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Abstract: This article addresses a comprehensive analysis of power electrical systems, employing
a combined approach of genetic algorithms and mathematical optimization through nonlinear
programming with discontinuous derivatives (DNLP) in GAMS. The primary objective is to minimize
economic losses and associated costs faced by the network operator following disruptive events. The
analysis is divided into two fundamental aspects. Firstly, it addresses the topological reconfiguration
of the network, involving the addition of lines and distributed energy resources such as distributed
generation. To determine the optimal topological reconfiguration, a genetic algorithm was developed
and implemented. This approach aims to restore electrical service to the maximum load within the
system. Secondly, an optimal energy dispatch was performed for each generator, considering the
variation in load throughout the day. The system’s load curve is taken into account to determine
the optimal energy distribution. Thus, the problem of economic losses is approached from two
perspectives: the minimization of costs due to nonsupplied electrical energy and the determination
of efficient energy dispatch for each generator after network reconfiguration. For the analysis and
case studies, simulations were conducted on the IEEE 9- and 30-node test systems. The results
demonstrate the effectiveness of the proposed solution, evaluated in terms of reduced load shedding
and economic losses.

Keywords: genetic algorithm; costs; load shedding; DER; disruptive event; topological reconfiguration;
optimization

1. Introduction

In the field of electrical power systems, topological reconfiguration plays a crucial role
in ensuring reliability and efficiency in the distribution of electrical energy. These systems
are constantly exposed to faults caused by disruptive events [1]. Authors discuss the vul-
nerability of power systems, exposing this issue and its effects. They are also consistently
exposed to natural phenomena, as shown in [2], cyber-attacks, or the mismanagement
of resources by the network operator, leading to load shedding and significant economic
losses. This article proposes the implementation of a genetic algorithm for topological re-
configuration, achieved through the strategic addition of transmission lines and distributed
generation as discussed in [3,4]. The authors in these references highlight the potential
benefits of distributed generation (DG) implementation.

Additionally, an economic dispatch is carried out using discontinuous nonlinear
programming (DNLP) to reduce energy generation costs, minimizing load shedding and
economic losses in accordance with the budget limitations of the network operator.

With the proposed methodology, which optimally allocates resources (lines and dis-
tributed generation), an efficient response to contingencies is achieved, thereby improving
the resilience and operability of the system. This methodology is divided into three phases:
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in the first phase, the network is selected, and a load flow analysis is performed to deter-
mine the system’s behavior under initial conditions. Damages are simulated by taking
lines and generators out of operation. The disruptive event causing the most damage to the
system is determined, and a network analysis is conducted specifying the load shedding,
obtaining load flow analyses before and after the fault. These results provide estimates of
the incurred damages.

In the second phase, the genetic algorithm (GA) is executed, and variables such as
population size, mutation rate, and the number of generators, among others, are initialized.
A population of potential solutions is generated, and through generations, crosses and
mutations are performed. The best individual is obtained based on each improved popula-
tion. The term ’best individual’ refers to the topological reconfiguration of the system that
restores electrical service to the maximum load in the system while respecting the network
operator’s budget and nominal system constraints.

In the third phase, the system selected from the GA results undergoes mathematical
analysis, optimizing the model presented in Section 4.3, a modification of what the authors
proposed in [5,6]. This optimization is achieved through nonlinear programming with
discontinuous derivatives using GAMS to determine an optimal energy dispatch.

The rest of this article is organized as follows: First, Section 2 provides a literature
review addressing optimization problems in electrical power systems in various contexts,
focusing on classifying optimization techniques and analyzing commonly used strategies.
Mathematical optimization is discussed, and methods are outlined. Section 3 describes
the methodology used in this study, while Section 4 presents the mathematical model
analyzed for energy dispatch optimization and the mathematical model representing
network reconfiguration. Section 5 details the analysis of the IEEE 9 and 30-node test
systems. Finally, in Section 6, conclusions and final results are presented.

In summary, this article integrates the following components to achieve the follow-
ing objectives:

• A reduction in costs due to unsupplied electrical energy through topological reconfiguration.
• A reduction in load shedding through the topological reconfiguration of the network,

improving service provision.
• The development and implementation of a genetic algorithm to fulfill the two afore-

mentioned objectives.
• Cost reduction through the implementation of nonlinear programming with discon-

tinuous derivatives to perform optimal energy dispatch in GAMS.

2. Literature Review

The reconfiguration of distribution networks (DSR) is a problem whose main focus is
to improve undesirable phenomena intrinsic to the network, with energy losses being the
most studied. However, the study of DSR has expanded to new relevant challenges such as
reliability, load balancing, voltage profile improvement, uncertainty, the implementation
of renewable energy generators, and load capacity, among others. The objective of this
research is to perform a topological reconfiguration to minimize load loss and economic
impacts resulting from disruptive events in distribution networks. This is based on the
research conducted in [5], which describes and classifies the most used techniques to solve
combinatorial problems related to the mentioned aspects. For a more in-depth exploration
of techniques and other research related to the topic, you can refer to [7], which provides a
study of various works of research and studies related to power system reconfiguration.

In [8], an innovative approach is proposed for the location and sizing of distributed
generation (DG) in active distribution networks (ADN). Unlike traditional methods, it
integrates DG location and sizing problems with network reconfiguration to minimize
total costs during the planning period. The model, solved with GUROBI, is validated on a
modified 33-bus IEEE system.

In [9], the authors present a systematic approach for obtaining an optimal long-term
reconfiguration program in energy distribution systems. An innovative and adaptive
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parallel genetic algorithm (GA) based on fuzzy logic is introduced, using parallel computing
to identify the optimal network configuration. This approach aims to address NP-hard
combinatorial optimization problems in distribution systems, highlighting the efficiency of
a parallel GA in solving the problem.

In [10], a multiperiod network reconfiguration is performed to meet the hourly hosting
capacity requirement under a minimum required number of switching operations. The
study was conducted on two IEEE 123-bus power systems and a 1001-node system.

In [11], traditional feeder reconfiguration methods in distribution networks are im-
proved by considering reverse power flows, controllable loads, and multiphase representa-
tions of the network. A compensation technique for switch exchange is proposed, offering
an exact solution without matrix refactoring. The approach accelerates the reconfiguration
method, being three times faster than conventional methods by using a positive sequence
network model.

In [12], the reconfiguration problem is addressed from three key perspectives: a com-
prehensive analysis of the search space and its importance for the efficient development
of metaheuristics, the relevance of exact optimization models in the current optimization
context, and a detailed review of the main operators for metaheuristics applied to this
problem. Optimal solutions from systems analyzed in the literature are presented, con-
cluding the need to establish a new database with larger and more complex systems as
a reference for future optimization proposals for the reconfiguration problem, with the
intention of providing guidance for the development of efficient algorithms focused on
network reconfiguration.

In [13], the issue of voltage fluctuations is addressed, and a topological reconfiguration
with a different approach is proposed, aiming to minimize network power loss and restrict
voltage volatility indices through the coordination of switched capacitor banks.

In [14], an algorithm for network reconfiguration is presented, which could assist in
the operation and expansion planning of three-phase distribution systems. Considering
power losses, similarly in [15], the goal is to reduce losses in stressed power systems where
common techniques are not convenient. This is conducted through an efficient two-stage
algorithm. In the first stage, an efficient reconfiguration plan is obtained based on the
minimization of reactive power losses. Using the heuristics from this solution, employees
in the second stage improved the harmony search algorithm for reconfiguration with load
capacity enhancement.

In [16], a combined approach of network reconfiguration and Volt-VAR control devices
is proposed for energy savings in networks with distributed generation. This is achieved
through the coordination of traditional VVC devices, distribution network reconfiguration
(DNR), and an intelligent photovoltaic inverter (PVSI) for energy savings.

In [17], the network reconfiguration approach is proposed, comprehensively consider-
ing N–1 security and network loss.

2.1. Mathematical Optimization Methods

This method refers to a systematic approach based on mathematical principles and
techniques for solving optimization problems, focusing on finding the optimal values of
variables within a set of constraints, with the objective of maximizing or minimizing an
objective function.

In [18], the authors propose a Mixed-Integer Programming model for Transmission
Network Expansion Planning with Battery Energy Storage Systems (BESSs).

In [19], the method of Mixed-Integer Second-Order Conic Programming (MISOCP) is
presented to solve the reconfiguration problem in electrical distribution systems.

In [20], the authors propose reducing losses in the electrical distribution network
through system reconfiguration (DSR). This process adjusts switches to minimize losses,
ensuring a radial configuration and meeting voltage limits and load demands. An effi-
cient mathematical model is presented that considers voltage profile, demonstrating its
effectiveness in test systems and real networks.
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In [21], the authors propose a two-stage robust optimization model to determine the
network configuration with minimal losses. In the first stage, a radiality constraint is
applied before knowing the actual loads and renewable generation, while in the second
stage, energy flows are calculated considering the worst operational conditions.

In [22], an optimization strategy based on the exhaustive enumeration of all feasible
configurations in an electrical distribution network is proposed. It focuses on annual recon-
figuration planning, taking into account the limited durability of switches. The optimization
seeks to determine the optimal switch configurations and their reconfiguration periods.

In [23], the novel technique of an efficient algorithm based on graph theory is used for
the topological reconfiguration of the network.

Although the mathematical methods presented offer optimal solutions for network
reconfiguration problems, they require a high level of computational effort and intensive
processing capabilities. In the field of mathematical optimization, two fundamental aspects
must be considered: the speed of convergence and the demand for computational process-
ing capacity. The fastest methods in processing to find a solution may not provide the best
possible solution, while slower methods that require more processing capacity give us the
global optimal solution, that is, the global minimum.

2.2. Heuristic Optimization Methods

A heuristic optimization method refers to a technique used to address complex opti-
mization problems and find approximate solutions. Unlike exact optimization methods
that search for the global optimal solution, heuristic approaches focus on finding acceptable
solutions in a reasonable time, without guaranteeing the best possible solution.

These methods rely on heuristic principles, rules of thumb, or strategies inspired by
experience or expert knowledge to guide the search toward promising solutions. They
are especially useful in problems where the search space is too large or complex to be
exhaustively explored in a reasonable time.

In [24], the authors present a heuristic approach for addressing the problem of power
systems with time-varying loads and distributed generation, without the need to perform
exhaustive power flow calculations.

The method proposed by the authors of [25] introduces an innovative approach to
power system analysis by replacing traditional power flow calculations with the use of
current and resistance vectors. This approach represents a significant advance in the field
as it eliminates the need for complex power calculations, which can simplify and streamline
system analysis.

By using current and resistance vectors instead of power, the proposed method allows
for obtaining relevant results without the need to calculate voltage and power values at
each point in the system. This can be especially beneficial in large, complex power systems,
where traditional power flow calculations can be computationally intensive.

2.3. Metaheuristic Optimization Methods

These methods are inspired by natural processes or abstract concepts to guide the
search for optimal or near-optimal solutions. They use techniques such as global exploration
of the search space, the use of adaptive evaluation functions, the use of random moves, and
iterating over multiple solutions to escape local optima and find potentially better solutions.

Some examples of metaheuristic optimization methods are simulated annealing (SA),
tabu search, genetic algorithms, particle swarm optimization, ant colony, and harmony
search algorithms. These methods have been widely used in various fields, such as engi-
neering, computing, economics, logistics and artificial intelligence, among others. They
offer a powerful and versatile alternative for addressing complex optimization problems
where traditional methods may be limited.

In [26], the authors present the development of a chaotic stochastic fractal search
algorithm (CSFSA) as an improvement of the SFSA algorithm (stochastic fractal search
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algorithm) to address the problem of loss minimization and to improve voltage profiles in
electrical distribution systems.

The CSFSA algorithm is based on the use of sequences of chaotic and fractal numbers
to explore the search space and find optimal or close to optimal solutions. This technique
combines features of stochastic search and fractal search, taking advantage of the global
and local exploration capabilities of both approaches.

In [27], the authors compare the results obtained using a genetic algorithm (GA) and a
particle swarm algorithm (PSO) to address network reconfiguration problems in power
distribution systems. The main objective is to improve system reliability and reduce energy
losses through network topology optimization.

The results that we presented when it was implemented in the 33-bus IEEE electrical
network shown in Figure 1 were an improvement in the voltage and current profiles. The
comparison of these two methods shows that the PSO approach is more efficient than the
GA, since this found the best configuration like the GA but in much less time.

2.4. Genetic Algorithms Used to Solve Optimization Problems

The goal is to minimize system power loss. A load flow method is employed, and
enhancements are made to the genetic algorithm to prevent premature convergence. This
approach is tested on distribution networks, and the study results are presented. In [28], the
authors propose an approach for assessing the resilience of electrical distribution networks
in the face of natural disasters, aiming to restore service in affected areas efficiently and at
minimal cost.

The use of genetic algorithms with an elitism mechanism is suggested to optimize the
total cost function, considering the construction of interconnection lines, reliability, and
resilience. The proposed method is applied to a test network feeder, demonstrating its
superiority compared to other evolutionary methods used in the study, such as particle
swarm optimization and the mixed leap-frog algorithm.

In [29], the genetic algorithm stands out in the optimized design of computer networks
in electrical systems. The article analyzes the specific application of the genetic algorithm in
this context, describes its fundamental characteristics, and presents an optimization model
for the interaction of computers in energy systems.

In [30], a comprehensive review of the genetic algorithm and its application in electrical
power systems engineering is presented.

In [31], dynamic programming and genetic algorithms are used to enhance resilience
in a system that encompasses both gas and electrical energy.

In [32], reactive power optimization is performed for an intelligent system using a
genetic algorithm, with the component of reconfiguration being carried out in real time.

In [33], the challenges associated with significant uncertainties in wind power genera-
tion are addressed, proposing a Reactive Power Dispatch (ORPD) strategy using a heuristic
search algorithm that combines the elitist nondominated sorting genetic algorithm with
inheritance (i-NSGA-II) and a roulette wheel selection.

Finally, in [34], the contributions of genetic algorithms are analyzed, and a comparison
with the particle swarm optimization (PSO) method is provided.

3. Methodology

The proposed methodology in this research comprises three main parts, which are
outlined below.

The first part involves selecting a network for analysis and conducting a load flow
analysis to determine the network’s behavior under normal operating conditions, estab-
lishing a comparative reference. Subsequently, simulated damages to the system, such as
taking generators and lines out of service, are performed. The disruptive event causing the
most damage to the system is identified, and a network analysis is conducted to determine
load shedding. Finally, load flow analysis is performed for the network before and after
the damage, and these results are used for a comparison and analysis of the effects of the
disruptive event on the network.
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In the second part, the genetic algorithm (GA) is executed. Algorithm variables,
such as population size, mutation rate, and the number of generations, among others,
are initialized. With these parameters, the GA process begins by generating an initial
population of potential solutions. Subsequently, individuals with the best genetics in the
population are selected. During the reproduction phase, crossover is performed with
the best individuals, generating an improved new population. The mutation process
iterates over individuals in the improved population, making changes based on the defined
mutation rate to add dynamism to the solutions and avoid local maxima. Depending on
the number of generations and each improved population, a good individual is obtained,
representing a new topological reconfiguration of the network with strategically placed
lines and distributed generation to minimize unsupplied electrical energy, leading to a
decrease in costs associated with unsupplied electrical energy. However, it is important to
note that the primary goal of the GA is to minimize load shedding, which is why the cost
variable is not part of the initial GA variables.

In the third phase, the result generated by the genetic algorithm (GA) selects the power
system for mathematical analysis. The intention is to optimize the model presented in
Section 4.3 using discontinuous derivative nonlinear programming through GAMS with
the aim of determining an optimal energy dispatch for each generator in the system. The
GA and GAMS are not integrated because the reconfiguration generated by the GA focuses
strictly on reducing load shedding at a moment of maximum load, representing the peak in
the load curve. However, power fluctuations are a widely studied phenomenon; therefore,
this energy dispatch analysis is implemented to efficiently supply loads throughout the
day, reducing costs associated with energy generation and power losses in the lines.

Figure 1. Flowchart of genetic algorithm.

The described methodology is depicted in the flow chart shown in Figure 1, and the pseu-
docode used in the software execution is described in Table 1. Line 1 defines the class responsible
for defining the algorithm, and the process begins with obtaining the initial population in line 3.
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From line 5 to line 12, iterations are performed based on the defined number of generations,
calling functions to execute each step of the genetic algorithm from line 13 to line 24. Finally, the
program is executed with the initial GA parameters in lines 25 to 27.

Table 1. Pseudocode GA.

Line Pseudocode

1 class GeneticAlgorithm:
2 function start():
3 population = createPopulation()
4 print(population)
5 for each generation in range(n_generations):
6 if verbose:
7 print(’––––––’)
8 print(’GENERATION: ’, generation)
9 print(’POPULATION:’, population)

10 selected = select(population)
11 population = reproduce(population, selected)
12 population = mutate(population)
13 function createPopulation():
14 # Logic to create the initial population
15 ...
16 function select(population):
17 # Logic to perform individual selection
18 ...
19 function reproduce(population, selected):
20 # Logic for population reproduction
21 ...
22 function mutate(population):
23 # Logic to apply mutation to the population
24 ...
25 function main():
26 model = GeneticAlgorithm(budget_Red_attendant=400

mutation_rate=0.3, n_individuals=30, n_selection=5
n_generations=50, verbose=True)

27 model.start()

4. Mathematical Models for Network Analysis

The following mathematical models are proposed for the study and understanding of
the reconfiguration of power systems, including the objective functions and constraints of
the power systems.

Equations (2) and (3) express the nodal active and reactive power balances (Kirchhoff’s
current law, KCL). Equation (4) describes the net summation of voltage drops across all
branches in a planar loop, ensuring it equals zero (Kirchhoff’s voltage law, KVL). In this
equation, bij is constrained to be zero.

Equation (6) delineates the relationship between the complex power of each branch
and its active and reactive components. Additionally, (6) expresses complex power in terms
of nodal voltages and branch currents. Constraints (9) and (8) impose limits on the voltage
and current, respectively. It is noteworthy that (9) ensures an acceptable voltage level for
network buses to compensate for voltage drop

Min PLoss = ∑
ij∈Ωl

PL
ij (1)

subject to:

PS
i +

n

∑
k=1

Pki =
n

∑
j=1

Pij +
n

∑
j=1

PL
ij + PD

i (2)
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QS
i +

n

∑
k=1

Qki =
n

∑
j=1

Qij +
n

∑
j=1

QL
ij + QD

i (3)

∣∣Vj
∣∣2 − |Vi|2 = 2

(
RijPij + XijQij

)
−
(

R2
ij + X2

ij

)∣∣Iij
∣∣2 + bij (4)∣∣Sij

∣∣2 = P2
ij + Q2

ij (5)∣∣Sij
∣∣ = ∣∣Vj

∣∣∣∣Iij
∣∣ (6)

Vmin ≤ |Vi| ≤ Vmax (7)

0 ≤
∣∣Iij
∣∣ ≤ Imax

ij yij (8)

where:

• Ωl : set of branches.
• n: number of buses (nodes).
• PL

ij : active power losses on branch ij.
• QL

ij: reactive power losses on branch ij.
• Sij: complex power on branch ij.
• Pij: active power on branch ij.
• Qij: reactive power on branch ij.
• |Vij|: magnitude of voltage at bus i.
• Vmin: minimum voltage limit.
• Vmax: maximum voltage limit.
• Pi

S: active power from the substation at bus i.
• Qi

S: reactive power from the substation at bus i.
• Pd

I : active power demand at bus i.
• QD

i : reactive power demand at bus i.
• |Iij|: magnitude of current flow on branch ij.
• Imax

ij : maximum current on branch ij.
• Rij: resistance of branch ij.
• Xij: reactance of branch ij.
• bij: variable to represent Kirchhoff Voltage Law (KVL) in the loop formed by branch ij.

4.1. Multi-Objective Mathematical Formulation for the Optimization of Operation Costs with
Distributed Generation

A well-known phenomenon that increases network operation costs is power losses.
Therefore, an objective function is formulated to minimize power losses to the maximum
extent possible. This is achieved by summing the reductions in power loss resulting from
both reconfiguration and DG connection. The reconfiguration is subject to voltage, current,
and power flow constraints.

f1 = max(∆PRLoss + ∆PDGLoss) (9)

where:
∆PRLoss is total real power loss reduction due to reconfiguration.
∆PDGLoss is total real power loss reduction due to the connection of DG.

4.2. Power Loss through Network Reconfiguration

The purpose of employing reconfiguration in a distribution network is to identify an
optimal configuration that minimizes power loss without violating operational constraints.
These constraints encompass voltage limits and the current capacity of the feeder supplying
each bus. The power loss in a line section connecting buses between i and i + 1, following
the network reconfiguration, is calculated as follows:
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P′
Loss(i, i + 1) = Ri

(
P

′2
i + Q

′2
i

|V ′2
i |

)
(10)

Thus, the total power loss is represented as:

P
′
T,loss =

n

∑
j=1

P′
Loss(j, j + 1)...j = n (11)

∆PRloss =
n

∑
i=1

PLoss(i, i + 1)−
n

∑
i=1

P′
Loss(i, i + 1) (12)

where i represents the i-th node of the system and n the total number of nodes in the system.

Power Loss Using DG

The integration of distributed generation units at optimal locations in a distribution
system offers various benefits, such as the mitigation of line losses, the improvement of
voltage profiles, a reduction in peak demand, and the alleviation of overloads in distribution
lines. The calculation of the energy loss resulting from the installation of a distributed
generation unit at an arbitrary location in the network is performed as follows:

PLossDG =
Ri

V2
k

(
P2

i + Q2
i

)
+

Ri

V2
i

(
P2

G − 2PiPG

)
Net power loss reduction, ∆PDGLoss , is the difference in power loss before connecting a

DG unit.

∆PDGLoss =
Ri

V2
i

(
P2

G − 2PiPG

)(G
L

)
(13)

Power flow constraints.

Pgi − PLi =
NB

∑
j=1

|Vi|
∣∣Vj
∣∣[Gij cos

(
δi − δj

)
+ Bij sin

(
δi − δj

)]
(14)

Qgi − QLi =
NB

∑
j=1

|Vi|
∣∣Vj
∣∣[Gij sin

(
δi − δj

)
− Bij cos

(
δi − δj

)]
(15)

DG penetration level limitation.

NDG

∑
i=1

PDGi ≤ η

(
NB

∑
i=1

PLi

)
(16)

where η represents the penetration level of distributed generation, ranging between 1 and 0.
Adhering to this constraint, the cumulative installed capacity of distributed generation must
not exceed the aggregate active load demand.

Additional constraints.

Pmin
DG ≤ PDG ≤ Pmax

DG (17)

Vmin
i ≤ Vi ≤ Vmax

i (18)

∣∣Sij
∣∣ ≤ Smax

ij (19)
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4.3. Mathematical Model of Dispatch Costs

In the present study, the General Algebraic Modeling System (GAMS) language
will be used for the analysis and optimization of mathematical models. The nonlinear
programming with discontinuous derivatives (DNLP) optimization technique will be
applied in GAMS, which is suitable for addressing economic energy dispatch problems.

The main objective is to achieve the optimal dispatch of electrical energy that mini-
mizes power generation costs to cover demand, taking into account multiple factors such as
the operating costs of power-generating plants and power flow restrictions. Additionally,
dynamic variables will be considered, such as energy demand in different time periods,
implying the analysis of load curves.

The proposed approach is based on mathematical models previously introduced by
the authors in [35,36]. These models enable the formulation of constraints and objectives
for the electrical system in a precise and representative manner.

The DNLP technique in GAMS is especially relevant for this type of problem, as it
allows for handling nonlinear functions and discontinuities in derivatives, which are com-
mon characteristics in modeling the economic dispatch of electrical energy. This capability
enables the derivation of optimal solutions, considering all the specific restrictions and
conditions of the system, contributing to efficient and profitable operation.

• Objective function

The objective function is a quadratic function that defines the cost of energy gen-
eration

Fg =
N

∑
i=1

ai × P2
Gi + bi × PGi + ci (20)

where PGi is the active power of the i-th generator, N is the total number of generators,
and ai, bi, ci are the cost coefficients of the i-th generator.

The objective is to minimize the equation respecting the restrictions described below.

• Power balance restriction

The power balance entails maintaining equality between the power generated and the
power consumed within an electrical system, accounting for losses in the transmission
lines. It is a critical aspect in the planning and operation of electrical systems, aimed
at optimizing generation while minimizing losses.

PGi − PDi − PPL = 0 (21)

where PGi is the power generated at the i-th PV node, PDi is the power demand at the
i-th load node PQ, and PPL is the power loss in the transmission lines.
The PPL term in the equation is defined as shown in the following equation:

Vi × ∑
j∈Ni

Vj ×
(
Gij × cos θij − Bij × sin θij

)
i = 1, . . . , NB (22)

where NB is the total number of nodes.

In the optimization model, these equations act as restrictions for solving the problem.
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• Restriction of minimum and maximum powers

The inequality constraints are determined via the maximum and minimum limits of
active power generation, as depicted in the equation

PGimin ≤ PGi ≤ PGimax i = 1, . . . , NG (23)

where NG is the total number of generators.

In summary, optimal economic dispatch in a power system is an optimization problem
aiming to find the optimal combination of power generation to satisfy electrical demand at
the lowest possible cost. Addressing this challenge involves using mathematical models
incorporating an objective function that seeks to minimize generation costs and constraints,
ensuring power balance and adhering to generation limits for each generator.

Furthermore, the analysis of economic dispatch builds upon the approaches outlined
in [36], where the equations representing power balance and constraints on minimum and
maximum powers are defined.

In conclusion, optimal economic dispatch is a fundamental task in the planning and
efficient operation of power systems. Resolving this task requires employing mathematical
models and optimization algorithms to minimize generation costs, maintain power balance,
and adhere to the generation limits of the generators.

Load curve
The load curve is a graphical representation of the variation in electrical energy

demand over time. It is a fundamental tool in the planning and management of electrical
systems, enabling the visualization and understanding of energy consumption patterns.

The load curve illustrates how electricity demand fluctuates throughout the day, week,
month, or even the year. Generally, it exhibits a characteristic shape with periods of high
demand during peak hours and periods of lower demand during off-peak hours.

This information is crucial for operators of the electrical system, enabling them to
make informed decisions regarding energy generation and distribution. With a clear
understanding of the load curve, generation resources can be adjusted to efficiently meet
demand, minimizing costs and optimizing system capacity.

Moreover, the load curve serves as a valuable tool for identifying consumption pat-
terns in different sectors, such as residential, commercial, and industrial. This is useful
for designing energy efficiency programs, establishing appropriate electricity rates, and
planning for the future growth of electrical infrastructure.

As mentioned in [37], it is essential to consider the load curve due to the growth in
the final uses of electricity. Managing variations in electrical energy demand over time has
become crucial, especially in the residential sector. Hence, optimal dispatch analysis will
be conducted, taking into account the load curve, to determine the best management of the
system’s generation capacity and the installed distributed generation.

5. Application of Algorithm for Network Analysis

An analysis will be conducted for each test case, following the subsequent structure:
initially, the analysis case will be presented, detailing the network parameters. Following
that, the disruptive event to the network and its consequences in terms of load shedding
will be outlined. A solution will then be proposed through the application of a genetic
algorithm (GA), and an optimal dispatch analysis will be performed to determine the
optimal power dispatch.

Table 2 displays the initial cost parameters used to constrain the solutions provided by
the genetic algorithm based on costs. The generator cost index assigns a cost to distributed
generation based on the active power supplied to the system, while the line cost index
assigns a cost to the distribution lines based on their total length. The last parameter shown
in the table is the budget designated by each network operator to apply the contingency.
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Table 2. Initial parameters system.

Parameters IEEE 9 Nodes IEEE 30 Nodes

Generator cost index 0.2 0.2
Line cost index 10 10

Net operator budget 20 30
Mutation rate 0.4 0.4

Population size 10 10
Selection size 5 5
Generations 15 20

Similarly, the table presents the parameters designated for the execution of the genetic
algorithm for each case. This includes a percentage of probability for mutation in each
generation, the size of the initial population, and the population size when performing the
crossover and mutation. The size of the selection is also defined, referring to the number of
individuals from each generation selected as suitable solutions to carry out the crossover
of characteristics.

Finally, the number of generations is defined, representing the iterations for which
the algorithm is repeated. It is important to highlight that the appropriate choice of
these parameters can significantly impact the quality of the solutions obtained and the
computational efficiency of the algorithm. Therefore, it is essential to conduct a detailed
analysis of the power system, considering aspects such as network topology, component
limitations, and network size, to determine the optimal values of the genetic algorithm’s
parameters and the network operator’s cost and budget indices.

5.1. Nine-Node IEEE System Analysis

Next, the genetic algorithm will be applied with the objective of optimizing the
topological reconfiguration in the IEEE 9 system shown in Figure 2a in response to the
damage illustrated in Figure 2b. The system is documented by the authors in [38], and the
network parameters are detailed in Tables 3–5.

(a) IEEE 9 nodes case (b) Network damage

Figure 2. IEEE 9 nodes case study.
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Table 3. Line data network, 9 nodes.

Index Name From
Bus

To
Bus

Length
km

R
ohm

per km

X
ohm

per km

C
nf

per km

G
us

per km
Max
i_ka

Df Parallel Type In
Service

Max
Loading
Percen

0 1 to 4 0 3 1.0 0.0 68.558 0.0 0.0 0.418 1.0 1 Ol True 100.0

1 4 to 5 3 4 1.0 20.234 109.503 352.117 0.0 0.418 1.0 1 Ol True 100.0

2 5 to 6 4 5 1.0 46.419 202.342 797.836 0.0 0.251 1.0 1 Ol True 100.0

3 3 to 6 2 5 1.0 0.0 69.748 0.0 0.0 0.502 1.0 1 Ol True 100.0

4 6 to 7 5 6 1.0 14.163 119.977 465.775 0.0 0.251 1.0 1 Ol True 100.0

5 7 to 8 6 7 1.0 10.117 85.698 332.060 0.0 0.418 1.0 1 Ol True 100.0

6 8 to 2 7 1 1.0 0.0 74.391 0.0 0.0 0.418 1.0 1 Ol True 100.0

7 8 to 9 7 8 1.0 38.088 191.63 681.949 0.0 0.418 1.0 1 Ol True 100.0

8 9 to 4 8 3 1.0 11.902 101.171 392.232 0.0 0.418 1.0 1 Ol True 100.0

Table 3 displays the line parameters. Each line is characterized by its index, name,
origin and destination bus, length in kilometers, resistance and reactance per kilometer,
capacitance and conductance per kilometer, maximum allowable current in kiloamperes,
drop factor, and type of element. These parameters are used to analyze and model the
behavior of the network in question, enabling the evaluation of its performance and the
determination of optimal solutions for the problem under study.

Table 4 provides information about the electrical system buses, specifying their nomi-
nal voltage level, bus type, associated zone, service status, and maximum and minimum
voltage limits. These data are essential for the analysis and design of the electrical system.
Additionally, they indicate the connection node for each system load.

Table 4. Data of 9-node network bus.

Index Name vn_kv Type Zone In_SERVICE max_vm_pu min_vm_pu LOAD
[Mva]

0 Bus1 345.0 b 1.0 true 1.1 0.9 -

1 Bus2 345.0 b 1.0 true 1.1 0.9 -

2 Bus3 345.0 b 1.0 true 1.1 0.9 -

3 Bus4 345.0 b 1.0 true 1.1 0.9 -

4 Bus5 345.0 b 1.0 true 1.1 0.9 90 + j30

5 Bus6 345.0 b 1.0 true 1.1 0.9 -

6 Bus7 345.0 b 1.0 true 1.1 0.9 100 + j35

7 Bus8 345.0 b 1.0 true 1.1 0.9 -

8 Bus9 345.0 b 1.0 true 1.1 0.9 125 + j50

Table 5 provides information on the system generators, specifying the index that
identifies each generator, the name of the bus to which it is connected, the active power
generated in megawatts (MW), and the voltage in per unit (pu). The limits for both
minimum and maximum reactive power are also specified.

Table 5. Generator data network, 9 nodes.

Index Name Bus p_mw vm_pu min_q_mvar max_q_mvar Scaling Slack in_service slack_weight Type Controllable max_p_mw min_p_mw

0 GBus2 1 163.0 1.0 −300.0 300.0 1.0 false true 0.0 true 300.0 10.0

1 GBus3 2 85.0 1.0 −300.0 300.0 1.0 false true 0.0 true 270.0 10.0

In addition to the generated power, other relevant parameters are indicated, such
as the control capacity of the generator and its operating status. These generators are
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considered controllable, meaning that the power they generate can be adjusted according
to the needs of the system.

5.1.1. GA Damage Analysis and Solution

The damage applied to the network represented by the red cross consists of the
generator connected to bus 2 going out of service, and the system disconnecting from the
external network connected to bus 1. The line connecting nodes 5 and 6 will also be out
of service, and finally, the line connecting nodes 8 and 9 will be out of service. As can
be seen, this damage creates two islands in the system, leaving the loads of buses 5 and
9 completely unattended, as shown in Figure 3b. This represents 215 MW, which is 68% of
the total load of the system. It should be noted that once the power flow in the affected
network is running, no overload was observed either in the lines or in the generators and
other network elements.

Executing the GA developed for this disruptive event resulted in obtaining an optimal
topological reconfiguration for the system, as shown in Figure 3a. Additionally, Figure 3b
shows three scenarios of power allocation to loads representing before the event, after the
event, and when applying the solution to which the genetic algorithm converged. The first
scenario (blue bars) shows the normal operation of the system, supplying the total power
to the loads of each node whose parameters are shown in Table 4. The second scenario
(orange bars) describes the load shedding in each node as a consequence of the disruptive
event, as evidenced in nodes 5 and 9 where the orange bar is zero. Scenario three (red bars)
represents the situation after the GA solution was applied.

(a) reconfiguration proposed by GA (b) power delivered to loads
Figure 3. GA convergence solution.

As a result of the GA when applying distributed generation to the system, the added
generator has the characteristics shown in Table 6a. It should be noted that the characteris-
tics of the added generator were entirely determined via the genetic algorithm. Similarly,
Table 6b presents the parameters of the transmission line.

Table 6. Proposed elements for network reconfiguration.

(a) Proposed generator for network reconfiguration

name bus p_mw vm_pu max_p_mw min_p_mw

G_FATHER_1_0 3 81.0 0.88 121.5 0.0

(b) Proposed line for network reconfiguration

name from_bus to_bus length_km r_ohm_per_km x_ohm_per_km max_i_ka

L_FATHER_1_0 5 4 1.05874 0.157100 0.40 0.251022

The location of the distributed generator at node 4 appears to be a very good solution
because if it were installed at bus one, the impact on the load level would be the same.
However, power losses in the system lines would be greater due to the increased distance
from the generator to the consumption points. Likewise, installing a generator on bus
5 would imply a decrease in the voltage of bus 9 and an unnecessary overload of bus 5.
The best benefits are obtained by installing distributed generation on bus 4 or bus 9 since it
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supplies the loads with the least loss in the lines. In accordance with this, the GA converged
on one of these solutions, including the restoration of the line that connects nodes 5 and 6,
supplying all the loads.

5.1.2. IEEE 9 - Cost Ratio and Reduction in Economic Losses

The analysis was conducted under conditions of maximum and constant load, specif-
ically focusing on the hours of peak demand for electrical energy. Generally, the study
concentrated on the period between 5:00 p.m. and 12:00 a.m., when the demand for electri-
cal energy reaches its highest point. Therefore, the costs of electrical energy consumption
were calculated for these 7 h.

To perform optimal dispatch, a typical load curve for power systems is considered. This
load curve is depicted in Figure 4 (green curve) and is documented by the authors in [39].

5.1.3. GAMS Report for Optimal Dispatch

Once the code is executed in GAMS, the generation parameters for each machine
are obtained based on the load curve, with the aim of achieving optimal dispatch that
minimizes generation costs. The resulting information is depicted in Figure 4.

Table 7, which shows the data graphed in Figure 4, represents the optimal generation
dispatch for the nine-node IEEE system throughout 24 h a day, with the objective of
minimizing power generation costs.

This table details the amount of generation (in power units) for each generator in the
system in each time interval. The generators are represented as G1 and G2. Additionally,
the load corresponding to each time interval is included.

It is important to highlight that this optimal generation dispatch is calculated to
achieve a minimum cost, considering the characteristics and restrictions of the system.

It is recommended to perform a detailed analysis of the table to understand how
energy generation varies depending on the load demanded in each time interval.

In summary, it is evident that both the results of the genetic algorithm (GA) and the
optimal dispatch analysis demonstrated excellent performance in the IEEE nine-node test
system. On the one hand, a 100% reduction in load shedding was achieved, meeting the
network operator’s budgetary constraints. Additionally, a detailed report of the optimal
dispatch is provided for each time interval using the load curve.

Figure 4. Optimal generation for the IEEE 9-node load curve.
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Table 7. Tabulation.

t [h] G1 G2 Load

1 25.451 77.936 102.375

2 25.599 69.813 94.500

3 25.881 53.578 78.750

4 25.881 53.578 78.750

5 25.451 77.936 102.375

6 24.645 118.595 141.750

7 38.901 121.000 157.500

8 24.981 102.322 126.000

9 24.981 102.322 126.000

10 25.451 77.936 102.375

11 24.981 102.322 126.000

12 24.981 102.322 126.000

13 25.299 86.061 110.250

14 24.981 102.322 126.000

15 24.981 102.322 126.000

16 24.981 102.322 126.000

17 38.901 121.000 157.500

18 190.254 121.000 299.250

19 207.101 121.000 315.000

20 134.701 121.000 247.275

21 134.701 121.000 247.275

22 122.926 121.000 236.250

23 38.901 121.000 157.500

24 25.299 86.061 110.250

5.2. Thirty-Node IEEE Study System Analysis

Next, the GA will be applied to the 30-node IEEE system, with the objective of opti-
mizing the topological reconfiguration of the network in response to the damage caused
to the system. Figure 5a displays the test system, the applied damage, and the solution of
including distributed energy resources (DER) and lines to the system.

The damage represented by the red crosses consists of the generator connected to
bus 2 going out of service, the disconnection of the synchronous capacitor on bus 5, and
the disconnection of the system from the external network on bus 1, which is the main
power source. Additionally, three transmission lines are interrupted: the one connecting
nodes 24 and 25, the one connecting nodes 8 and 28, and the one connecting nodes 6 and 28.

These failures result in the formation of two islands in the system, meaning that there
are two groups of buses electrically isolated from the rest of the network. As a consequence
of these failures, the load served on the system suffers severe load shedding. As seen in
Figure 5b, there is considerable load shedding, representing 84% of the total system load
not being served after the disruptive event.

The solution represented by the lines and generators in green, obtained by executing
the genetic algorithm with the parameters specified in Table 2 for the IEEE 30-node system,
allows for a topological reconfiguration of the network.
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(a) (b)
Figure 5. GA convergence solution. (a) Thirty-node IEEE study system analysis. (b) Power before the
event and after implementing the solution.

The proposed solution involves the incorporation of distributed generation at nodes
5 and 23, as well as the addition of a transmission line connecting nodes 21 and 22. The
technical parameters related to distributed generation and the added line are presented in
Tables 8a and 8b, respectively.

One notable result of this solution is the significant reduction in load shedding. Be-
fore the implementation of the solution proposed by the genetic algorithm, the system
had an 84% unattended load, indicating a deficiency in demand satisfaction. However,
thanks to the proposed reconfiguration, this percentage has been reduced to only 6% of
unattended load.

Table 8b provides a graphical representation summarizing the before and after loading
of the system on each node. It can be clearly observed how the implementation of the pro-
posed solution significantly improves demand satisfaction, reducing unattended loading
areas and improving the overall efficiency of the system.

Table 8. Proposed network elements for network reconfiguration.

(a) Distributed generation

name bus p_mw vm_pu max_p_mw min_p_mw

G_FATHER_1_2 22 40.5 0.848 60.65 0.0
G_FATHER_2_1 4 13.50 0.848 20.250 0.0

(b) Lines added to the system

name from_bus to_bus length_km r_ohm_per_km x_ohm_per_km max_i_ka

L_FATHER_2_0 20 21 0.504207 0.157100 0.400000 1

5.2.1. IEEE 30 - Cost Ratio and Reduction in Economic Losses

The analysis was conducted under conditions of maximum and constant load, specif-
ically focusing on the hours of peak demand for electrical energy. Generally, the study
concentrated on the period between 5:00 p.m. and 12:00 a.m., when the demand for electri-
cal energy reaches its highest point. Therefore, the costs of electrical energy consumption
were calculated for these 7 h.

To carry out the optimal dispatch, the load curves of the 30-node system were taken
from the study carried out in [40]. The residential, industrial, and commercial load curves
are shown in Figures 6a, 6b, and 6c, respectively. Furthermore, the total load curve obtained
by adding the above three curves is shown in Figure 6d.
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(a) Residential load curve (b) Industrial load curve

(c) Commercial load curve (d) Total load curve
Figure 6. Load curves.

5.2.2. GAMS Report for 30-Node System

Once the code is executed in GAMS, the generation parameters for each machine
are obtained based on the load curve, with the aim of achieving optimal dispatch that
minimizes generation costs. The generation curves for each instant of time and for each
generator, including distributed generation, are shown in Figure 7.

This optimal generation dispatch for the 30-node IEEE system throughout 24 h a day
is carried out with the objective of minimizing power generation costs.

This analysis shows the amount of generation (in power units) for each generator in
the system at each time interval. The generators are represented as G1, G2, G3, G4, and G5.
In addition, the load corresponding to each time interval is included.

It is important to highlight that this optimal generation dispatch is calculated by opti-
mizing (minimizing) the mathematical model shown in Section 4.3 to achieve a minimum
cost, taking into account the characteristics and restrictions of the system.

In the case study of the IEEE 30-node system, it is observed that, although load shed-
ding did not reach zero, there was a substantial reduction, thereby enhancing the system’s
resilience. Furthermore, the optimal dispatch analysis revealed specific characteristics,
such as consistent energy generation from generator 5. It is also noteworthy that generator
4 remained inactive during the initial 7 h of the day, contributing to this optimal energy
distribution pattern.
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Figure 7. Optimal generation for the IEEE 30-node load curve.

6. Analysis of Results

The developed genetic algorithm proved to be efficient and capable of finding an
optimal topological reconfiguration to reduce load shedding, depending on the network
operator’s budget to handle such disruptive events. It is noteworthy that, for the first
case study, the reconfiguration proposed by the developed software successfully restored
electrical service to all users. Table 9 shows the total cost of the proposed solution based on
the indices established in Table 2, along with the GA execution time. The GA demonstrates
high efficiency, as good results were obtained in terms of execution time for the IEEE
systems with 9 and 30 nodes, compared to the studies conducted in [41,42]. The developed
GA reduces the execution times for power systems of 20 to 30 nodes by approximately
50%. It is important to highlight that, for the 30-node system, the software provided a
solution that significantly reduced load shedding using only a small fraction of the defined
total budget. The software was executed on a computer with the characteristics shown in
Table 10.

The proper implementation of distributed generation is emphasized as an effective
strategy for reducing energy losses in electrical systems. Applying distributed generation
results in a drastic decrease in line currents, meaning lower power losses associated with
the resistance of transmission lines.

On the other hand, the mathematical analysis carried out in GAMS with DNLP
proposes an energy dispatch where generation costs will be minimized, taking into account
the load curve, losses in the lines, and parameters of each generator.

All the mentioned aspects substantially benefit the network operator and the end
user since the power system analysis presented in this article is comprehensive, covering
costs associated with load shedding, costs associated with energy generation, and costs
associated with power losses in the lines, implementing a topological reconfiguration of the
network that involves minimal costs, in addition to improving the reliability and resilience
of the network.

Table 9. Algorithm execution parameters.

Software Execution Parameters

Network Reconfiguration Cost Execution Time [m]

IEEE 9 nodes 18.458 3

IEEE 30 nodes 14.492 10
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Table 10. Computer specifications.

Computer Specifications

Model RAM Memory System Type Processor

DELTA 10 PRO 4 GB 64 bits AMD athlon gold 2.4 GHz

7. Conclusions

In summary, the developed genetic algorithm has proven to be a highly efficient
and cost-effective tool for mitigating load shedding in electrical systems. By optimizing
topological reconfigurations within budget constraints, it successfully restored electrical
services, notably achieving a significant reduction in load shedding in the 30-node IEEE
system with minimal budget utilization. The integration of distributed generation emerged
as an effective strategy, substantially decreasing line currents and lowering power losses in
transmission lines.

The mathematical analysis using GAMS with DNLP showcased a comprehensive
approach to energy dispatch, minimizing generation costs while considering load curves,
line losses, and generator parameters. This holistic analysis addresses costs associated with
load shedding, energy generation, and power losses, providing substantial benefits to both
network operators and end users.

Overall, the combined application of the genetic algorithm, distributed generation,
and mathematical analysis contributes to cost reduction, improved reliability, and enhanced
resilience of power networks. These findings underscore the practical significance of the
proposed methodologies in optimizing electrical systems, offering valuable insights for
efficient and sustainable power management.

Separating the two methods does not imply a decrease in the solution’s quality since
the reconfiguration’s objective is to minimize load shedding, making the costs of energy
generation irrelevant. On the other hand, we validated the GA based on the fact that in the
IEEE systems with 9 and 30 nodes, the reconfiguration exhibited a substantial reduction in
load shedding, as detailed in the results.
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