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Abstract: Based on the literature data, the incidence of superficial and invasive non-dermatophyte
mold infection (NDMI) has increased. Many of these infections are undiagnosed or misdiagnosed,
thus causing inadequate treatment procedures followed by critical conditions or even mortality
of the patients. Accurate diagnosis of these infections requires complex mycological analyses and
operator skills, but simple, fast, and more efficient mycological tests are still required to overcome
the limitations of conventional fungal diagnostic procedures. In this study, software has been
developed to provide an efficient mycological diagnosis using a trained convolutional neural network
(CNN) model as a core classifier. Using EfficientNet-B2 architecture and permanent slides of NDM
isolated from patient’s materials (personal archive of Prof. Otašević, Department of Microbiology and
Immunology, Medical Faculty, University of Niš, Serbia), a multi-CNN model has been trained and
then integrated into the diagnostic tool, with a 93.73% accuracy of the main model. The Grad-CAM
visualization model has been used for further validation of the pattern recognition of the model. The
software, which makes the final diagnosis based on the rule of the major method, has been tested
with images provided by different European laboratories, showing an almost faultless accuracy with
different test images.

Keywords: fungal infection; mold identification; deep learning; Grad-CAM

1. Introduction

Recently, the relevant published data showed that the incidence and prevalence of
superficial [1] and invasive non-dermatophyte mold infections (NDMI) [2] have dramati-
cally increased. The mycological analyses of NDMI imply complex procedures, the need
for expert knowledge, and the implementation of methods with optimal sensitivity and
specificity. Consequently, a mycological diagnostic is not a part of most laboratories’ rou-
tine work, and the high percentage of superficial or invasive NDMI remains undiagnosed
and leaves patients without treatment. Moreover, the invasive NDMI have very high
morbidity, they are life-threatening, and the determination of causative agents is significant
since different mold species do not have equal antifungal susceptibility [2]. There is a
need for prompt diagnosis and mold determination, which is crucial for establishing the
most effective therapy. Additionally, facilitating accurate diagnosis will gain significant
experience and knowledge in the field of epidemiology, antifungal drug effectiveness, and
better monitoring of NDMI.

The standard mycological procedure includes isolating and identifying fungi based
on morphological/biochemical features. Significant progress in the domain of diagnostic
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procedures for infection caused by dermatophytes, yeasts, and Aspergillus species has been
made, but the diagnoses of NDMI remain a challenge, primarily because commercial tests
for mold differentiation are still needed. To overcome these problems, numerous techniques
were researched to investigate the possibility of rapid detection and identification of
infective agents and the pathogenesis of these infections [3]. Studies are primarily trying to
design molecular tests and validate and standardize molecular kits, such as PCR molecular
platforms, significantly improving the diagnosis [4,5].

Additionally, there is satisfactory progress in the MALDI-ToF mass spectrometry tech-
nique [6,7]. Recently, for instance, there have been reports of applying a new imaging tool,
dynamic full-field optical coherence tomography (D-FF-OCT), that can be used to visualize
and differentiate microscopic filamentous fungi [8]. However, many non-dermatophyte
molds are not included in these studies.

Considering all the predicaments of the diagnostics process of different NDMIs, the
main purpose of this research was to design, develop, and validate diagnostics software that
can automate, accelerate, and simplify the procedure. This research consisted of obtaining
necessary microscopical images, preprocessing the dataset so it is suitable for training,
developing a convolutional neural network model, and validating the solution with test
images received from different laboratories so that it can be integrated into a software
solution. A prototype of the software tool has also been developed and tested, with the idea
of the software becoming available in different laboratories, providing accurate diagnostics
results, bypassing the need to send the materials to a different laboratory, thus making the
process more rapid and efficient.

The development of different modern devices, like smartphones and cameras, has led
to a drastically increased number of images produced every day in many different fields [9].
The databases of different images are updated regularly and are used not only for social
media but in many other fields where image classification and determination from images
can be performed.

The area of research that involves browsing, searching, and fetching images from a
database is called image retrieval, and it has applications in various scientific areas [9].
From surveillance cameras, where identification of people and cars should be efficient
and quick, to e-commerce, where similar images should be grouped for more accurate
recommendations, and electronic circuit systems, where different techniques can be used
to enhance and facilitate output signals [10], image retrieval is an integral part of many
different systems. Previous solutions for image retrieval included hand-made solutions
like the ones based on keywords, which are very complicated to update and maintain for
larger databases. Some other approaches included using computer vision and machine
learning methods, like color histograms, binary patterns, or other image descriptors, but
the development of deep learning methods like convolutional neural networks soon took
the lead due to their precision and effectiveness, either as a whole solution model or as a
part of the system which needs image classification [11].

In recent years, artificial intelligence and machine learning methods have been an
important part of CAD (computer-aided diagnostics), providing support to doctors in
various fields of medicine, especially for assisted diagnosis [12]. CAD systems have been
an integral part of many diagnostics practices and medical image evaluations. These
systems can not only extract more information, perform the necessary preprocessing of
images, and provide analysis from the data, but they can also speed up the process of
diagnosis, making the transmission of data between different laboratories and specialists
much faster and more efficient. Many of these systems are based on convolutional neural
networks, relying on their accuracy and precision in pattern recognition.

Convolutional neural networks have been successfully applied to various fields of
medical imaging, with a high percentage of accuracy. Many of the solutions provided have
been carried out on microscopic medical imaging. Some of the examples of CNN use in
medical imaging include object detection tasks in bioimaging [13]. Research has also been
conducted in the analysis of cells under a microscope to detect possible pathology, like
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the ones infected by different bacteria [12]. Research has also been conducted on blood
samples to rapidly detect diseases, like the ones affecting white blood cells [14].

In recent years, few projects have been developed using machine learning and convolu-
tional neural networks (CNNs) to classify fungi. Many papers have discussed macroscopic
or microscopic classification within one fungi genus, like Aspergillus spp. [15,16] and Leu-
chorrea spp. [17,18], providing good results using CNNs, but only when the genera are
already determined. Some authors focus on food safety and macroscopic changes that
molds create on bread [19]. There were some articles touching on the importance of the sub-
ject but focusing more on the recognition of cells [20], spores [21], or infection present [22]
in the microscopic sample of the fungi provided, but not making the diagnosis itself. Re-
searchers have also tried to make a tool that will differentiate molds using an advanced
optical sensor system [23], which gave excellent results, but with the disadvantage that the
equipment used is costly, and thus only available to some laboratories.

Since many of the mentioned papers had outstanding results, they provided excellent
ground for creating software that can recognize and differentiate different species of fungi,
thus also molds [15–23]. Within this research, we noticed while CAD systems and CNNs
are an integral part of many medical systems, not a lot of research has been conducted
in the field of mold determination, and the research that has been conducted has focused
mainly on certain equipment or determination within one genus. This pointed to the lack
of software or tools that can help determine molds that cause NDMI, especially rare types,
for which the number of infections has increased in recent years. Herein, the goal was to
investigate the possibility of developing a convolutional neural network model that will
aid the identification of these non-dermatophyte molds and thus accelerate the diagnostic
process, and then use the model for software diagnostics tool development.

2. Materials and Methods
2.1. Dataset Description

We created examples of nine non-dermatophyte molds, namely Alternaria spp., As-
pergillus spp., Aureobasidium spp., Bipolaris spp., Cladosporium spp., Fusarium spp., Mucolares
group, Penicillium spp., and Scopulariopsis spp. High-resolution images have been obtained
at the Department of Microbiology and Immunology, Medical Faculty, University of Niš,
Serbia, laboratories (personal archive of Prof. Otašević), taken from microscopic slides of
isolated molds from patients’ material.

As a part of this research, we obtained between hundred and hundred and fifty images
from each genera, and in total, we collected nine hundred and twenty initial samples
(Table 1). Those samples are high-resolution images that needed preprocessing to be
suitable for the convolutional neural network model training.

Table 1. Details of used sample dataset.

Number of
Genera

Number of
Samples

Number of
Samples per Class

Number of Images after
Input Classification

Images Used
for Training

Images Used
for Validation

9 920 100–150 8138 6520 1618

2.2. Determination of Non-Dermatophyte Molds

The growth of fungi present in the patient samples, in addition to the appropriate
cultural characteristics and morphology of colonies, was determined at the genus level
based on their microscopical morphological characteristics. The microscopic morphology
of the non-dermatophytic genera is as follows [24,25]:

1. Alternaria spp.: characterized by septate, pale to dark-brown hyphae, conidiophores,
and formation of large ovoid or ellipsoidal macroconidia which have transverse and
longitudinal septations (Figure 1a);
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2. Aspergillus spp.: characterized by septate hyphae and unbranched conidiophores
which end with swollen vesicles with flask-shaped phialides on which there are chains
of conidia (Figure 1b);

3. Aureobasidium spp.: determined by the very characteristic forming of two types of
hyphae: hyaline with a thin wall producing conidia directly from walls and dark
dense walls, closely septated hyphae, and single- and multi-celled swollen cells, some
of which then convert into melanin-producing chlamydoconidiae (Figure 1c);

4. Bipolaris spp.: characterized by dark septate hyphae and conidiophores on which there
is sympodial development of pale brown pigmented, dense-walled pseudoseptate
conidia, which have three to five separations (Figure 1d);

5. Cladosporium spp.: characterized by septate, dark hyphae, conidiophores, and pro-
duced chains of brown, oval, smooth-wall conidia (Figure 1e);

6. Fusarium spp.: characterized by septate hyaline hyphae with the formation of slender
sickle multiseptate macroconidia (Figure 1f);

7. Mucorales group: characterized by irregularly shaped, non septate, broad hyphae with
right-angle branching, sporangiophores, and terminal-formed spore-filled sporangia
(Figure 1g);

8. Penicillium spp.: characterized by septate hyaline hyphae, branched conidiophores,
and the presence of branched metula with produced phialides (a brush-like appear-
ance) on which there are chains of conidia (Figure 1h);

9. Scopulariopsis spp.: characterized by septated hyphae with shorter conidiophores with
cylindrical conidia-bearing cells, and larger thick-walled mature conidia with cut-offs
at the base that are usually very rough and spiny (Figure 1i).

During our previous work on this research [26], high-resolution sample images (usu-
ally 3024 × 4032 pixels) were cut into smaller images that are suitable for CNN training
and then manually divided into ones that contain helpful mold information and ones that
do not, since we do not want our neural network to obtain examples that are not valid.
This was a very long process since there were between 700 and 1000 cut images from only
one shot, meaning there were more than 100,000 samples from each initial sample, making
it hard to classify. Our initial approach for resolving this problem consisted of adding
a ‘Background’ category as the tenth category of the main model, but this soon proved
to be inefficient since there are usually more useless images from each slide, making the
Background category more than nine times bigger than all other and confusing the model,
which still tried to categorize larger blots on the slides as some mold genera.

Because of this, we developed an input neural network model that only functions to
classify sample images. This input neural network not only solved problems of classifying
input images but also helped exclude crowded parts of slides that do contain mold parts
but are too tangled up to provide useful information.

The input model, with its high accuracy of 98%, has presented itself to be very useful
for preparing example data; it chooses only clear samples and drastically improves the
process of adding new sample images or classes to the training of the primary model. In
Figure 2, green rectangles represent valid instances of the original input image, and red
ones are excluded.

With the help of trained input classification, we obtained 8138 images suitable for
training from the initial 920 samples, whose examples have been presented in Figure 3. Of
the chosen samples, around 80% was used for training the model, and the rest 20% for
validation (Table 1).

The final testing of the model was carried out with images obtained from different
laboratories rather than the ones used for training.
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2.3. Training Neural Network for Sample Classification

Convolutional neural networks represent a significant improvement in the machine
learning and computer vision fields due to their accuracy and efficiency in recognizing
patterns of images by extracting filters with image feature maps [27]. CNNs have to learn
from accurate category examples to be able to classify images into different categories.

For humans, recognizing a specific familiar pattern or object is easy, regardless of
the object’s position, rotation, or color. Still, for machines, it can be challenging, keeping
in mind that they store data in binary space. Because of this, it is necessary to provide
examples of neural network training that can cover all cases.

Data augmentation techniques provide a set of operations to widen the dataset, per-
forming rotation, translation, flipping, and brightness enhancement on existing training
samples, thus creating a more informative dataset for the desired model [28]. An example
of how those operations were applied to our dataset can be seen in Figure 4.
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Figure 4. Data augmentation of a single sample.

Convolutional neural networks (CNNs) have been commonly used in image classifica-
tion in various fields of expertise because of their innovative approach. CNNs represent a
gathering of three architectural concepts, local receptive fields, shared weights, and spatial
subsampling, making them more persistent in distortion and translation.

Since CNN’s invention, various architectures have been developed for different pur-
poses, but for similar problems like our software, the most commonly used are ResNet50 [29]
and the EfficientNet family of models (B0 to B7). For our input method, ResNet50 gave
the best results, according to accuracy, but the EfficientNet-B2 model provided the best
results for the primary classifier. EfficientNet models, introduced in 2019 by Tan and Le [30],
feature an essential innovation in the heuristic approach to compound scaling the model,
improving efficiency and accuracy [31].

Compound scaling (Figure 5e) uniformly scales all dimensions of the model, in contrast
to the other, more conventional methods (Figure 5b–d). For compound scaling, scaling
coefficients are obtained by performing a grid search and discovering relationships between
scaling dimensions in that way. The desired target model size is then determined by
applying those coefficients to the baseline network [32].
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The implementation and training of our model have been carried out using the pro-
gramming language Python [33] and Keras API. Keras library [34], which was designed as
a Python addition, provides an interface with a set of functions that make working and ex-
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perimenting with neural networks easier and faster. All aspects of neural network training
can be accustomed to using Keras, which runs on top of a machine learning platform called
TensorFlow [35], and adjusting parameters in the mentioned functions.

From Keras, EfficientNet family architectures have proven to work best for classifier train-
ing [30]. Our model has presented the best results with the sparse_categorical_crossentropy
type of error (from the losses Keras module) and has been compiled with the RMSprop
algorithm [36] for optimization (Keras module optimizers). Since accuracy is the most im-
portant criterion in developing a diagnosis application, it has been set as the only parameter
of the metric.

During the model’s training, feature vectors are created, presenting the solution’s
core. These vectors are used to form a classifier, which can classify images into nine mold
categories. An overview of the proposed model can be seen in Figure 6, presenting the
process from obtaining the images from laboratories to software implementation, where
the classifier is highlighted as the core of the solution. The diagram on the right presents
the logic behind the software solution tool.
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3. Results and Discussion
3.1. Results Obtained from CNN Training

As mentioned before, our dataset and problem statement have not been discussed in
other papers so far, so the model could not be compared with other models. In Table 2, we
provided results for each fungi genera category obtained from the validation of our model.

Table 2. CNN training results for different fungi genera.

Fungi Genera Accuracy [%] Samples Placed Correctly/Samples per Class

Alternaria 91.8 168/183
Aspergillus 94.2 146/156

Aureobasidium 99.5 193/194
Bipolaris 84.1 164/195

Cladosporium 94.1 193/205
Fusarium 100 145/145
Mucorales 99.4 162/163
Penicillium 98.1 159/162

Scopulariopsis 85.5 165/193
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The best model accuracy after training was obtained using EfficientNet-B2 architecture
after 17 epochs, reaching 93.73% accuracy (Figure 7). A graph of the training process can be
seen in Figure 8.
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The validation of the model showed promising results, and according to the confusion
matrix (Figure 9), only two genera had a significant number of misclassified test images,
which is not surprising because Bipolaris spp. genera are the most similar to Alternaria spp.,
and Scopulariopsis spp., whose morphology is not characteristic compared toother species.
When a high-resolution image is put in the software diagnostics tool, the decision is made



Electronics 2024, 13, 594 10 of 16

for each small sample extracted from it, so even if some predictions of the small samples
are incorrect, this should not affect the diagnosis.
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Since the final decision of the software is made by the ruling of the major, these results
are very good, showing that from a pull of images, we would have enough hits in the
correct mold category.

There are two main groups of fungi based on their morphological characteristics—
unicellular fungi (yeasts) with basal cell blastoconidia and multicellular fungi (molds)
with a basic hyphal cell. Multicellular fungi are divided into dermatophytes and non-
dermatophytes [4]. In this paper, we focused on the determination of non-dermatophyte
molds, for which there are no automated tests or diagnostics tools available in laboratories.

The convolutional neural network model was trained to represent the core of the
diagnostics tool. Best model accuracy after training has been obtained using EfficientNet-
B2 architecture after 17 epochs, reaching 93.73% accuracy, which is not as great as in our
previous paper [26], but excellent considering we only have non-dermatophyte categories in
this paper, whose morphologies are more similar within the group than of those in previous
research where we considered both dermatophyte and non-dermatophyte fungi genera.

The importance of further testing and validation of the trained model is crucial for
implementing a reliable diagnostic tool. As mentioned before, convolutional neural net-
works learn from examples. Still, slides on the images contain more information than mold
patterns, like the end of the slide or blots. They are colored differently, so it was vital to
check if the pattern model learned is correct and not based on other attributes.

One way of CNN decision-making visualization is by using the Grad-CAM method.
Class activation maps can be used to interpret the prediction decision made by the convo-
lutional neural network, and they can be implemented in various systems, like object detec-
tion [37], histopathology segmentation [38], and rotating machinery fault diagnosis [39].
The Grad-CAM technique highlights parts of the image that represent the recognized
pattern by extracting gradients of the target notion (molds in our model) [40]. These targets
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are flown into the final convolutional layer of the model to highlight regions of interest,
making heat maps.

Using Grad-CAM, we were able to validate our model because upon observing the
images produced using this method, it is clear that patterns of molds have been highlighted,
indicating that they were recognized (Figure 10).
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Using the Grad-CAM method, images whose patterns were not recognized as sup-
posed can also be taken into consideration for a better understanding of the model and
ways of improvement. For our model, we can conclude that it struggled with crowded
images of Scopulariopsis spp., edgy examples of Bipolaris spp., and Alternaria spp. samples
that contain many recognizable shapes which pollute the image (Figure 11).
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3.2. Software Implementation

The trained CNN model can be used for low-resolution image predictions. Because
input images usually taken using microscopes are high-resolution, the best way to use our
model was to design a simple interface software to diagnose with that kind of input.

Our implemented software takes a high-resolution microscope image as input data
and, as a first step, cuts the provided image into a set of smaller ones; similarly, we
prepare image samples for model training. After smaller images are ready, they are first
processed with an entrance neural network, which decides which of these contain important
information for diagnosis and should be used with the main model. All small images that
do not pass this first selection are colored in red (Figure 12).
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Figure 12. Examples of software pattern recognition, where different squares, according to the legend
presented, illustrate predictions of the classifier for that part of the high-resolution image, clearly
showing the most hits for Alternatia spp. (up-left, cyan) and Scopulariopsis spp. (down, white). Red
squares represent parts of the images that have been excluded from the classification process.

After this first selection, the main CNN model makes predictions for each remaining
image, where the prediction vector reveals the probability of the image belonging to each
of the nine classes. According to that vector, the score of the class whose prediction is
highest is incremented and the small image is then colored in class color (Alternaria—cyan,
Aspergillus—yellow, etc.) as represented in Figure 12.

The final decision is made when all the small images are processed, making the
diagnosis from not one but all parts of a high-resolution image. This way, the precision of
the whole software is much higher than the accuracy of the neural network model, using
the ruling of the major. The software writes the final score (diagnosis) but also shows which
class was determined for each small part of the original image (Figure 12). For example, in
the lower image in Figure 12, it can be easily determined which parts of the high-resolution
image have been excluded from classification by the initial neural network because they
are colored red. For the rest of the image, it can be seen that Scopulariopsis has indeed been
recognized since most of the squares have been colored white. Misses can also be noticed,
most of which are yellow (the color of Aspergillus), which corresponds to our results.

Implemented software has then been used with test images that have not been used
in the training or testing of the model. These images were courtesy of the Department of
Veterinary Medicine, University of Bari and Laboratory of Antimicrobial Chemotherapy,
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Iasi University of Life Sciences, making them perfect testing samples for different micro-
scopes and devices for obtaining images. The identification of molds is usually carried out
based on their morphological differences (both macroscopic and microscopic examination),
but if a diagnosis cannot be determined with certainty, mass spectrometry and in-depth
molecular biology (PCR of the ITS segment or other) are also performed, ensuring that
the test images results are accurate. In Table 3, the results of testing these high-resolution
images can be seen, showing that the software works for most of those test images, having
issues only with images that contain a tiny sample of the mold on the slide.

Table 3. Software testing results for different fungi genera.

Fungi Genera. University of Bari Iasi University of
Life Sciences

Software Accuracy
in %

Alternaria - 1/1 100
Aspergillus 19/20 4/4 95.8

Aureobasidium - - -
Bipolaris - 1/1 100

Cladosporium 4/4 - 100
Fusarium - 2/2 100
Mucorales - - -
Penicillium 3/3 2/3 83.3

Scopulariopsis - 1/1 100

As presented in Table 3, testing images obtained from the Department of Veterinary
Medicine, the University of Bari, and the Laboratory of Antimicrobial Chemotherapy, Iasi
University of Life Sciences, have shown excellent results using our software, showing
incorrect results for only two images, and correctly diagnosing all other images, making
the final accuracy percentage almost 100% for all the species.

4. Conclusions

During the last decade, traveling has become much more accessible, allowing people to
visit many remote areas and explore many different cultures. The accessibility of previously
inaccessible parts of the world has, inter alia, increased the spread of some previously rare
types of non-dermatophyte mold infections. Those infections, if not treated adequately and
in time, can lead to the critical conditions of the patient, and even mortality. Unfortunately,
specialists and laboratories working in the mycology field are limited, and sometimes these
infections imitate symptoms of some other diseases, leading to slow or wrong diagnosis.

CAD has proven to be an essential part of the support of specialists in various medical
fields, providing the needed help in many diagnostics proceedings. Computer systems
can not only preprocess and analyze data efficiently and rapidly, but they can also help
in the transmission of data among different laboratories and specialists, making various
diagnostics processes easier to oversee and maintain.

In this paper, we proposed a method and described software implementation that can
become a handy tool for non-dermatophyte mold diagnostics. The software presented in
this paper could drastically improve the process of identification of rare species of fungi,
making the diagnostics process faster and more accurate. One of the most important in-
novations of this research is providing precise diagnostics, especially of some rare types
of fungi that are often misdiagnosed and have proven to be very dangerous for patients
if mistreated. With an accuracy of 93.73% of the main model and almost flawless accu-
racy of the software itself, the tool has been proven to represent a significant part of the
diagnostics procedure.

The advantage of using a second convolutional neural network has proven to be
effective in the diagnostics process by making the preparation of the dataset easier. The
input neural network is also an integral part of the software diagnostics algorithm; by
extracting the unnecessary parts of high-resolution images, it allows the main model to
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perform decisions and include only parts of the images that contain vital information that
has been tested and proven with various sample images, as shown in the examples.

The main convolutional neural network model, used for image pattern recognition of
the morphological characteristics of molds, has shown promising results, with an accuracy
of 93.73% and improving each time we receive a new batch of images. Still, with the imple-
mentation of the ruling of the major technique from high-resolution images, the accuracy
of the solution has become even higher. Using the interface provided and described, based
on the validation of the model and performed testing, the precision of the software is close
to perfect, with some exceptional cases that need algorithm improvement. This proves that
our tool can be very significant and reliable in the diagnostics process and provide a crucial
aim for the morphological determination of rare species of molds.

Future development of the application will include enabling the application to run
on different platforms and be easily accessible. Once the solution is available for mobile
devices, the diagnostics process can be rapid and performed in many more laboratories,
even those that do not have a specialist available. This way, the process can be reduced
from a few days of sending materials to another laboratory or department to only a few
minutes of taking the image with a mobile phone.

In step with these software upgrades, our plans involve adding more important genera
of significant molds for diagnostics, for which we are currently working on acquiring images.
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and A.M.; supervision, A.M. and S.O.; validation M.M. (Mina Milanović), A.M., S.O. and M.R.;
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