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Abstract: Machine Learning (ML)-based models are steadily gaining popularity. Their performance
is determined from the amount and the quality of data used at their inputs, as well as from the
competence and proper tuning of the ML algorithm used. However, collecting high-quality real data
is time-consuming and expensive. Synthetic Data Generation (SDG) is therefore employed in order
to augment the limited real data. Moreover, Ensemble Learning (EL) provides the framework to
optimally combine a set of standalone ML algorithms (base learners), capitalizing on their individual
strengths. Base learner diversity is essential to build a strong ensemble. The proposed method of
Targeted Injection of Synthetic Data (TIoSD) combines the EL and SDG concepts in order to further
diversify the base learners’ predictions, thus giving rise to an even stronger ensemble model. We have
applied TIoSD in two different Path Loss (PL) datasets, using two well-established SDG methods
(namely SMOGN and CTGAN). While the conventional ensemble model reached a Minimum Abso-
lute Error (MAE) value of 3.25 dB, the TIoSD-triggered ensemble provided a MAE value of 3.16 dB.
It is therefore concluded that targeted synthetic data injection, due to its diversity-triggering charac-
teristics, enhances the ensemble’s performance. Moreover, the ratio between synthetic and real data
has been investigated. The results showed that a proportion of 0.1 is optimal.

Keywords: ensemble learning; synthetic data; path loss prediction; base learners; diversity

1. Introduction

While ML is steadily gaining attention in an increasing variety of domains, data
shortage poses a significant challenge [1]. The resource-intensive nature of measurement
campaigns in a variety of scientific fields, such as antenna design [2], magnetic materials [3]
and path loss prediction [4] constitutes a considerable difficulty regarding the implementa-
tion of ML applications. Two important ML concepts that can be used to tackle problems
regarding the quality and the amount of real data, are SDG and EL.

SDG [5,6] can be used in order to combat data deficiency, by creating synthetic data and
augment a real dataset’s size and variety. Both images and tabular data can be synthetically
generated. With reference to the production of synthetic tabular data, many techniques have
been deployed, including the Synthetic Minority Oversampling Technique (SMOTE) [7],
Generative Adversarial Networks (GANs) [8] and Large Language Models (LLMs) [9].

EL techniques enable the integration of multiple machine learning algorithms, trained
on the same dataset [10–12]. A variety of ensembling techniques, facilitating the most
efficient base learner combination of either the same (homogeneous) or different (het-
erogeneous) type has been developed. The essence of ensembling lies at combining di-
verse individual learners [13,14]. That is, the base learners should demonstrate different
strengths and weaknesses, so as to be integrated within a meta-model that profits from
their proper combination.

The fusion of SDG and EL techniques is beginning to appear in the ML literature.
Applications regarding classification problems are presented in [15], where various EL and
SDG methods are combined. The authors conclude that traditional SDG methods, such
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as SMOTE, outperform those that are based on GANs. The concept of producing diverse
synthetic datasets through multiple SDG models and then ensemble the individual models,
is introduced in [16], where the authors conclude that this approach performs better in
comparison to the creation of a single synthetic dataset. In [17], the authors use noise
as the source of diversity in differential privacy synthetic data generation mechanisms.
In [18], Synthetic Minority Over-Sampling Technique for Regression with Gaussian Noise
(SMOGN) [19] is used in order to synthetically augment an imbalanced Path Loss (PL)
dataset. The results showed that the ensemble model that incorporated synthetic data led
to better results as opposed to the ensemble model that was trained only with the initial
data, due to its enhanced predictive capability at the edges of the prediction interval.

All the previously presented works perform SDG on the initial training dataset (which
is the base learners’ training dataset). The novelty of our work is that data augmentation is
performed in the meta-learner’s training dataset, as opposed to the base learners’ training
dataset. That way, the synthetic data generator is informed regarding the predictions of
the base learners. As a result, synthetic instances containing the prediction differences
between the base learners can be constructed. The addition of the most diversity-triggering
synthetic instances to the meta-learner’s training dataset is expected to expand base learner
diversity and produce an even stronger meta-model.

We introduce the Targeted Injection of Synthetic Data (TIoSD) method, in order to se-
lect a diversity-triggering subset of the synthetic dataset and infuse it to the meta-learner’s
training dataset. We have chosen to apply the proposed method for the topic of PL predic-
tion, since both the concepts of EL [20–23] and SDG [24–26], have been extensively utilized.

For that matter, we have used two different PL datasets [27,28] and applied two
distinct synthetic data generators, namely SMOGN [19] and Conditional Tabular Generative
Adversarial Network (CTGAN) [8]. Moreover, we have investigated the ratio of synthetic to
raw data, with regard to the ensemble’s performance. Our contributions can be summarized
as follows:

1. We propose the method of Targeted Injection of Synthetic Data (TIoSD) for the purpose
of diversifying an Ensemble’s Base Learners;

2. We apply TIoSD in two different PL datasets, using two state-of-the-art methods of
generating tabular data;

3. We investigate the ratio of synthetic to raw data, with regard to the improvement of
PL prediction.

The rest of the paper is organized as follows: Section 2 presents the Machine Learning
concepts of Ensemble Learning, Diversity and Synthetic Data Generation, while Section 3
sheds light on the proposed method of Targeted Injection of Synthetic Data. Section 4 is de-
voted in providing the comparative results between the conventional and the TIoSD-based
stacked generalization approaches, while Section 5 discusses the results. The conclusions
of the paper are presented in Section 6.

2. Machine Learning Concepts: Ensemble Learning, Diversity and Synthetic
Data Generation

The current section describes the concepts, along with the related techniques, of
Ensemble Learning, Diversity and Synthetic Data Generation, which are of profound
importance within the context of our proposed method. The first subsection depicts the
most prevalent ensembling techniques. The second subsection is devoted to explaining the
fundamental role of Diversity in Ensemble Learning, while the third subsection presents
two state-of-the-art techniques for generating tabular data.

2.1. Ensemble Learning

Ensemble Learning refers to the concept of combining various learners (usually re-
ferred to as weak or base learners), in order to assemble a stronger meta-learner (or en-
semble learner). The intuition behind the ensembling concept stems from the fact that the
base learners exhibit different strengths and weaknesses; by appropriately combining them,
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the ensemble learner can benefit from their individual advantages and provide enhanced
predictions. There would be no point in ensembling identical base learners; in that case, the
ensemble’s predictions would be the same to those obtained from a single base learner. It is
the diversity among the base learners that adds value to the ensembling procedure [13].

Various ensembling techniques can be found in the literature, both for classification
and regression tasks. Regarding regression, wherein the problem of PL prediction falls, the
concepts of averaging, weighted averaging [29] and stacked generalization [30] are mostly
being used [31]. Averaging is the procedure where the ensemble’s prediction is equal to
the mean of the predictions from the base learners. While being very easy to implement,
the downside of averaging is that all first-level predictions contribute equally to the final
prediction, regardless of their individual strength.

Weighted averaging takes care of the above-mentioned issue: each base learner in-
fluences the ensemble’s prediction according to a predefined performance criterion. That
is, the predictions made from strong base learners hold a larger percentage of the final
prediction’s value, as opposed to the predictions from the weaker base learners. Though
better from averaging, this technique does not take into account the particular strengths of
each base learner. In other words, the predictions from a strong base learner would always
outweigh those made from a weaker base learner, even in the cases where the weaker base
learner takes precedence over the stronger one.

Stacked generalization [30] is a technique that provides a framework to finely combine
the weak learners. Their predictions are used as inputs from a second-level meta-learner.
The meta-learner is trained according to this new set of predictions, ensuring that the final
prediction would optimally be influenced from the base learners.

The above-described ensembling techniques can be used in combining heterogeneous,
as well as homogeneous, base learners. In the specific case where only homogeneous base
learners are combined, the concepts of bagging [32] and boosting emerge [33]; the first
refers to the combination of learners (usually regression trees) that are grown in parallel
on the basis of different views from the training dataset. The second performs serial tree
growth, where each new tree tries to compensate for the errors of the previous one.

2.2. The Role of Diversity in Ensemble Learning

Ensemble Learning provides the framework to constitute a meta-learner with up-
graded predictive capability in comparison with the performance of its base learners.
However, the improvement brought by the ensembling procedure is depended on the level
of diversity between the base learners [34]. A combination of identical first level individual
regressors would be obviously pointless, while also an ensemble of diverse, yet strongly
erroneous, base learners would also lead to poor final predictions. A group of strong, yet
diverse, base learners is needed in order to produce a powerful ensemble model.

Diversity can be thought of as a hidden dimension in the bias-variance decomposition
of an ensemble loss [13]. More particularly, diversity can be conceived as a measure of
model fit, in the same way with bias and variance, keeping in mind, however, that diversity
describes the correlation among the base learners.

Under this assumption, the concepts of bagging and boosting can be revisited: in both
techniques, diversification among the base learners (usually decision trees) is encouraged.
In the case of bagging, diversity stems from randomly resampling the training data for each
base learner. In boosting, diversity is cultivated by training each new base learner according
to the errors of its predecessor. In conclusion, it is straightforward to claim that the
success of the models that are either based on bagging (Random Forest [35]) or on boosting
(XGBoost [36], LightGBM [37]) is due to their diversity-triggering implementation [13].

Thereupon, the research question of whether other methods could be elaborated in
order to cultivate ensemble diversity emerges. Our approach towards that direction is
based on the exploitation of synthetic data.
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2.3. Synthetic Generation of Tabular Data

The performance of most ML models is strongly influenced by the amount of data
that are available for their training. Data shortage [1] is an issue of high importance in
the ML-domain. Synthetic Data Generation [5] is gaining attention for the purpose of
combating data shortage and providing the amounts of needed data to the ML models.
Focusing on tabular SDG, a multitude of approaches can be found in the literature.

SMOTE [7], which was originally aimed at classification tasks for imbalanced datasets,
is one of the first attempts for creating synthetic tabular data. SMOTE-made synthetic
instances are produced by interpolating a randomly chosen instance of the minority class
with one of its k nearest minority class neighbors. Its extension for imbalanced regression
datasets is SMOTE for Regression (SMOTER) [38], which performs oversampling upon the
infrequently occuring instances. The oversampling techniques of SMOTER and Gaussian
Noise, form together the SMOGN method [19]. That is, with respect to the distance
among the randomly chosen underrepresented instances, oversampling is either performed
through SMOTER, or through the addition of Gaussian Noise.

When using SMOTER, synthetic instances are generated through interpolation. In
each iteration, a pair of rare instances is used: one acts as a seed case while the other is
randomly chosen from the k-nearest neighbors of the seed. Their features are interpolated,
while the new target value is calculated as a weighted average of their corresponding target
values. Sequentially, each rare instance functions as a seed example throughout the process.
The default value of k is five [19].

When applying Gaussian Noise, its magnitude is determined from the perturbation
parameter. Higher perturbation values allow the addition of more noise to the original
samples when generating the synthetic data points. As a result, the synthetic dataset’s
diversity is proportional to the perturbation’s value. The default choice for perturbation is
0.02 [19,39]. An example of using the SMOGN method in a PL prediction problem can be
found in [18].

Generative Adversarial Networks (GANs) were introduced in 2014 [40] and are capa-
ble of producing both synthetic images and tabular data. Their inner architecture consists of
two Neural Networks, namely the Generator and the Discriminator. The Generator learns
to produce synthetic data (either images or tabular data), according to the characteristics of
the authentic data, while the Discriminator is assigned with the task of distinguishing the
authentic data samples from the synthetic ones, as depicted in Figure 1. Being a two-player
dynamic system, the ultimate goal of GAN training is to reach Nash equilibrium. With re-
gard to tabular SDG, a variety of GANs, such as the Conditional Tabular GAN (CTGAN) [8]
and the TableGAN [41] can be found in the literature. While the TableGAN employs min–
max normalization within the [−1.1] range for continuous values, the CTGAN uses the
variational Gaussian Mixture model for every individual column.

Figure 1. Block diagram of a Generative Adversarial Network (GAN).
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3. Targeted Injection of Synthetic Data (TIoSD) for Diversity Cultivation

The proposed method of Targeted Injection of Synthetic Data (TIoSD), in order to further
cultivate the diversity among an Ensemble’s Base Learners and consequently enhance its
predictive performance, is introduced in the first subsection. The second subsection presents
the metrics that are used for the evaluation of the resulting ML models’ performance.

3.1. Targeted Injection of Synthetic Data

An ensemble of regressors that performs stacked generalization, utilizes the outputs
of its base learners as inputs for the meta-learner. The meta-learner is trained on this
newly derived training set and is able to generalize his predictions on the corresponding
testing set (which is also formed from the outputs of the base learners with regard to the
initial testing set). We intent to augment the meta-learner’s training set with synthetic
data, aiming to enhance the diversity among the base learners, without degrading the
ensemble’s overall performance. In other words, our objective is to feed the meta-learner
with additional, synthetically derived, diversity-triggering training instances and increase
its performance (Figure 2).

Figure 2. (Left) Conventional implementation of stacked generalization for N base learners.
(Right) Implementation of TIoSD-based stacked generalization for N base learners.

In order to better describe the proposed method, two algorithms are presented: the
first illustrates the ensembling procedure, while the second details the injection of synthetic
data. More precisely, lines 4–10 of Algorithm 1 are devoted in producing the predictions of
all base learners for all instances of the training set X, using K-fold cross validation. These
predictions are then used as inputs from the meta-learner (lines 11–12 of Algorithm 1).

At this point, Algorithm 2 is called in order to inject synthetic data to the Training set.
As shown in lines 4–9 of Algorithm 2, the sum of absolute differences between base learner
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predictions is calculated and added as an extra feature. This sum is an indicator of the
overall diversity among the base learners. Then (lines 10–13 of Algorithm 2), a synthetic
Replica dataset of the Training set is generated. Lines 13–18 of Algorithm 2 explain how
the synthetic instances are sorted according to the sum column and how the top a% are
chosen. After deleting the sum column, the chosen instances are injected as new rows into
the Training set, transforming it to the Training′ set.

Algorithm 1 continues using Training′ to train the meta-learner (Linear Regressor).
The performance metrics are derived using the Testing set.

Algorithm 1 TIoSD-based Stacked Generalization Ensemble

1: Define number of folds K = 5 and number of base learners N = 2
2: Split the training set X in K parts (folds)
3: Define base learners: XGBoost, Random Forest
4: for n=1 to N do
5: for k=1 to K do
6: Train the n-th base learner using all folds except the k-th one
7: Obtain predictions PLnk for the the k-th fold
8: end for
9: Create the prediction set PLn = PLn1 ∪ PLn2 ∪ PLn3 ∪ PLn4 ∪ PLn5 from the n-th

base learner
10: end for
11: The input of the meta-learner is X = {PL1, PL2}, the output is the original PL
12: Split the rows of the {PL1, PL2, PL} set to Training and Testing (80/20 ratio)
13: Call Algorithm 2 for the Training set:
14: Train the Linear Regressor with (Training′) and test with Testing
15: Calculate performance metrics in Testing

Algorithm 2 Synthetic Data Injection (SDG is SMOGN)

1: Define input set Training, which has N + 1 columns
2: Define ratio a between synthetic and raw data
3: Initialize sum = 0
4: for n = 1 to N do
5: for i = n + 1 to N do
6: sum = sum + abs(PLn − PLi)
7: end for
8: end for
9: Attach sum as an extra column in Training

10: Call SMOGN [19] with the following arguments:
11: The input set is Training, the target value is sum
12: The number of nearest neighbors is 5 and the Gaussian noise perturbation is 0.02
13: Obtain from SMOGN the synthetic Replica of Training
14: Sort Replica according to descending value of sum
15: Select top a% rows from Replica
16: Delete column sum from the selected rows
17: Add the selected rows to Training, as additional rows
18: Synthetic Data has been injected, Training is transformed to Training′

3.2. Evaluation Metrics

Four well-known metrics of regression performance are used in order to evaluate
the proposed method. These are the Mean Absolute Error (MAE), the Mean Absolute
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Percentage Error (MAPE), the Root Mean Squared Error (RMSE) and the Coefficient of
Determination (R2). Their definitions are:

MAE = 1
Mtest

Mtest
∑

m=1
|PLm − yo,m|

RMSE =

√
1

Mtest

Mtest
∑

m=1
[PLm − yo,m]

2

MAPE = 1
Mtest

Mtest
∑

m=1

∣∣∣ PLm−yo,m
PLm

∣∣∣× 100%

R2 = 1 −

Mtest
∑

m=1
[PLm−yo,m ]2

Mtest
∑

m=1
[PLm−PLmean ]

2

(1)

where Mtest is the total number of test patterns, PLm is the target PL value that corresponds
to the m-th input pattern, yo,m is the ML model’s output corresponding to the m-th input
data pattern and PLmean is the mean PL value.

4. Comparative Results

The proposed TIoSD-based ensembling method has been applied in two different
datasets, using both the SMOGN and the CTGAN synthetic data generators. For both
datasets, the tree-based algorithms XGBoost and Random Forest have been chosen as
base learners, while the Linear Regression algorithm served as the meta-learner. The
default hyper-parameter values have been employed for all learners and both synthetic
data generators, in order to focus explicitly on the effect of synthetic data injection. The
results for each dataset are respectively presented in the next two subsections.

4.1. Results from the First Dataset

The first dataset consists of 23 inputs and one output (the PL value), having a total
of 35,378 instances. The PL values have been produced through the implementation of
the Ray-Tracing technique from a commercial software [42]. The operating frequency
is set at 900 MHz and the environment is urban. The dataset’s input variables contain
information regarding the built-up profile of the Line of Sight path between the transmitter
and the receiver, the area around the receiver and their coordinates. A detailed presentation
of the dataset’s input variables can be found in [27]. A train/test ratio of 80/20 has been
used in order to split the dataset.

The results are shown in Table 1, while Table 2 contains the error values derived
for different ratios of synthetic to raw instances, denoted with a. Table 3 presents the
MAE values of the conventional and the TIoSD-SMOGN stacked ensembles, for various
combinations of the number of folds, K, and Base Learners, N. Figure 3 demonstrates the
effect of TIoSD in the distribution of absolute difference among the base learner predictions,
in the meta-learner’s training set. It is straightforward to conclude that the number of
instances that are associated with low differences between the predictions of the two base
learners have not changed. On the other hand, the number of instances that correspond to
high differences among the base learners predictions’ has risen due to the implementation
of TIoSD. Finally, Figure 4 presents the scatter plots and error distribution histograms of
both ensembles.
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Figure 3. The implementation of TIoSD increases the amount of training samples with enlarged
distance among their base learner predictions. This diagram corresponds to a ratio of 0.1 between the
chosen synthetic instances and the raw ones (a = 0.1). The SDG method is SMOGN.

Table 1. Comparative results for the first dataset.

ML Method MAE [dB] MAPE [%] RMSE [dB] R2

XGBoost 3.36 3.10 4.43 0.897

Random Forest 3.41 3.15 4.50 0.894

Stacking-Conventional 3.25 3.01 4.28 0.904

Stacking-TIoSD (SMOGN) 3.16 2.95 4.18 0.909

Stacking-TIoSD (CTGAN) 3.23 3.00 4.26 0.905
For the TIoSD implementations, the ratio a was chosen equal to 0.1.

Table 2. Results of the TIoSD-based ensembles, for the first dataset, according to the ratio a between
synthetic and raw data .

SDG Method a MAE [dB]

SMOGN

0.05 3.20
0.1 3.16
0.2 3.23
0.3 3.26
0.4 3.29
0.5 3.32
1 3.38

CTGAN

0.05 3.23
0.1 3.23
0.2 3.25
0.3 3.29
0.4 3.33
0.5 3.38
1 3.41
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Table 3. Comparative results for various K and N values (when N = 3, the third regressor is LightGBM)

K N MAE (Conventional) [dB] MAE (TIoSD-SMOGN) [dB]

2 2 3.30 3.18

2 3 3.29 3.17

5 2 3.25 3.16

5 3 3.24 3.16

10 2 3.24 3.15

10 3 3.23 3.14
For the TIoSD implementations, the ratio a was chosen equal to 0.1.

Figure 4. (Left) Scatter plots (Right) error distribution histograms, for the conventional and the
TIoSD-driven ensembles, on the first dataset (using SMOGN and a = 0.1)

4.2. Results from the Second Dataset

The second dataset is publicly available in [43] and has been acquired from a mea-
surement campaign in the city of Fortaleza-CE, Brazil [28]. The operating frequency is
853.71 MHz and the propagation environment is urban. A total of nine input variables, de-
scribing the coordinates of the receiver, its relative orientation with regard to the transmitter,
the terrain elevation and the empirically calculated PL value according to the Okumura-
Hata model [44], are used in order to predict PL. The measurements are performed on
four different Base Stations. Our experiment uses 2328 data vectors, corresponding to the
first Base Station. As with the case of the first dataset, a train/test ratio of 80/20 has been
chosen. The results can be found in Tables 4 and 5 and in Figure 5.
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Table 4. Comparative results for the second dataset.

ML Method MAE [dB] MAPE [%] RMSE [dB] R2

XGBoost 3.05 2.40 3.87 0.848

Random Forest 3.07 2.42 3.89 0.847

Stacking-Conventional 2.95 2.34 3.76 0.858

Stacking-TIoSD (SMOGN) 2.93 2.32 3.73 0.860

Stacking-TIoSD (CTGAN) 2.95 2.34 3.76 0.858
Forthe TIoSD implementations, the ratio a was chosen equal to 0.1.

Table 5. Results of the TIoSD-based ensembles, for the second dataset, according to the ratio a
between synthetic and raw data.

SDG Method a MAE [dB]

SMOGN

0.05 2.95
0.1 2.93
0.2 2.96
0.3 2.98
0.4 3.01
0.5 3.03
1 3.07

CTGAN

0.05 2.95
0.1 2.95
0.2 2.97
0.3 3.01
0.4 3.03
0.5 3.05
1 3.08

Figure 5. Cont.
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Figure 5. (Left) Scatter plots (Right) error distribution histograms, for the conventional and the
TIoSD-driven ensembles, on the first dataset (using SMOGN and a = 0.1).

5. Discussion

The ratio a between the injected synthetic data and the raw training data is of crucial
importance with regard to the TIoSD-based ensemble’s performance. As concluded from
the results, a relatively large ratio (more than 0.2 for the first dataset or 0.1 in the second
dataset) leads to performance degradation in comparison with conventional stacking.
Moreover, the more the ratio a increases beyond that point, the bigger the MAE becomes.
Being a distorted version of the real data [45], large amounts of synthetic data tend to
negatively influence the ensemble’s generalization capability [16].

However, the TIoSD-based ensemble performs better than its conventional counterpart
for smaller values of the ratio a, reaching an optimum performance when a becomes equal
to 0.1 (for both datasets). That is, the effect of diversity cultivation through the injection of
synthetic data, overcomes the negative influence of their synthetic nature, when injected in
limited amounts.

Moreover, it is shown through Table 3 that increasing the number K of folds and N of
base learners leads to smaller error values. However, the improvement brought by using
ten instead of five folds is quite small (0.01 dB). Apart from that, the employment of three
instead of two base learners, led also to a marginal improvement of 0.01 dB. It is worth
mentioning that the third base learner utilized the LightGBM algorithm, which falls under
the boosting category, similar to the first algorithm XGBoost. This is the reason why its
incorporation within the ensemble did not have much to offer. For all combinations of K
and N, the benefit of applying the TIoSD method led to an error reduction that fluctuated
between 0.08 dB and 0.12 dB in comparison with the conventional ensemble.

For both datasets, the SMOGN method has led to better results than CTGAN [46]
with regard to the TIoSD-based ensemble’s performance. However, since the default
hyper-parameter values of both SDG methods were used, CTGAN’s performance could be
enhanced by hyper-parameter tuning [39,47].

Finally, when comparing the error reduction between the conventional and the TIoSD-
based ensemble for both datasets, one can observe an improvement of 0.09 dB for the first
dataset and 0.02 dB for the second dataset. This can be attributed to the fact that the second
dataset is one order of magnitude smaller than the first one, thus restraining the SDG
methods from producing reliable synthetic data [48].

6. Conclusions

It has been shown that the proposed TIoSD method is efficient in reducing the pre-
diction error of stacked generalization ensemble models that perform PL prediction. The
method’s objective is to cultivate the stacked ensemble’s diversity by augmenting the
meta-learner’s training set through the injection of synthetic data. These data are chosen
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according to their ability to further diversify the base learners’ predictions. That is, the
chosen synthetic data are those that correspond to the largest prediction differences among
the base learners.

The ratio of synthetic to raw data instances is of crucial importance; being a distorted
version of raw data, synthetic data should be injected to the extend that base learner
diversity is cultivated, while the ensemble’s performance is not degraded due to their
artificial nature.

The optimum ratio of raw to synthetic data has been found to be equal to 0.1 for both
experiments. However, further research is needed in order to provide a more systematic
way to determine its value in conjunction with the raw dataset’s characteristics, as well as
with the base learner and SDG configurations.

The proposed method is general and can therefore be used as a framework to enhance
the performance of stacked regression ensembles in various domains. Its main difference
from other methods that employ SDG, lies in the fact that it facilitates the selection of an
ensembling-oriented subset of the synthetic data.

The fusion of SDG and EL techniques through the proposed TIoSD method has led to
models with increased diversity and generalization capablity. However, the interpretability
of the resulting models, as well as their computational complexity, should also be addressed
in future research. Moreover, the method’s performance is heavily dependent on the quality
of synthetic data, which in turn is conditional on the SD generator’s performance.
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Abbreviations
The following abbreviations are used in this manuscript:

CTGAN Conditional Tabular Generative Adversarial Network
EL Ensemble Learning
GAN Generative Adversarial Network
LLM Large Language Model
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
ML Machine Learning
PL Path Loss
R2 Coefficient of Determination
RMSE Root Mean Square Error
SDG Synthetic Data Generation
SMOGN Synthetic Minority Over-Sampling Technique for Regression with Gaussian Noise
SMOTE Synthetic Minority Oversampling Technique
SMOTER Synthetic Minority Oversampling Technique for Regression
TIoSD Targeted Injection of Synthetic Data
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