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Abstract: In recent years, due to the wide application of 3D vision in the fields of autonomous
driving, robot navigation, and the protection of cultural heritage, 3D point cloud registration has
received much attention. However, most current methods are time-consuming and are very sensitive
to noises and outliers, resulting in low registration accuracy. Therefore, we propose a two-stage
framework based on graph neural network and attention—TSGANet, which is effective in registering
low-overlapping point cloud pairs and is robust to variable noises as well as outliers. Our method
decomposes rigid transformation estimation into two stages: global estimation and fine-tuning. At the
global estimation stage, multilayer perceptrons are employed to estimate a seven-dimensional vector
representing rigid transformation directly from the fusion of two initial point cloud features. For the
fine-tuning stage, we extract contextual information through an attentional graph neural network
consisting of attention and feature-enhancing modules. A mismatch-suppression mechanism is also
proposed and applied to keep our method robust to partially visible data with noises and outliers.
Experiments show that our method yields a state-of-the-art performance on the ModelNet40 dataset.

Keywords: point cloud registration; deep learning; graph neural network; attention

1. Introduction

Point cloud registration is the process of aligning multiple three-dimensional point
clouds to integrate data from different perspectives or time points, creating an accurate and
complete 3D model. This technology is crucial for applications such as 3D reconstruction,
robotics, autonomous driving, and object recognition. Point cloud registration enhances
model accuracy, supports time-sensitive applications, and advances experiences in virtual
reality and simulations. Understanding point cloud registration is essential for researchers
and practitioners engaged in decision making and interactive applications based on three-
dimensional data.

Point cloud registration methods can be categorized into traditional methods and deep
learning-based methods. The traditional ICP (Iterative Closest Points) algorithm and its
variants [1–3] align point clouds by iteratively reducing the distance between source and tar-
get point clouds, which are commonly used in industry. Point-to-plane ICP algorithms [2,4]
approximate the distance between point clouds with the point-to-plane distance, which
is a fine-registration algorithm that requires a reasonable initial transformation given by
the measurement platform or feature matching. Similarly, point-to-point distance is used
to approximate the distance between point clouds in point-to-point ICP algorithms [2].
Variants of ICP algorithms are summarized in six steps by [3]: (1) selecting point sets;
(2) matching the point sets; (3) weighting the corresponding pairs; (4) eliminating abnormal
corresponding pairs; (5) assigning an error metric based on the point pairs; and (6) mini-
mizing the error metric. Li and Wang et al. [5] show a trade-off between computational
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efficiency and effectiveness when applying the ICP algorithms. Taking point-to-plane and
point-to-point ICP algorithms as examples, although the former is more efficient than the
latter, its effective range is smaller. In addition, point-to-plane ICP algorithms tend to
oscillate and cannot converge to global minima when the input data is heavily affected by
noise. Some traditional methods [6,7] first extract 3D interest points as well as descriptors
and then utilize SVD (Singular Value Decomposition) combined with RANSAC (Random
Sample Consensus) proposed by Fischler and Bolles [8] to estimate rigid transformation.
The bottleneck of the RANSAC-based methods is the computational complexity. When
the point cloud is denser and noisier, more comprehensive and detailed sampling is re-
quired to obtain a highly robust estimate, resulting in computational complexity increasing
exponentially with the scale of the point cloud. Moreover, the effectiveness and accuracy
of the traditional interest point-based methods depend heavily on the efficiency of 3D
interest point-detection algorithms, such as the accuracy of 3D location and uniqueness of
the description.

Learned registration methods can be classified as direct estimation-based methods [9,10]
and point correspondence-based methods [11–14] according to different transformation
estimation blocks. Direct estimation-based methods simply predict vectors representing
rigid transformation by estimation block consisting of feature pooling layers and the sub-
sequent MLPs (Multilayer Perceptrons), leading to the loss of much feature information.
Point correspondence-based methods generate point correspondences from pointwise fea-
tures and then solve for rigid transformation by the SVD method [15], making sufficient
use of the extracted features. However, they need to prevent inference from mismatch-
ing point pairs. To better exploit the geometric information of point clouds, carefully
constructed complicated inputs are also employed in some point correspondence-based
methods [12,14].

Direct estimation-based methods extract a feature vector for the entire point cloud
and employ multi-layer perceptrons to directly estimate the parameters representing the
transformation. While these methods are fast, they tend to waste much valuable fea-
ture information, leading to suboptimal registration results. On the other hand, point
correspondence-based methods estimate point correspondences according to the feature
vectors of each point. These methods are suitable for iterative registration, but the process
of estimating point correspondences can be time-consuming. Existing learned methods
typically either solely rely on direct estimation or exclusively use point correspondence-
based methods. In this paper, we introduce a two-stage framework based on graph neural
network and attention—TSGANet. Our method combines two kinds of transformation
estimation blocks, decomposing the registration process into two stages: global estimation
and fine-tuning. At the global estimation stage, we exploit local geometric information
from inputs and obtain a rough transformation by the direct transformation estimation
block. For the fine-tuning stage, a point correspondence-based estimation block is applied
to make up for the information loss in the previous global estimation stage. In all, the first
stage provides a rough transformation for the second stage, and the second stage outputs
the final fine-tuning results. This combination enables our method to save time while
achieving greater registration results through several iterations. As shown in Figure 1, our
method can accurately register point clouds after three iterations. An attentional graph
neural network is proposed in the fine-tuning stage to better utilize and enhance the contex-
tual information within a single point cloud and between different point clouds. Existing
methods rarely incorporate a mismatch-suppression mechanism. To ensure robustness to
noise and outliers, our approach introduces a mismatch-suppression module, which filters
poor corresponding point pairs by learnable affinity threshold. In addition, unlike other
existing methods, our approach does not require complex normal vectors and angular
information; it solely relies on the three-dimensional coordinates of spatial points as input.

In this paper, Section 2 introduces some representations of point cloud registration;
Section 3 provides a detailed description of the methods employed by TSGANet; Section 4
presents the experimental results, where we train our model on the ModelNet40 [16] dataset
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and test it on both ModelNet40 dataset and real data; Section 5 concludes the paper; and
Section 6 discusses the limitations of this method and suggests future improvements.

Our main contributions are as follows:

1. We propose a simple and fast deep network for point cloud registration;
2. We decompose the registration process into global estimation and fine-tuning stages;
3. For the fine-tuning stage, an attentional graph neural network with attention as well

as feature-enhancing modules and a mismatch-suppression mechanism is proposed,
which has proved effective against partially visible data with noises and outliers;

4. Experiments show that our method is effective in registering low-overlapping point
cloud pairs and robust to variable noises as well as outliers;

5. Our method achieves a state-of-the-art performance on the ModelNet40 dataset over
various evaluation criteria and is computationally efficient.

Inputs

Iteration 1

Iteration 2

Iteration 3

Figure 1. Our TSGANet accurately registers point clouds after three iterations. The first iteration
estimates an initial rigid transformation roughly aligning point clouds, and the next two iterations
infer the fine-tuning rigid transformation based on point correspondences.

2. Problem Formulation

Two given unaligned point clouds, X and Y, represent the source and target point
clouds, respectively. The point clouds comprise spatial coordinates of points. Our goal is to
recover the unknown rigid transformation T = {R, t} between X and Y, where R ∈ SO(3)
denotes the rotation matrix and t ∈ R3 denotes the translation vector.

3. TSGANet

Figure 2 shows an illustration of our method. The global estimation stage only goes
through one iteration. The fine-tuning stage is iterative and goes through several iterations.
At the beginning of iteration i, the input point cloud X is transformed into X̃ using the rigid
transformation estimated in all previous iterations. For the first iteration, X̃ is equal to X.
Formulate the result of iteration i as Ti, then the overall transformation can be expressed as
T = TiTi−1 . . . Ti.
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Figure 2. (a) Overview of our TSGANet, (b) graph feature-embedding network, (c) attentional graph
neural network. The black lines in (a) point to the steps required at both stages, while the green lines
point to the steps required only at the global estimation stage and the blue lines point to the steps
required only at the fine-tuning stage.

Both the global estimation stage and the fine-tuning stage encode local features from
input point clouds through the graph feature embedding network, but only the latter further
utilizes the attentional multilayer graph neural network to extract contextual information.

3.1. Input of Model

When processing sparse and low-overlapping point clouds, it is beneficial to encode
pose features from local geometry instead of from a single point [10]. Therefore, we
incorporate the neighborhood information of each point into its input representation. For
each point xc in X̃, we construct the k-neighborhood N (xc); then, the input corresponding
to xc is:

inp(xc) = (xc, xc,i, xc − xc,i), (1)

where xc,i ∈ N (xc). Similarly, the input of the Graph feature-embedding network corre-
sponding to X̃ can be represented as:

inp
(
X̃
)
=

(
X̃,N

(
X̃
))

. (2)

3.2. Global Estimation Stage
3.2.1. Graph Feature Embedding Network

We adopt the practice of stacking EdgeConv layers from DGCNN [17] to explicitly
incorporate local geometric properties into the input representation of the model. However,
we use a fixed graph structure in the coordinate space of the point cloud in each Edge-
Conv layer, rather than dynamically updating it in the feature space. The graph feature
embedding network embeds feature vectors for each point in point clouds. The embedded
features for input X̃ can be formulated as:

Fl
X̃ = f

(
inp

(
X̃
))

, (3)

where f represents the forward propagation process of the feature embedding network. Fl
Y

is calculated in the same way as Fl
X̃ , and they share the weights of the network.
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3.2.2. Direct Transformation Estimation

For computational efficiency, only the initial local features extracted by the graph fea-
ture embedding network are employed at the global estimation stage. We first concatenate
initial features Fl

X̃ and Fl
Y of shape (N, C) over the second dimension to a new feature Fl

X̃Y
of shape (N, 2C). The max pooling is then performed on Fl

X̃Y over the first dimension to
eliminate redundant features, generating a new fused feature of shape (2C). The initial
rigid transformation can be obtained by passing the fused feature map to the following
MLPs. Note that what the MLPs predict for rotation is quaternion and we have to convert
it into rotation matrix.

3.3. Fine-Tuning Stage
3.3.1. Attentional Multilayer Graph Neural Network

When a person is asked to match the features of two objects, they usually first observe
single object separately; and then review between two objects [18]. This corresponds to
an iterative process where the focus of attention is constantly changing. Therefore, we
treat the initial feature map of a point cloud as a fully connected graph and employ an
attentional multilayer graph neural network to aggregate information at different levels in
this subnet. Inspired by [18], we alternately perform self-attention aggregation and cross-
attention aggregation modules in this multilayer network. In addition, we also propose a
feature-enhancing module.

The self-attention aggregation module is used to extract global information within a
single point cloud first. Denote the output of the l-th layer of the multilayer graph neural
network by l Fg

X̃ and l Fg
Y, respectively. Assuming that the (l + 1)-th layer is a self-attention

aggregation module, its output can be expressed as:

l+1Fg
X̃SA

= l Fg
X̃ + MLP

(
A
(

lqX̃ ,l kX̃ ,l vX̃
))

, (4)

lqX̃ = lWq
l Fg

X̃ , lkX̃ = lWk
l Fg

X̃ , lvX̃ = lWv
l Fg

X̃ . (5)

q, k, and v are the query, key, and value calculated by different linear layers, respec-
tively. A is the attention function that maps the query, key, and value to the output:

A(q, k, v) =
so f tmax

(
qTk

)
√

d
v, (6)

where d represents the length of each feature vector. l+1Fg
YSA

is calculated in the same way

as l+1Fg
X̃SA

and they share the network weights.
The cross-attention aggregation module is employed to make the features of the source

and target point clouds communicate with each other, thereby enhancing related features
and suppressing redundant features. Different from the self-attention aggregation module,
the cross-attention aggregation module exchanges information between point clouds by
changing the sources of the query and value:

l+1Fg
X̃CA

= l Fg
X̃ + MLP

(
A
(

lqX̃ ,l kY,l vY
))

, (7)

l+1Fg
YCA

= l Fg
Y + MLP

(
A
(

lqY,l kX̃ ,l vX̃
))

. (8)

Similarly, l+1Fg
YCA

shares network weights with l+1Fg
X̃CA

. The final outputs of the

attentional multilayer graph neural network are denoted as Fg
X̃ and Fg

Y.
The feature-enhancing module follows the cross-attention aggregation module. To

further enhance relevant information, the module is composed of 10 Conv1d layers, whose
output channels are [256, 256, 128, 64, 32, 64, 128, 256, 256, 512], first reducing the channel of
the attention output feature and then increasing the channel.
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3.3.2. Point Correspondence-Based Transformation Estimation

After the first round of alignment, local geometric properties between corresponding
point pairs in two input point clouds will be easier to extract. Information exchange in
cross-attention modules also helps exploit correlations between point pairs. Therefore,
when estimating rigid transformation at the fine-tuning stage, we do not fuse features; but
calculate point correspondences. First, compare the affinity of each point pair between X̃
and Y by the L2 distance between features Fg

X̃ and Fg
Y:

a f f inity = −
∥∥∥Fg

X̃ − Fg
Y

∥∥∥2

2
. (9)

Then, a differentiable Sinkhorn layer [19] is employed to make the sum of each row
and column of the affinity matrix close to 1.0, letting the estimated point correspondences
be reasonable. After that, a soft corresponding matrix M is obtained.

3.3.3. Mismatch Suppression Mechanism

For partially visible data and data with outliers, not each point in the source point
cloud has a corresponding point in the target point cloud. Thus, we propose a mismatch-
suppression mechanism, which reduces the probability of mismatch by setting correlation
thresholds. With matrix M, we calculate MX̃ and MY:

MX̃ = max(M, axis = 1), (10)

MY = max(M, axis = 0). (11)

MX̃ represents the maximum correlation value of each point in X̃ to points in Y, while
MY represents the opposite. Then we select points X̃

′
and Y

′
whose corresponding values

in MX̃ and MY are beyond the threshold tX and tY:

X̃
′
=

(
X̃i

)
, MX̃ i ≥ tX , Y

′
= (Yi), MYi ≥ tY. (12)

tX = α.medium(MX̃), tY = β.medium(MY). (13)

α and β are learnable parameters of the network, initialized to 1.0. The medium
function can also be changed to the average function. X̃

′
is the new generated source point

cloud. The reference point cloud Ỹ
′

to source X̃
′

is then obtained by:

Ỹ
′
= M

′
Y

′
, (14)

where M
′

is the soft corresponding matrix between X̃
′

and Y
′
. Weighted SVD is then

employed to estimate the transformation. When solving weighted SVD, the weight of
each corresponding pair is wi = max

(
M

′
i

)
. Then, we normalize the weights of the

corresponding point pairs by a softmax layer.

3.4. Loss Function

The loss of our network is briefly defined by the error between the final recovered
rigid transformation of the unaligned point clouds and the ground truth value. The error
includes the rotation error and translation error:

Loss = MSE
(

RestRgt
T − I

)
+ MSE

(
test − tgt

)
. (15)

4. Experiments
4.1. Implementation Details

We determine the neighborhood of k = 20 for each point in the input representation
through ablation studies in Section 4.6.2. The feature vector length is 512. Through extra
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experiments, we determine that the network undergoes three iterations during both training
and testing, with one iteration in the global estimation stage and two in the fine-tuning
stage. In the fine-tuning stage, the combination of attention and feature-enhancing modules
appears twice. α and β are all initialized to 1.0. We train the network using the Adam
optimizer with an initial learning rate of 0.0001, and the learning rate decreases by a factor
of 0.5 every 100 epochs. The batch size during training is 16.

4.2. Datasets and Evaluation Metrics

Most experiments are conducted on the ModelNet40 [16] dataset, and the remains
are on the real data. The real data will be introduced later in Section 4.5. The ModelNet40
dataset contains 12,311 CAD models from 40 categories. We use the processed data from the
previous work [20], which include 2048 points randomly sampled from each CAD model,
and the data of each point cloud are composed of 3D coordinates and normal vectors. Each
category in the dataset contains train and test splits. We use the train splits of all categories
as the training set and the test splits as the testing set. Point clouds are down-sampled
to contain 1024 points in our method. For a target point cloud Y, we apply a random
rigid transformation to the source point cloud X. For the random rigid transformation
applied, we randomly sample three Euler angles in the range of [0, 45] for rotation and
three displacements in the range of [−0.5, 0.5] for translation.

We use three evaluation metrics from RegTR [21]: (1) Relative Rotation Error (RRE);
(2) Relative Translation Error (RTE); and (3) Chamfer distance (CD) between the registered
scans. In addition to the above, there are also the registration recall (RR) and execution
time. The registration recall refers to the fraction of point cloud pairs whose RRE and RTE
are below 4 and 0.1, respectively.

We compare our TSGANet to ICP [1] and FGR [22], as well as recently learned
registration methods: DCP-v2 [11], RPM-Net [12], RGM [13], RegTR [21], and OGMM [23].
The ICP and FGR methods are implemented by Open3D [24]. For learned methods, we
train the models with implementation provided by the authors and make our best efforts
to fine-tune them.

4.3. Low-Overlapping Data

To evaluate the effectiveness of our method on low-overlapping point cloud pairs,
we conduct experiments on point clouds with 70% and 50% completeness. To generate
partially visible point clouds, we follow the strategy Yew and Li [12] propose. For each
point cloud, we first generate a 3D plane passing through the coordinate origin and then
move the plane in the direction of its normal until a certain fraction of the points remain.
Gaussian noise sampled from N(0, 0.01) and 10% outliers are also applied to these point
clouds, respectively. For outliers, we randomly sample three values from U(−1.0, 1.0) as
the 3D coordinates of the outliers. All learned methods are trained on 70% completeness
data without noises and outliers and then tested on 70% and 50% completeness data with
noises as well as outliers. Table 1 shows the experimental results of all algorithms on 70%
completeness point clouds, and Table 2 shows the results on 50% completeness point clouds.
Our method ranks first or second in many metrics, which proves our method is effective
in registering low-overlapping point cloud pairs. Furthermore, as an iterative method,
although our TSGANet is slightly slower than ICP, FGR, and noniterative DCP-v2, it is
much faster than other iterative learned methods and consume almost the same time with
OGMM. Qualitative comparisons of the registration results on 70% completeness point
clouds are shown in Figure 3. Figure 4 shows the registration examples of our method on
50% completeness point clouds. The performance of various algorithms on clean data can
be found in Appendix A.
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Table 1. Performance of various algorithms on 70% completeness data with noises and outliers. Note
that the singly bolded numbers indicate the first rank, while the numbers in bold and italics indicate
the second rank.

Methods
Data with Noises Data with Outliers

RRE RTE CD RR (%) Time (ms) RRE RTE RR (%) Time (ms)

ICP 24.02 0.1856 0.013 11.7 3 28.42 0.1881 9.2 3
FGR 53.17 0.1859 0.030 7.0 9 17.25 0.0505 64.5 27

DCP-v2 17.94 0.2132 0.019 1.1 9 20.76 0.2053 0.16 10
RPM-Net 1.24 0.0121 7.2 × 10−4 95.3 37 4.36 0.0301 66.8 43

RGM 2.79 0.0219 1.7 × 10−3 87.8 127 4.68 0.0337 73.3 149
RegTR 1.68 0.0137 8.4 × 10−4 93.2 35 2.69 0.0237 83.8 42
OGMM 3.1543 0.0084 0.1834 87.4 26 2.7766 0.0068 85.7 26

Ours 1.14 0.0130 9.8 × 10−4 97.3 27 1.53 0.0128 96.0 29

Table 2. Performance of various algorithms on 50% completeness data with noises and outliers. Note
that the singly bolded numbers indicate the first rank, while the numbers in bold and italics indicate
the second rank.

Methods
Data with Noises Data with Outliers

RRE RTE CD RR (%) Time (ms) RRE RTE RR (%) Time (ms)

ICP 43.74 0.328 0.031 6.4 2 41.63 0.307 3.6 2
FGR 58.70 0.356 0.043 2.8 5 38.43 14.901 39.1 16

DCP-v2 32.75 0.565 0.259 0 6 29.69 0.561 0 7
RPM-Net 7.86 0.103 0.126 61.4 48 10.96 0.133 29.4 34

RGM 18.54 0.165 0.086 52.3 84 20.40 0.166 34.5 94
RegTR 5.09 0.089 0.123 58.8 28 6.098 0.077 53.0 31
OGMM 3.078 0.0074 0.184 86.5 26 2.0082 0.0044 88.4 27

Ours 3.97 0.103 0.184 55.4 18 6.100 0.082 49.1 21

Input DCP-v2 RPM-Net RGM RegTR Ours

(a)

OGMM

(b)

Figure 3. Qualitative registration examples on 70% completeness point clouds with (a) Gaussian
noise sampled from N(0, 0.01), (b) 10% outliers.
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Inputs

Results

(a) (b)

Figure 4. Registration examples of our method on 50% completeness point clouds with (a) Gaussian
noise sampled from N(0, 0.01), (b) 10% outliers.

4.4. Variable Noises and Outliers

In this experiment, we compare the robustness of various algorithms to variable noises
and variable fractions of outliers. For experiments on noises, we apply Gaussian noise with
standard deviations of 0.01, 0.02, 0.03, 0.04, and 0.05 to 70% completeness point clouds.
Figure 5a,b illustrate the changes in RRE and RTE for all algorithms. It can be observed that
as the noises increase, our method exhibits a slow growth in both RRE and RTE, but with a
little deviation from the best-performing RPM-Net method. For experiments on outliers,
we introduced outliers of fractions 0.1, 0.2, 0.3, 0.4, and 0.5 to 70% completeness point
clouds. Figure 5c,d show that our method always ranks first. These experiments confirm
the robustness of our approach to variable noises and outliers.
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Figure 5. (a) RRE of various algorithms on partially visible data with variable noises. (b) RTE of
various algorithms on partially visible data with variable noises. (c) RRE of various algorithms on
partially visible data with a variable fraction of outliers. (d) RTE of various algorithms on partially
visible data with a variable fraction of outliers.

To understand how the point correspondence-based registration methods work on data
with outliers, we visualize the point correspondences obtained by our TSGANet and RPM-
Net at the last iteration. The visualization is shown in Figure 6. The red and gray points
represent the source and target point clouds, respectively, and the blue points represent
the generated reference point cloud corresponding to the source point cloud. The red lines
connect the corresponding point pairs between the source point cloud and the reference
point cloud. The darker the color of the line is, the more credible the corresponding point
pair is, and vice versa. It is observed that the lines connecting corresponding point pairs in
Figure 6b are neater and darker than those in Figure 6a, which means our method is less
disturbed by outliers than RPM-Net.
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(a) (b)

Figure 6. Visualizations of point correspondences at the iteration of (a) RPM-net and (b) our TSGANet.
We compare our method with RPM-Net because they share some similarities in their computation
processes. The source and target point clouds in RPM-Net and our method are opposite.

4.5. Real Data

In this experiment, we test the applicability of our method in scenarios closer to real-
world applications. Since the research’s primary future application involves the automated
construction of infrastructure, and our goal is to estimate the pose of robotic arms’ end-
effectors during the construction process by aligning the point clouds of cooperating targets.
We conduct experiments on the point clouds obtained from two mechanical parts using
the Tango-S series 3D scanner. The mechanical parts and the registration results are both
depicted in Figure 7. The experimental results demonstrate the favorable applicability of
our method in the predefined application scenarios.

Input ResultObject

Figure 7. Mechanical parts and registration examples of our method on the point clouds of the
mechanical parts.

4.6. Ablation Studies
4.6.1. Necessity of Each Module

We name the model with only the global estimation stage as TSGANet_v1, the model
with only the fine-tuning stage as TSGANet_v2, and the model without the mismatch-
suppression mechanism as TSGANet_v3. They are compared with TSGANet on 70%
completeness point clouds with noises and outliers. The performance of all models is shown
in Table 3. The model with only the fine-tuning stage performs a bit better than the model
with no fine-tuning stage, which validates the effectiveness of calculating corresponding
point pairs by features extracted by the attentional graph neural network. However, both of
them are much worse than the complete TSGANet, proving the reasonability of combining
the global estimation stage and fine-tuning stage. The model with no mechanism also
performs significantly worse than the complete model on all data over all metrics, which
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proves the mismatch-suppression mechanism is indeed effective for partially visible data
with noises and outliers.

Table 3. Performance of different combinations on 70% completeness point clouds with noises and
outliers. Note that bold ranks first.

Models
Data with Noises Data with Outliers

RRE RTE CD RRE RTE

TSGANet_v1 9.23 0.1902 0.023 15.65 0.1793
TSGANet_v2 2.96 0.0175 1.8 × 10−3 3.50 0.0203
TSGANet_v3 1.79 0.0141 1.1 × 10−3 1.95 0.0201

TSGANet 1.14 0.0130 9.8 × 10−4 1.53 0.0128

4.6.2. Value of k

In this experiment, we investigate whether encoding neighborhood information and
varying the value of k in k-nearest neighbors have impacts on the registration performance.
Table 4 shows performance on 70% completeness point clouds with noises and outliers.
It can be observed that encoding neighborhood information is beneficial for registration.
Consider the performance of the model as the value of k varies, setting k to 20 is a reason-
able choice.

Table 4. Performance of our method on 70% completeness point clouds with noises and outliers
when the value of k in k-nearest neighbors varies. Note that, when k = 0, neighborhood information
is not encoded.

k
Data with Noises Data with Outliers

RRE RTE CD RRE RTE

0 15.4210 0.1977 0.024 14.1295 0.1497
5 4.3958 0.0717 4.6 × 103 1.0915 0.0125
10 1.7125 0.0241 1.3 × 103 1.2708 0.0124
20 1.1366 0.0130 9.8 × 104 1.5299 0.0128
30 1.3948 0.0149 1.0 × 103 1.7527 0.0142
40 1.6513 0.0168 1.1 × 103 1.9619 0.0163

5. Conclusions

We propose the point cloud registration framework TSGANet. Our approach decom-
poses the registration process into two stages: global estimation as well as fine-tuning. In
the fine-tuning stage, we propose an attentional graph neural network with attention as
well as feature-enhancing modules and a mismatch-suppression mechanism, which has
proved effective against partially visible data with noises and outliers. Experiments show
that our method is effective in registering low-overlapping point clouds and robust to vari-
able noises as well as outliers. It achieves state-of-the-art performance on the ModelNet40
dataset over various evaluation criteria and is computationally efficient.

6. Limitations and Future Work

The limitation of TSGANet lies in its incapability to accommodate large-scale point
clouds as input. Our model extracts point-wise features in the feature extraction phase and
estimates correspondences between all points in the source and target point clouds during
the fine-tuning stage. Constrained by computer memory and computational power, our
model can handle only small-scale inputs. This study addresses the project requirements
for registering small- to medium-sized point clouds of structures. Experiments show
the excellent registration accuracy of our model. In practical applications, due to the
relatively small volume and fewer details of structures, even if the real point clouds of
the structures are downsampled to a fixed size, it will not result in a significant loss of
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geometric information. However, when applying the model to indoor or outdoor data,
downsampling operations might lead to the failure of the registration process due to the
discarding of too much detailed information. Therefore, future work will focus on refining
the model to adapt to indoor and outdoor data. Additionally, we believe that leveraging
deep learning-based multimodal data fusion will provide significant advantages for point
cloud registration.
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Appendix A. Clean Data

In this experiment, we evaluate the registration performance of various algorithms on
clean data, which consist of partially visible data and complete data. For partially visible
data, we train and test all algorithms on 70% completeness point clouds without noises
and outliers. For complete data, we train and test all algorithms on complete point clouds
without noises and outliers.

Table A1 shows the performance of various algorithms. Due to the claim of OGMM
that it is effective for partially visible data, we did not experiment with it on complete
data. The registration recall here refers to the fraction of point cloud pairs whose RRE and
RTE are below 2 and 0.05, respectively. It is obvious that our method always ranks first or
second in almost all metrics and requires significantly less time than other iterative-based
learned methods.

Table A1. Performance of various algorithms on partially visible data and complete data without
noises and outliers. Note that the singly bolded numbers indicate the first rank, while the numbers in
bold and italics indicate the second rank.

Methods
Partially Visible Data Complete Data

RRE RTE CD RR (%) Time (ms) RRE RTE CD RR (%) Time (ms)

ICP 23.0985 0.1845 0.013 7.2 3 5.4000 0.0152 1.8 × 10−3 67.6 3
FGR 11.8501 0.0410 5.3 × 10−3 61.2 27 3.2779 4.9 × 10−3 1.0 × 10−3 82.1 36

DCP-v2 17.2519 0.2121 0.018 0.12 9 1.9726 4.8 × 10−3 6.1 × 10−4 61.4 14
RPM-Net 1.0649 0.0103 1.6 × 10−4 92.0 38 0.6243 4.0 × 10−4 1.3 × 10−4 97.8 56

RGM 1.5093 0.0095 3.29 × 10−4 92.7 126 0.3908 2.0 × 10−4 8.0 × 10−7 99.8 678
RegTR 1.3471 0.0121 3.32 × 10−4 89.0 36 0.5142 1.0 × 10−3 3.2 × 10−7 89.4 57
OGMM 3.3694 0.0108 0.1824 86.4 26 —— —— —— —— ——

Ours 0.7103 0.0086 2.6 × 10−4 96.6 27 0.5274 9.8 × 10−5 1.4 × 10−7 99.2 42
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