning
code and the blockchain state rules.

37. Cyber physical systems indulging into erroneous or malicious processing using ex-
ploits, scripting attacks, bots, device identity theft, and other means thus affecting the
execution of smart contracts negatively: Detection of exploits, scripting attacks, bots,
etc., need to be enabled through intrusion detection and prevention systems. This
solution can detect operational anomalies caused by such malicious software attacks
through machine learning but cannot detect presence of the software. Any anomaly
causing negative execution of smart contract will be detected through machine learn-
ing and traced to the device using provenance data. Negative execution will breach
the blockchain state transition rules and hence transactions will be rejected, thereby
promoting investigations. Attempts of device identity theft will also be difficult for
the attackers because three levels of registration in MQTT broker, machine learning
ProvDB database, and the blockchain smart contract will cause deterrence for the
attack planners. There is a high chance that the attackers will not be able to plan a
perfect breach of this entire system, although they should never be underestimated.

The challenges for provenance verification system to identify the IIoT devices accu-
rately and build traceability of doubtful devices in the network can be addressed. Further,
the challenges of provenance detection of bindings, fault tolerance, integrity and confiden-
tiality verifications through data, chain, and origin integrity verifications, access controls,
and protection of keys during sharing may be solved to some extent following the solution
of continuous operational risks monitoring in this research. Once devices are registered
in the blockchain, they will be treated as trustworthy in the system tested in this research.
However, this will not be a permanent perception built about the devices even if they
follow all the routines and key exchanges for valid registration. Devices may be subject
to investigation if their operational boundaries are breached and risks from medium on-
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wards are logged because the blockchain state change will not be allowed. The next state
prediction will always be based on the historical gradual state changes and hence any
drastic variations will be detected promptly. Further, the predictability can also cover
chances of devices breaching their operational boundaries in the normal course of their
operations. As the blockchain peers are monitoring the records periodically and updating
state changes in the blockchain, they will have opportunities to detect such probabilities
well in advance and correct the course of operations of the devices to mitigate such risks
proactively. There may be chances of some false positives as the devices may have been
reallocated deliberately through mutual agreements among the blockchain contracting
parties. However, reallocations should always be conducted through new smart contracts
such that the MQTT broker server and the machine learning rules can be updated.

In real world implementation, there may be thousands of IIoT devices allocated to
smart contracts running their work-in-progress operations. The data streams from these
IIoT devices to the MQTT server may establish and disestablish thousands of connections
every second. The machine learning code will be required to launch training and test
files from ProvDB corresponding to every IIoT device separately for making individual
predictions and comparing with their respective smart contract rules engines. There may
be thousands of such files launched in real time, operating almost synchronously with
the MQTT connections as the latest next state data of every IIoT asset will be compared
with the latest predicted data for detecting compliance/breaches of smart contract rules.
Keeping these predictions in mind, one may imagine a massive scale cloud computing
system in action, integrated with cloud manufacturing. Perhaps virtual machine clusters
comprising hundreds of multi-regional virtual machines will be required. The designers
need to consider estimates of overheads and linked costs for adopting this system. The
feasibility of investments can be justified when compared with the costs of IIoT breaches
and related incidents suffered by cloud manufacturers. Another factor related to adopting
the system in practice to be considered is the latency. The machine learning predictions
need to be synchronised with the data streams from thousands of IIoT devices. The risk
logs need to be created in real time on arrival of the present state data. The network
connections need to be configured with sufficient bandwidth and the distances covered
by the IIoT traffic to the provenance databases on cloud manufacturing should be the
shortest open paths. Finally, it is suggested that the proposed system can be used for
multiple contexts of cloud manufacturing in the Industry 4.0 era for future research or
real world adoption. This research presented coded files for managing provenance data
streams and related machine learning for forklifts programmed to work under physical
boundaries and weightlifting constraints as per the smart contracts. The application can be
modified by adding a frontend providing control on various contexts related to the IIoT
devices connected with cloud manufacturing and ready to be allocated to smart contracts.
The application shall comprise rules generation through a frontend such that the contract
generators can define rules related to the variables associated with IIoT devices selected for
the smart contracts. The frontend should be able to generate the necessary entries in the
machine learning code at the backend. With such a generic system in place, the machine
learning code can be used for monitoring the provenance streams and identifying risks
related to different types of IIoT devices connected to a cloud manufacturing network. The
addition of new IIoT devices shall be conducted by defining their variables pursuant to
their sensing capabilities such that they can be governed by smart contract rules generated
through the generic frontend used by the contract generators.

Several research studies [41–44] established designs requiring key exchanges with
client systems and their validation by their authorization records stored in the prove-
nance blockchain. The threats to be addressed were covered by references [15–19]. This
research was conducted with a basic understanding that the key exchange and validation
mechanisms suggested by References [41–44] can address identification, authentication,
and authorization of the IIoT devices. However, several IIoT issues highlighted by Refer-
ences [15–19] shall remain unaddressed. The proposed system was designed and tested for
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continuous validation using artificial intelligence. In this context, the justifications of the
proposed system for each of the threats identified by the References [15–19] were included
earlier in this section. This research also addresses the concern of algorithmic transparency
raised by References [13,14]. As the artificial intelligence operates by monitoring the vari-
ables associated with the IIoT devices directly, any differences between the algorithmic
operations and the smart contract terms for provenance of the devices shall be detected
automatically through the risk logs. The issue of controlling uncertainties in modern cloud
manufacturing raised by References [4,5] may be addressed through the proposed system
by monitoring the IIoT variables closely in real time. There will be implications of costs
and overheads, though, that need to be addressed by the planners and designers.

In the larger framework of cybersecurity, the proposed solution of provenance blockchain
can gain a prominent role of activity logging, monitoring, and control in the SIEM (Security
Informatics and Events Management) framework [45]. The SIEM framework is relevant
for real time visualization of events occurring in critical manufacturing systems [46]. The
provenance blockchain is proposed to be useful for the SIEM framework as the activities
of IIoT devices can be monitored and compared with their pre-established operating
boundaries in real time. The blockchain peers can be empowered by the continuous flow of
monitoring of states and knowledge of breaches to ensure that exploited vulnerable IIoT
devices can be identified and administered quickly before major damages occur.

Cloud based manufacturing systems may be able to reduce or eliminate the risks
arising from cyber physical system security challenges if they are monitored and controlled
continuously in real time. Disasters in industrial systems may require a build-up period
before they actually occur. For example, an explosion in a boiler will occur after pro-
longed building of pressures beyond their operating boundaries. The proposed provenance
blockchain solution may be able to detect such build-up sequences during their build-up pe-
riods and the blockchain peers may be able to take timely protective and preventive actions.
However, it will not happen automatically, as intelligent interpretations and prompt actions
taken by the blockchain peers is required for the solution to work. Further, the issues of
performance overheads caused by the provenance blockchain, scalability to hundreds of
thousands of IIoT devices, and latency issues causing delays in flow of state data from the
IIoT devices need to be addressed. Future researchers may like to conduct quantitative
evaluation of these issues.

IIoT sensing streams used as provenance data validated by artificial intelligence for
making state changes in smart contracts stored in blockchains can have several business
benefits. The smart contract state rules can be defined to enforce any policies on the
whole cloud manufacturing network. In future, this model and its design and coding
may be useful not only for cyber security risk mitigation but also for increasing efficiency
and productivity, an increase in trust and transparency in the manufacturing process,
and promoting sustainability. For example, if the contract demands emission levels from
logistics and transportation equipment to be below defined thresholds, the IIoT data sensed
and the machine learning driven risk levels thus logged can be useful in accepting or
rejecting state changes in the smart contracts putting compliance pressure.

6. Conclusions

This research was conceptualized with three research questions replicated as the
following:

38. What are the risks associated with cloud manufacturing in Industry 4.0?
39. How can provenance blockchain be used to provide greater transparency and trace-

ability in the cloud manufacturing process using AI-enabled predictive auditing?
40. How can this system help in mitigating cloud manufacturing risks in Industry 4.0?

In response to the first research question, the cyber security threats to cloud manufac-
turing were listed based on review of literature. Sophisticated threats like code injections,
side channel attacks, covert channels, exploits, malware, and DDoS may be mitigated on
cloud computing because of high end security controls. However, cloud manufacturing
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is dependent upon the data streams from IIoT devices attached with the process event
sensors in the plant machinery, robots, and logistics equipment. They may not be protected
from the sophisticated threats because of low computing and storage power requiring
use of low end thin operating systems (such as Lubuntu, which is a lightweight version
of Ubuntu). If IIoT devices are compromised especially by insiders, they can be used as
launch pads for attacking the manufacturing infrastructure. The concerns related to IIoT
devices were identified separately, which were related to cyber security and beyond related
to operational reliability, trust, and quality assurance. Their behavioral trends need to be
monitored to find out if they are compromised making them rogue devices. A promising so-
lution evolving in scientific research is using provenance blockchain employing predictive
capabilities of AI. This concept was adopted in this research as the second research question.
The second research question was answered by studying the provenance, blockchain, and
AI solutions for cloud manufacturing as separate themes, which were combined in a design
realized within an Ubuntu laptop environment. A scenario was imagined in which, three
reach truck forklifts allocated to three separate zones in a warehouse having constraints in
the form of physical operating boundaries and weights.

AI was programmed to detect breaches to the constraints and logging the risks using
random forest predictive analysis and an in-built rules engine within the coding. Thereafter,
a smart contract system was programmed in CORDA framework including the risks in
the state change rules for tracking the events conducted to fulfill the smart contract’s
requirements. Provenance blockchain can be deployed for monitoring provenance data
flows such that smart contracts can be defined with operating rules for the IIoT enabled
devices allocated to processes to be executed under smart contracts. Predictive auditing can
be integrated with cloud manufacturing process using AI algorithms to predict operational
behaviors of the allocated devices and log risks visible to all blockchain peers and the
contracting parties. This system is expected to increase transparency and traceability
in the manufacturing process. The provenance logs can highlight the devices with the
best compliance history and in this process highlight the contractors able to ensure best
trustworthiness in device allocation and management. Long term records can be used to
measure the performances of all the devices registered with the blockchain. Transparency
and traceability were ensured by making the event logs, predictive AI results, and the risk
logs available to all blockchain peers and the customer.

With this system in place, the third research question was framed to explore how it can
help in mitigating the cloud manufacturing risks. To answer this question, the AI power
was added to provenance blockchain to improve risk cloud manufacturing process as it
will be accurate, timely, and automated. The AI was designed to append the Provenance
database and segregate it to generate device-wise training files such that device-wise
predictions of their next operational attributes could be generated and compared with
the latest state to detect operational breaches and log risks in the risk database. This risk
database is visible to all blockchain peers. Hence, they were tasked to conduct periodic
risk assessment and enter their reports in the smart ledger. The smart ledger would reject
state changes at higher risks, thus putting pressure on the blockchain peers to escalate and
investigate the risks proactively.

Several tests were conducted to deeply experience the behavior of this system. The
layout of the warehouse imagined for this research was drawn in Blender 3D software and
presented for visualizing the risky scenarios. Thereafter, the possible risky scenarios were
discussed. As this system operates in real time, risk logs happen at each data transmission
event and data comparison between AI predictions and actual. Using AI predictions shall
reduce the chances of false positives as the risk levels will increase gradually by following
the paths of the vehicles on their way to breaching the boundaries. However, the blockchain
peers need to correlate the risk values with all other data available in the ERP systems. If
they detect deliberate human actions logged in the system officially, then they can safely
assume the risks to be in control and update the events in the blockchain smart contracts.
However, if the human actions are found to be not declared in ERP officially, then they can
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delay updating the state changes and first investigate the reasons. It was visualized that
such real time monitoring of risks can help in risk mitigation to any IIoT related risks, such
as quality risks, reliability risks, sustainability risks, efficiency risks, productivity risks, and
any other area of concern of the engineers. The right kind of IIoTs and sensors need to be
selected, and the Java rules defined for risk assessment need to be customized as per the
variables being monitoring. The random forest algorithm will simply predict new numbers
based on its training and testing data, and the rules engine shall detect and publish the
associated risk levels and their related actions.
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