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Abstract: Conventional deep neural networks face challenges in handling the increasing amount
of information in real-world scenarios where it is impractical to gather all the training data at once.
Incremental learning, also known as continual learning, provides a solution for lightweight and
sustainable learning with neural networks. However, incremental learning encounters issues such
as “catastrophic forgetting” and the “stability–plasticity dilemma”. To address these challenges,
this study proposes a two-stage training method. In the first stage, dual knowledge distillation is
introduced, including feature map-based and response-based knowledge distillation. This approach
prevents the model from excessively favoring new tasks during training, thus addressing catastrophic
forgetting. In the second stage, an out-of-distribution dataset is incorporated to calculate the dis-
crepancy loss between multiple classifiers. By maximizing the discrepancy loss and minimizing
the cross-entropy loss, the model improves the classification accuracy of new tasks. The proposed
method is evaluated using the CIFAR100 and RESISC45 benchmark datasets, comparing it to existing
approaches. Experimental results demonstrate an overall accuracy improvement of 6.9% and a
reduction of 5.1% in the forgetting rate after adding nine consecutive tasks. These findings indicate
that the proposed method effectively mitigates catastrophic forgetting and provides a viable solution
for image classification in natural and remote sensing images.

Keywords: incremental learning; knowledge distillation; classifier discrepancy; remote sensing

1. Introduction

The advancements in hardware devices and the availability of vast amounts of data
have led to improved performance of machine learning techniques across various domains,
particularly deep learning. Deep learning has gained significant attention in the academic
community. By automatically learning features from a huge amount of data, deep learning
reduces the need for independent feature extraction, not only reducing human effort but
also enhancing the accuracy and robustness of classification. As a result, research in the
field of deep learning has experienced significant growth in recent years, particularly in
computer vision [1].

Typically, a deep learning model necessitates an adequate amount of data in each
category during training to achieve desirable outcomes. However, real-world data are
often dynamic and ever-evolving. As the data volume increases, training a neural network
model with the entire dataset becomes computationally intensive and time-consuming,
posing challenges in effectively handling such scenarios. If only new data are utilized to
update the model, the model may suffer from the issue of forgetting previously acquired
knowledge, leading to a decline in performance. This phenomenon is commonly known
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as “catastrophic forgetting” [2]. As a potential solution to this problem, the concept of
incremental learning has emerged.

Incremental learning, also known as lifelong learning or continuous learning, is a
deep learning technique aimed at enabling models to effectively process and integrate new
information while retaining existing knowledge, mirroring the natural learning process
observed in humans. Compared to traditional machine learning approaches, incremental
learning offers several advantages. It allows for training with new data at any time, with or
without the inclusion of old data, and enables continuous learning based on existing models
without the need for complete retraining, resulting in reduced time and computational
costs. This approach enhances the model’s ability to adapt to evolving data, ensuring high
efficiency and accuracy in dynamic environments, thus closely resembling the learning
patterns observed in humans.

The challenge of catastrophic forgetting remains a significant obstacle in incremental
learning. Some approaches have explored the utilization of a limited number of samples
from old tasks stored in a memory bank to mitigate catastrophic forgetting. However,
it should be noted that the loss of the old task dataset or privacy concerns may hinder
the successful implementation of these approaches. Another challenge in the context of
incremental learning pertains to maintaining the adaptability and accuracy of the model,
a phenomenon commonly referred to as the “stability–plasticity dilemma”. The concept
of stability in this context relates to the model’s ability to retain the knowledge acquired
from previous tasks, while plasticity refers to its capacity to integrate new knowledge
effectively. Just as humans face this dilemma when acquiring new knowledge, striking a
balance between assimilating new tasks and preserving the essence of previously learned
tasks becomes crucial. Finding the equilibrium within this complicated situation presents a
significant challenge in the field of incremental learning.

Deep neural networks have demonstrated remarkable performance in the field of
computer vision, which has motivated researchers to explore their application in addressing
challenges associated with remote sensing images [3,4]. The processing of remote sensing
images involves handling large volumes of data, which is a computationally intensive
task. Furthermore, certain remote sensing images may contain sensitive data that could
potentially become inaccessible over time. Therefore, incremental learning is an alternative
approach that continuously adds new data samples to update deep neural networks,
gradually learning new knowledge without retraining the entire network.

It is important to note that this study concentrates on class incremental learning
(class-IL), which involves evaluating all the categories learned by the model after each
batch of learning tasks. Moreover, this study considers the most challenging scenario,
where training data from past or future tasks cannot be utilized during the training of
the current task. This limitation often leads to significant catastrophic forgetting during
training, resulting in a decline in performance for previously learned tasks. To address
this, this study adopts an approach of training the model using an auxiliary dataset and
investigates whether it can effectively strike a balance between the “stability–plasticity
dilemma”.

This study presents the following contributions:

1. A novel two-stage incremental learning method is proposed, leveraging a regulariza-
tion approach. The method incorporates a dual distillation process, which includes
feature map knowledge distillation and response-based knowledge distillation. The
feature map knowledge distillation process ensures that the model’s feature extraction
process remains balanced and not solely influenced by the new task data. Since the
feature extractors were altered, the response-based knowledge distillation is employed
to address the challenge of catastrophic forgetting and mitigate its risks.

2. This study employs the calculation of discrepancy loss between multiple classifiers,
achieved through training on out-of-distribution datasets. This approach brings the
decision boundary of the new task model closer to the data distribution of the new
task categories, eventually enhancing the classification performance of the new task.
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3. The feasibility of applying incremental learning methods from natural image classifica-
tion problems to remote sensing image classification problems is explored, expanding
the potential applications of incremental learning in different domains.

The rest of this paper is organized as follows. Section 2 provides a brief introduction
to the domain of incremental learning and reviews some previous studies. The proposed
method is described in Section 3, followed by the experiments and discussions in Section 4.
Lastly, Section 5 proposes future research directions to further advance incremental learning
in practical applications.

2. Literature Review

This section presents an overview of incremental learning problems, approaches, and
their limitations through a review of several previous studies. Firstly, the scenarios of incre-
mental learning are introduced. Then, the different types of approaches used to address
these problems are discussed, along with a description of the challenges they encounter.

2.1. Scenarios of Incremental Learning

To assess a model’s ability for incremental learning, van de Ven et al. [5] proposed three
incremental learning scenarios: task-incremental learning (Task-IL), domain-incremental
learning (Domain-IL), and class-incremental learning (Class-IL).

In Task-IL, the algorithm gradually learns different tasks. During testing, the algorithm
is aware of the specific task it should perform. The model architecture may incorporate
task-specific components, such as independent output layers or separate networks, while
sharing other parts of the network, such as weights or loss functions, across tasks. Task-IL
aims to prevent catastrophic forgetting and explore effective ways to share learned features,
optimize efficiency, and leverage information from one task to improve performance in
other tasks. This scenario can be compared to learning different sports.

Domain-IL involves a consistent task problem structure with continuously changing
input distributions. During testing, the model does not need to infer the task it belongs to
but rather focuses on solving the current task at hand. Preventing catastrophic forgetting
in Domain-IL remains challenging, and addressing this issue is an important unsolved
challenge. An analogy in the real world is adapting to different protocols or driving in
various weather conditions [6].

Class-IL requires the model to infer the task it is facing during testing and solve
all previously trained tasks. After a series of classification tasks, the model must learn
to distinguish all classes. The key challenge in Class-IL lies in effectively learning to
differentiate previous classes that have not been observed together in the current task,
which poses a significant challenge for deep neural networks [7,8].

2.2. Approaches of Incremental Learning

In this study, following the research of De Lange et al. [9], the methods for imple-
menting incremental learning are categorized into three main categories: replay methods,
parameter isolation methods, and regularization-based methods. Figure 1 illustrates a
tree-structured diagram of different incremental learning methods. A brief overview of
some of these methods is provided below.

Replay methods involve storing samples in their original format or generating virtual
samples (pseudo-data) using generative models. These samples from previous tasks are
included in the training process to reduce forgetting. Replay methods can be further
divided into two strategies. The first strategy is Rehearsal/Pseudo-Rehearsal, which retains
a subset of representative samples from previous tasks and utilizes them during the training
of new tasks. Representative learning methods, such as iCaRL [10], fall under this category.
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To address concerns related to data privacy leakage and overfitting to retain old
data, a variation of replay methods called Pseudo-Rehearsal is employed when previous
samples are not available. This strategy involves inputting random numbers into a trained
model to generate virtual samples that approximate the original sample data. DGR [11],
for example, trains a deep generative model “generator” in the framework of generative
adversarial networks to generate data similar to past data. However, it should be noted
that the results of using the Pseudo-Rehearsal method are generally not as effective as
the Rehearsal strategy. Another strategy known as Constrained Optimization restricts the
optimization of the new task loss function to prevent interference from old tasks. GEM [12]
is a representative algorithm that adopts this approach.

Parameter isolation methods aim to prevent forgetting by allocating different parame-
ters for each task. Some methods within this category involve adding new branches for
new tasks while freezing the parameters of old tasks [13] or providing dedicated model
copies for each task [14] when the model architecture allows. For parameter isolation meth-
ods that maintain a static model architecture, specific portions are allocated to each task.
During the training of a new task, the portions associated with previous tasks are masked
to prevent parameter updates, thereby preserving the knowledge acquired from previous
tasks. Representative methods include the PathNet [15], PackNet [16], and HAT [17].

Regularization-based methods introduce an additional regularization term in the loss
function to consolidate previous knowledge when learning new data. These methods
prioritize data privacy, reduce memory requirements, and avoid the use of old data for
training. Examples of regularization-based methods include Learning without Forgetting
(LwF) [18] and Elastic Weight Consolidation (EWC) [19]. LwF leverages the output distri-
bution of the old model as knowledge and transfers it to the training of the new model.
EWC calculates the importance of all neural network parameters to limit the degree of
change in important parameters.

Among the three methods, the Rehearsal strategy (iCaRL) often outperforms the
other two types of methods. This is because the Rehearsal strategy allows for the direct
involvement of old data in training, resulting in improved performance. However, it
does not fully meet the extreme situation of incremental learning, which demands the
exclusion of old data. On the other hand, methods employing the Pseudo-Rehearsal strategy
rely heavily on the quality of the generated samples. The overall learning outcomes are
significantly compromised and even perform worse than the other two methods with a
poor generator.

Although regularization-based methods avoid the use of old data, which aligns more
closely with the real-world scenario that incremental learning aims to simulate, they are
often vulnerable to domain changes between tasks, particularly when the domains differ
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significantly. This leads to the persistent problem of catastrophic forgetting. Consequently,
many regularization-based methods employ knowledge distillation to retain knowledge
from old tasks as much as possible to mitigate the issue of catastrophic forgetting, which
will be reviewed in the next subsection.

2.3. Knowledge Distillation

To retain the knowledge of previous tasks, regularization-based methods often employ
the technique of knowledge distillation (KD). Knowledge distillation is a model compres-
sion technique that effectively extracts knowledge from a more complex neural network
model to produce a smaller and simpler model that can perform on par with the com-
plex model. This technique has been widely utilized not only in incremental learning but
also in various other fields, such as computer vision, natural language processing, speech
recognition, and recommendation systems.

The concept of using knowledge distillation to compress models was first introduced
by Bucilua et al. [20] in 2006, although no practical implementation was provided. In 2014,
Hinton et al. [21] formally defined the term “distillation” and proposed a practical training
process. The process involves a teacher–student model framework, where the teacher
model is initially trained and then distilled to extract knowledge as teaching materials.
This allows the student model to achieve performance comparable to the teacher model.
Specifically, the teacher model can be an initial or trained model, while the student model
is the model that needs to undergo training. The final output of the entire framework is
based on the results obtained from training the student model.

In knowledge distillation, the architecture of the teacher–student relationship serves
as a general carrier for knowledge transfer. The quality of knowledge acquisition and
distillation from teacher to student is determined by the design of the teacher and student
networks. Similar to human learning, students need to find suitable teachers from whom
to learn. Therefore, in knowledge distillation, factors such as the type of knowledge,
distillation strategy, and the structural relationship between the teacher and student models
significantly impact the learning process of the student model. Most knowledge distillation
methods utilize the output of a large deep model as knowledge [22–24]. Alternatively,
some methods employ the activation functions or feature neurons of intermediate layers as
knowledge [25–28].

In a survey conducted by Gou et al. [29], the authors categorized knowledge in knowl-
edge distillation into three types: response-based knowledge, feature-based knowledge,
and relation-based knowledge.

Response-based knowledge refers to the output of neurons in the last layer of the
teacher model. The aim is to imitate the final predictions of the teacher model. This type
of knowledge distillation is widely used in various tasks and applications, such as object
detection [30] and semantic landmark localization. However, it has the limitation of relying
solely on the output of the last layer, disregarding potential knowledge in hidden layers.
Additionally, response-based knowledge distillation is primarily applicable to supervised
learning problems.

Feature-based knowledge overcomes the limitation of neglecting hidden layers. In
addition to the last layer output, intermediate layers’ output, specifically feature maps,
can be utilized to improve the performance of the student model. For example, the Fitnets
introduced by Romero et al. [31] adopted such an idea. Inspired by them, other methods
have been proposed to match features during the distillation process indirectly [32–34].
While feature-based knowledge distillation provides valuable information for student
model learning, challenges remain in selecting appropriate layers from the teacher and
student models to match the feature representations effectively.

Relation-based knowledge explores relationships between different layers or different
data samples, going beyond the specific layer outputs used in response-based and feature-
based knowledge. For instance, Liu et al. [35] proposed a method that employs an instance
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relationship graph, where the knowledge transferred includes instance features, instance
relationships, and feature space transformations across layers.

2.4. Out-of-Distribution Dataset

In the domain of computer vision, numerous studies have extensively explored the
incorporation of external datasets to enhance the performance of target tasks. For instance,
inductive transfer learning has been employed to transfer and reuse knowledge from
labeled out-of-domain samples through external datasets [36,37]. Semisupervised learning
approaches [38,39] aim to leverage the utility of unlabeled samples within the same domain,
while the self-taught learning approach improves the performance of specific classification
tasks using easily obtainable unlabeled data [40].

In a study by Yu et al. [41], auxiliary datasets were applied to unsupervised anomaly
detection. The auxiliary dataset consists of unlabeled data, encompassing samples from
known categories (referred to as in-distribution or ID samples) as well as datasets that
deviate from the target task distribution (known as out-of-distribution (OOD) samples).
OOD samples exhibit lower confidence levels, indicating their proximity to the classifier’s
decision boundary. These samples are distinguished by analyzing the discrepancies be-
tween classifiers. Since OOD samples are not explicitly assigned to ID sample categories
or lie far from the ID sample distribution, classifiers with varying parameters become
perplexed and produce divergent outcomes. Consequently, OOD samples occupy the “gap”
between the decision boundaries, thus enhancing the classifier’s classification performance
on ID samples and facilitating the detection of OOD samples.

This study adopts a perspective similar to that of the investigation conducted by
Yu et al. [41] in utilizing unlabeled auxiliary data. Based on our intuition, the auxiliary
dataset should possess distinguishable characteristics that are distinct from the samples
in the current task. When learning a new task, the objective is to identify the disparities
between the current task and previous tasks. By incorporating classifier discrepancy with
OOD data, the classification performance can be enhanced in scenarios where no data
from previous tasks were utilized, as OOD data can serve as dissimilar data to the current
task data.

2.5. Summary

After reviewing existing literature on incremental learning, this study focuses on
exploring class-IL problems. Replay methods are often used but do not meet the challenging
requirement of learning without old data. Parameter isolation methods are limited to Task-
IL scenarios. Therefore, this study adopts a regularization-based approach and proposes
a novel method that combines response-based and feature-based knowledge distillation.
In addition, multiple classifiers and auxiliary datasets are introduced to enhance the
classification performance of new tasks and strike a balance between stability and plasticity.

3. Methodology

In this section, we present the proposed two-stage incremental learning method.

3.1. Problem Definition

Assuming there are T tasks, Dt = {xt, yt}, t = 1, . . . , T is developed, where Dt
represents the dataset of task t, and xt and yt are the samples and corresponding labels
in task t. Each task t consists of distinct classes Ct, and the classes vary across tasks. In
the context of Class-IL, the objective is to sequentially train the model from D1 to DT . As
the number of tasks increases, the model gradually adapts to all the learned tasks, and the
number of classes that the model needs to classify also grows. Specifically, when training
task t, the model is trained exclusively on the dataset Dt. After training, the model should
not only be capable of classifying the current task t but also retain the ability to classify the
datasets D1:t−1 from previously trained tasks. Therefore, the desired outcome is that after



Electronics 2024, 13, 583 7 of 17

learning all tasks, the model can classify all observed datasets D1:T without experiencing
any forgetting.

3.2. System Architecture

To achieve the objective stated in Section 3.1, this study introduces a two-stage training
model for Class-IL. The model consists of a dual-headed CNN architecture that includes a
shared feature extractor and two classifiers. Due to the different initialized parameters, the
decision boundaries of these two classifiers may show slight variations after training.

First, the model learns based on an initial task dataset, D0. The feature extractor of
the model in this situation is called F0, and the classifiers are called C(1)

0 and C(2)
0 . After

training, when training a new task, t, with dataset Dt, we divide the training process into
two stages.

In the first stage, the output of Ft−1,
∼
y
(1)
1:t−1, and

∼
y
(2)
1:t−1 is considered as the knowledge

of the old model. This knowledge is used to update the feature extractor, Ft, and the
classifiers, C1

t and C2
t , for task t. We calculate two distillation losses: the feature map

distillation loss (called KD-F), which uses the outputs of Ft−1 and Ft, and the response

distillation losses (called KD-R), which use the output logits
∼
y
(1)
1:t−1, and

∼
y
(2)
1:t−1 of the old

tasks. Additionally, we calculate the cross-entropy loss of Dt in the output logits of the new
task to update the entire model.

The reason for using dual distillation loss is to ensure that the updated model in the
training process of the new task can retain the feature extraction ability that is similar to the
old model. It is important to note that since there is no old task data involved in learning a
new task, we use the logits of the old task to calculate the response distillation loss. This is
executed in the hope that during the training process of the new task, the updated model’s
logits output can closely match the old model’s output, so that similar classification results
on old tasks can be expected.

The first stage of the proposed method constrains the model with dual distillation
loss, which may lead to an overreliance on recognizing the old task and a loss of the
ability to learn new tasks. To address this issue, a second stage is introduced. In this stage,
the discrepancy loss between the classifiers using auxiliary data is calculated to enhance
the classification ability for new tasks. The goal of the classifier discrepancy loss is to
increase the disparity between the two classifiers, while the cross-entropy loss reduces the
discrepancy. Through the interplay between these two types of losses, the aim is to find the
optimal decision boundary. The overall architecture is illustrated in Figure 2.

3.3. Dual Knowledge Distillation

In the study by Hinton et al. [21], they referred to knowledge based on responses as
“soft targets”. “Soft targets” represent the probability that an input belongs to a certain
class and can be estimated using the softmax function, as shown in Equations (1) and (2):

y(zi, τ) =
exp(zi/τ)

∑j exp
(
zj/τ

) (1)

and
LKD(y(zt, τ), y(zs, τ)) = LR(y(zt, τ), y(zs, τ)) (2)

where LR represents the divergence loss of the logits, and zt and zs represent the logits
output of the teacher and student models. Following the suggestion by Hinton et al. [21],
a temperature τ should be set to a number larger than 1 to increase the weight of smaller
logits, encouraging similarity between the teacher and student networks.
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In this study, the knowledge distillation process is referred to as a self-distillation
process, as the teacher and student networks are identical. The only difference lies in
the training dataset used for different tasks. Thus, the objective of the knowledge distil-
lation process is to obtain knowledge from the network itself, essentially learning from
previous tasks.

The response-based knowledge distillation method involves variations in the extracted
features of the network due to the incremented tasks, which can lead to challenges in
adaptability and stability when learning different tasks or domains. This may result
in catastrophic forgetting or ineffective learning of new tasks. In contrast, the feature-
based knowledge distillation method relies solely on the feature representation of the
model’s intermediate layer for knowledge transfer without depending on labeled prediction
responses. It focuses on extracting and transferring the feature representations within the
model, providing flexibility and adaptability to different tasks. However, relying solely on
the feature-based knowledge distillation method can fail the classifier because the classifier
does not reflect the change in the feature space. To address this issue, this study adopts a
dual distillation approach, combining feature map distillation (KD-F) with the traditional
knowledge distillation method based on logit outputs (KD-R). This approach enables the
new model to not only learn the output results of the old model but also approximate
the feature extraction results of the old model. Consequently, catastrophic forgetting is
effectively mitigated while preserving the network’s ability to learn new tasks.

The feature map distillation loss is the mean square error (MSE) loss:

LKD−F = ||F1:t−1(Xt)− Ft(Xt)||, (3)

where F1:t−1(Xt) and Ft(Xt) represent the output of the feature extraction layer of the new
model and old model, respectively, at a specific training task t. During the training of a new
task t, only the data Xt from that task are used. Therefore, it is reasonable to expect that the
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feature vectors extracted using the new model should be similar to those extracted through
the old model when facing “unseen” data that the old model has never encountered.

After applying feature map distillation, the model effectively approximates the fea-
ture distribution of the old model while learning the new task. However, including the
categories of the previous task in the calculation of cross-entropy loss when training the
new task, which uses only new task data, can lead to significant catastrophic forgetting.
This is due to the tendency of the softmax function to bias the overall logit output towards
the categories of the new task. As mentioned above, with the change in feature extraction
results, the classifier for the previous task cannot ensure good discriminative ability in
the new feature space. Hence, this study utilizes response-based logit output as a second
knowledge distillation loss to reinforce the model’s classifier in preserving its classification
capability for the categories of the previous task in the modified feature space. The equation
for KD-R is presented in Equation (4):

LKD−R

(
∼
y
(k)
1:t−1, ŷ(k)1:t−1

)
= −∑i=1:t−1

∼
y
′(k)
𝓁i

·logŷ′(k)𝓁i
, (4)

where
∼
y
(k)
1:t−1 is the logits of the old model, and ŷ(k)1:t−1 is the logits of the kth classifier on old

tasks’ categories. 𝓁 is the categories from task 1 to t−1,
∼
y
′(k)
𝓁i

is the soft target, and ŷ′(k)𝓁i
is

the predicted output of the ith category from the new model.
In addition to the distillation loss, the cross-entropy loss is computed based on the

predicted results of both classifiers (see Equation (5)). It is important to note that since
only the data from the new task are used during the training of the new task, considering
the categories of the old task when calculating the cross-entropy loss would result in
significant forgetting. Therefore, in this study, the cross-entropy loss calculation only
considers the output results of the new task categories. In other words, only the classifier
for the categories of the new task is updated using the cross-entropy loss. The overall loss
function is expressed using Equation (6):

LCE = −
(

y(1)t ·logŷ(1)t + y(2)t ·logŷ(2)t

)
(5)

and
LstageI

= LCE + α(L KD−F + LKD−R
)
, (6)

where α is a weight factor. A higher α value leads to better performance in classifying
old tasks.

3.4. Classifier Discrepancy Learning

This study is inspired by the work of Yu and Aizawa [41] and Saito et al. [42], which
proposed the use of multiple classifiers and the simultaneous calculation of cross-entropy
and classifier discrepancy loss to effectively enhance the classification performance of the
classifiers during the learning process. The underlying concept of their approach is to
enable each classifier to utilize different features for classification, thereby enhancing the
model’s capability to classify diverse categories. By leveraging different classifiers, the
model can capture distinct crucial information, leading to more stable classification results.

Since the information regarding the previous task is insufficient during the incremental
learning process, there is no guarantee that the model will not cover the data distribution
of the old task when solely relying on the training data of the new task. To address this
concern, this study proposes the incorporation of an additional OOD dataset as auxiliary
data. The goal is to utilize the OOD dataset with the discrepancy loss to create a separation
between the two classifiers. For k classifiers, the classifier discrepancy loss is defined
as follows:

LCD(XOOD, ŷt) = ∑k
m=1 ∑k

n=m+1 d(pm(yt|XOOD), pn(yt|XOOD)), (7)
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where the discrepancy loss for a single classifier is defined as follows:

d(pm(yt|XOOD), pn(yt|XOOD)) = |pm(ŷt|XOOD) − pn(ŷt|XOOD)|. (8)

In this study, k is set to 2 because there is no significant performance difference when
using more classifiers, as described in [42].

Simultaneously, the optimization of the two classifiers is continuously performed
using the cross-entropy loss. This approach enables better convergence of the decision
boundary of the model. The overall loss function in stage II is shown in Equation (9):

LstageI I = LCE − λLCD, (9)

where the computation of LCE is the same as that in stage I. The weight λ represents the
balance between the discrepancy loss of the classifier and the cross-entropy loss. When
λ is too small, for example, λ = 0.5, it cannot effectively separate the decision boundaries
between two classifiers, resulting in a bias towards learning the new tasks by strongly
minimizing the cross-entropy loss in the second stage. Therefore, there may be overfitting
of the new tasks in subsequent tasks. On the other hand, when λ is too large, for example,
λ = 2, the decision boundaries between the classifiers may be too widely separated, resulting
in more noticeable differences between the classifiers. Therefore, after experimentation,
we chose λ = 1 for successive experiments. It is important to note that in the second
stage, we freeze the well-trained feature extractor Ft for the model to focus on improving
the classifiers.

In the next section, we will introduce the experimental results of this study. We will
also discuss the performance of the proposed method on both natural image and remote
sensing image datasets.

4. Results and Discussions

In this section, several experiments and discussions are conducted to demonstrate the
validity of the proposed approach.

4.1. Datasets and Experimental Settings

This study explores the feasibility of the proposed framework using two types of
datasets. The first dataset used is CIFAR100 [43], a natural image dataset, while the cor-
responding auxiliary dataset is Tiny Imagenet [44]. The auxiliary dataset, Tiny Imagenet,
is employed in the second stage of training and is considered unlabeled. For the experi-
ment, CIFAR100 is divided into ten tasks, each consisting of ten classes. The initial task
comprises a set of 10 classes. In the first incremented task, an additional 10 classes are
introduced, resulting in the model being required to classify a total of 20 classes using only
the training samples from the newly added 10 classes. This process continues until the
ninth incremented task is reached, at which point the model must classify all 100 classes.

Additionally, remote sensing image datasets, namely NWPU-RESISC45 [45], UC-
Merced [46], and AID [47], are used. These benchmark datasets are widely utilized to
assess the performance of the model and demonstrate the general applicability in the
domain of remote sensing imagery. NWPU-RESISC45 contains 31,500 images, covering
45 scene classes with 700 images per class. Each image has a size of 256 × 256 pixels, but
for the experiment, the images are resized to 64 × 64 pixels. AID comprises 10,000 images
divided into 30 classes, with each image measuring 600 × 600 pixels. UC-Merced consists
of 21 classes with 100 images per class. Some sample images are shown in Figure 3. In
the experiments involving the remote sensing image dataset, the RESISC45 is used as the
training dataset, while the others are combined to create the auxiliary dataset.

Due to the limitation of the number of samples in the RESISC45 remote sensing dataset,
the training dataset is divided into five tasks (nine classes for each task), and the images are
resized to 64 × 64 pixels. Each class is further divided into an 80% training set and a 20%
test set so that there are 5040 training samples for each task. Regardless of the dataset used
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as the training dataset, 10,000 randomly selected images from the mixture of other datasets
(UC-Merced and AID) are used as the OOD dataset for training in the second stage, with
each image also resized to 64 × 64 pixels.
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Considering training time, a pretrained ResNet34 [48] is employed as the network
backbone. The classes for each task are randomized, and training starts from the first task.
In the first stage of training for each task, the network is trained for 100 epochs with a
learning rate of 0.001, which is decayed by a factor of 10 after 50 epochs. In the second stage,
the network is trained for 20 epochs with a learning rate of 0.0001. Stochastic gradient
descent is utilized for optimization, with a batch size of 128 for all experiments.

4.2. Comparison of Different Knowledge Distillation Approaches

To address the issue of catastrophic forgetting, this study proposes employing dual
knowledge distillation to preserve the model’s ability to retain knowledge of previous tasks.
The CIFAR100 dataset was utilized in this experiment. Figure 4 presents a comparison
of accuracy using different types of knowledge distillation during the first stage. Three
approaches were considered: adopting only KD-F, adopting only KD-R, which corresponds
to the baseline method LwF [18], and adopting both KD-F and KD-R. In this experiment,
the weight α in all three methods was set to 2. The results in Figure 4 demonstrate that
the accuracy is not as good as using dual distillation when only one distillation loss is
considered. This is because calculating the knowledge distillation loss solely on the feature
maps enables the new model to effectively capture the features of the old model, but the
classifier cannot adapt to the changed feature space, resulting in forgetting old tasks. On the
other hand, calculating the response-based loss solely on the logit output of the classifier
may drastically change the feature space with the increasing number of tasks, leading
the model to be unstable. When both distillation losses are considered, the feature space
is retained, and the classifiers of new tasks are forced to learn from this feature space,
while the classifiers for old tasks only make slight adjustments. This approach improves
the overall accuracy. These findings suggest that the combination of KD-F with KD-R
is the most effective approach in mitigating catastrophic forgetting. Thus, subsequent
experiments were conducted using both KD-F and KD-R.
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4.3. Confusions among Tasks

Due to the information imbalance between new and old tasks, the acquisition of new
task knowledge relies on the strong supervisory signal provided by the cross-entropy
loss, while knowledge distillation is employed for acquiring old task knowledge. It has
been observed by Zhao et al. [49] that while knowledge distillation effectively retains
knowledge of old tasks and reduces misclassification of old task categories as other old
task categories, it also increases the likelihood of misclassifying old task categories as
new task categories. This is attributed to the limited scope of distillation loss calculation
within old task categories. Consequently, even if an old task sample is misclassified as a
new task category, the distillation loss may remain low. Conversely, if an old task sample
is misclassified as a different old task category, the distillation loss becomes significant.
Despite the classifier providing sufficiently large logits for old task categories, the logits of
old task samples are unable to surpass the logits of new categories due to the larger logits
associated with the new task categories. This phenomenon is termed “old–new confusion”
(ONC) [50], and it has been observed in this study as well.

To overcome the ONC problem, Ahn et al. [51] proposed the Separated Softmax (SS)
method. The SS method segregates the model output of the new task and the old task. The
final prediction given a test sample x is obtained using

ŷ = argmax
t=1:T

zt(x, θt), (10)

where zt is the output logits of the classifier θt. This technique serves to prevent the
mixing of logits from the old task with the classes of the new task during the calculation of
output probabilities. Another approach, called Weight Alignment (WA) [49], normalizes
the weights of the last fully connected layers (i.e., classifiers) between the old tasks and
new tasks (see Equations (11) and (12)). This ensures fairness in the output logits for both
the new task and the old task.

Wold =
(
w1, w2, . . . , wcold

)
, Wnew =

(
wcold+1, wcold+2, . . . , wcall

)
(11)

and

Ŵnew =
mean(Norm(Wold))

mean(Norm(Wnew ))
·Wnew (12)

where Wold is the classifier weights of old tasks, and Wnew is the classifier weights of
new tasks.

Considering the presence of the ONC phenomenon in this study, the experimental
setup incorporates SS and WA techniques to explore the possibility of further improving
performance. Results are shown in the next subsection.

4.4. Ablation Study

A comparative analysis was conducted to evaluate multiple methods, including the
incorporation of WA and SS techniques, to address the ONC problem and assess their
compatibility with the proposed method. When it comes to adopting WA and SS, we
followed their original work without making any modifications. The detailed findings
are presented in Tables 1 and 2, where T0 represents the initial task, and T1 represents
the first incremented task, and so on. The CIFAR100 dataset was partitioned into ten
tasks due to its abundant sample size, while the RESISC45 dataset was divided into five
tasks due to its comparatively smaller sample size. It should be noted that the proposed
method comprises two stages, where the first stage (referred to as S1) can be independently
trained, while the second stage (referred to as S2) needs to be conducted following S1.
The experimental results in Table 1 indicate that either WA or SS, in conjunction with
the proposed two-stage design, contributes to an overall improvement in top-1 accuracy.
However, the simultaneous utilization of WA and SS does not yield a significant effect.
In addition, the adoption of the two-stage approach proposed in this study demonstrates
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superior accuracy compared to solely employing the first stage in tasks T1 and T2. It
is noteworthy that the incorporation of SS in conjunction with the two-stage approach
achieves the highest accuracy after task T3, whereas the incorporation of WA lowers the
overall accuracy significantly.

Table 1. Comparisons of different combinations of methods on CIFAR100. The values in the table
represent classification accuracies (%). S1 and S2 stand for the stages I and II proposed in this study.
The letter “T” indicates the incremented task. The original two-stage design has better accuracy
at tasks T1 and T2. However, the two-stage model with separated softmax achieves the highest
accuracy after task T3. Numbers in bold indicate the highest accuracy among all methods in the
corresponding tasks.

Method T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

LwF [18] 87.4 73.7 58.7 21.7 17.6 16.2 16.0 16.3 14.6 14.2
LwF + WA [49] 89.3 73.3 63.1 23.7 21.0 18.0 17.5 16.3 14.3 14.6

S1 88.6 73.5 61.3 49.1 27.7 23.3 21.7 20.6 19.7 18.6
S1 + WA 86.2 70.1 58.9 45.5 35.3 26.2 22.9 21.9 18.7 17.3
S1 + S2 87.7 75.6 64.8 49.6 36.2 27.7 23.1 21.3 19.8 19.9

S1 + S2 + WA 87.0 73.2 60.1 48.4 33.2 10.1 12.1 13.2 12.6 11.2
S1 + SS 88.6 72.2 59.2 47.9 28.2 24.6 23.3 20.9 20.2 20.3

S1 + WA + SS 86.2 70.6 59.0 46.3 36.3 26.1 23.9 22.3 18.8 17.5
S1 + S2 + SS 87.7 74.1 63.7 50.4 37.8 29.4 25.8 23.4 21.2 21.1

S1 + S2 + WA + SS 87.0 71.7 60.2 48.5 33.9 10.9 12.7 13.2 12.8 11.5

Table 2. Comparisons of different combinations of methods on RESISC45. The values in the table
represent classification accuracies (%). Numbers in bold indicate the highest accuracy among all
methods in the corresponding tasks.

Method T0 T1 T2 T3 T4

LwF [18] 91.9 74.0 66.5 61.2 55.7
LwF + WA [49] 93.1 74.6 67.7 63.9 55.3

S1 92.4 74.8 66.9 63.2 55.8
S1 + WA 92.4 72.5 64.4 58.8 54.3
S1 + S2 92.1 74.8 67.7 64.6 57.3

S1 + S2 + WA 92.6 73.8 63.0 60.1 55.7
S1 + SS 92.4 74.7 66.2 61.2 57.6

S1 + WA + SS 92.4 73.1 65.0 59.1 54.5
S1 + S2 + SS 92.1 75.0 67.1 61.9 57.1

S1 + S2 + WA + SS 92.6 74.5 64.4 60.4 56.6

When experimenting with the RESISC45 dataset, it was observed that, due to its
relatively small size, most combinations resulted in acceptable classification accuracy. As a
result, the effectiveness of the proposed method was not significantly proven. However,
the two-stage design with SS still yielded favorable results compared to adopting stage
I solely. These results lead to the conclusion that for long-term incremental tasks, the
implementation of the two-stage approach can effectively enhance the overall effectiveness
of recognition, particularly through SS.

4.5. Forgetting Rate

To evaluate the severity of catastrophic forgetting in the model, we refer to the study
conducted by Chaudhry et al. [52] to assess the level of forgetting of previous tasks by the
model in the current task. The forgetting rate measures the difference between the highest
accuracy achieved for a specific task among previous tasks and the accuracy of that task
when the current incremented task is involved. Based on this definition, when the model
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undergoes incremental training on task t, the forgetting rate for the jth task, f t
j , is calculated

using the following equations:

f t
j = max

i∈{1,...,t−1}
(ai,j − at,j), ∀j < t (13)

and
F t =

1
t − 1∑t−1

j=1 f t
j , (14)

where ai,j is the averaged classification accuracy of task j when there are I tasks in total.
The overall forgetting rate F t is the averaged value for all previous tasks. A lower F t

indicates a smaller level of forgetting. The forgetting rates of various combinations are
calculated for the CIFAR100 and RESISC45 datasets and are presented in Tables 3 and 4.
It is observed that the inclusion of WA leads to a low forgetting rate; however, it also
restricts the model’s flexibility, limiting its ability to learn new tasks and subsequently
lowering classification accuracy (as indicated in Tables 1 and 2). Therefore, based on the
consistent findings in Tables 3 and 4, we believe that the proposed two-stage approach with
SS achieves a sufficiently low forgetting rate. Specifically, it demonstrates a reduction in
the forgetting rate of 5.1% and 11.8% when compared to the baseline method LwF after the
completion of nine incremented tasks on CIFAR100 and RESISC45 datasets, respectively.
Moreover, this approach maintains the highest classification accuracy, surpassing LwF by
6.9% and 1.4% on both datasets, respectively.

Table 3. Comparisons of the forgetting rate (%) of different methods on CIFAR100. Smaller numbers
indicate better performance. Numbers in bold indicate the highest accuracy among all methods in
the corresponding tasks.

Method T1 T2 T3 T4 T5 T6 T7 T8 T9

LwF [18] 23.7 37.8 64.5 60.4 56.9 54.1 52.1 51.9 51.8
LwF + WA [49] 8.2 36.1 44.7 41.5 41.2 42.2 40.0 39.9 41.2

S1 20.8 28.8 33.8 53.6 53.5 53.5 52.4 51.2 52.3
S1 + WA 5.3 13.1 23.3 30.7 37.5 39.8 39.3 42.9 45.3
S1 + S2 18.5 23.8 36.8 46.8 52.0 55.4 54.7 54.1 53.1

S1 + S2 + WA 8.2 15.3 21.8 36.7 54.1 49.4 46.8 45.5 46.5
S1 + SS 21.4 28.3 30.3 47.9 46.4 45.9 45.6 44.1 43.9

S1 + WA + SS 9.1 18.5 23.9 31.1 39.0 39.4 39.8 42.9 45.1
S1 + S2 + SS 17.7 21.8 28.9 39.3 44.5 46.3 46.2 47.0 46.7

S1 + S2 + WA + SS 10.1 17.6 22.2 35.75 54.5 49.7 47.0 46.1 46.5

Table 4. Comparisons of the forgetting rate (%) of different methods on RESISC45. Smaller numbers
indicate better performance. Numbers in bold indicate the highest accuracy among all methods in
the corresponding tasks.

Method T1 T2 T3 T4

LwF [18] 8.7 16.5 26.0 29.8
LwF + WA [49] 19.1 18.4 21.9 32.2

S1 15.1 15.5 16.5 25.1
S1 + WA 2.9 5.8 7.6 12.6
S1 + S2 9.8 10.9 10.9 13.0

S1 + S2 + WA 3.7 7.7 8.1 13.1
S1 + SS 13.1 15.4 14.9 18.3

S1 + WA + SS 5.6 7.2 8.5 13.4
S1 + S2 + SS 11.1 12.1 13.3 18.0

S1 + S2 + WA + SS 6.3 10.9 10.5 13.8
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5. Conclusions and Future Work

This study presents a novel incremental learning method that combines knowledge
distillation and multiple classifiers. The proposed method is applied to address natural
image classification and remote sensing image classification problems through a two-stage
training process. In the first stage, a feature map-based knowledge distillation method is
introduced, which transfers knowledge through the feature representation of the model’s
feature extraction layer. This allows the feature space of the new model to approach the
feature space of the old model, reducing the risk of catastrophic forgetting. However,
relying solely on feature-based knowledge distillation may hinder the adaptability of
the old task classifiers to changes in the feature space, resulting in weakened knowledge
retention for the old task after consecutive tasks. To address the limitations of feature map-
based knowledge distillation, this study introduces response-based knowledge distillation
as a second form of knowledge transfer to alleviate catastrophic forgetting of the old task.
The experiments conducted demonstrate that the proposed method is more effective in
mitigating catastrophic forgetting compared to using response-based knowledge distillation
or feature-based knowledge distillation alone.

However, using multiple distillation methods poses a “stability–plasticity dilemma”,
limiting the model’s ability to learn new tasks while retaining old knowledge. To overcome
this, the second stage of training incorporates multiple classifiers into the model and
maximizes the differences among them on the new task. This approach aims to enhance
the classification capability and robustness for the new task by maximizing the distinct
information captured by each classifier while minimizing the overall classification error,
thereby achieving a balance between stability and plasticity. The experimental results
demonstrate the efficacy of the proposed method in addressing the “stability–plasticity
dilemma”, which is the primary challenge encountered in incremental learning.

While the proposed method effectively mitigates catastrophic forgetting, there remains
an issue of asymmetry between the information of the new and old tasks. To overcome this,
we additionally employ the Separated Softmax and Weight Alignment techniques, and
our findings indicate that the proposed method exhibits capability with both approaches,
with the incorporation of Separated Softmax yielding the best results. Future research can
explore further experiments on various datasets to examine the capacity of tasks, including
factors such as the number of tasks and the number of classes in each task. In the context
of remote sensing image classification problems, training models in the remote sensing
domain often prove challenging due to sample scarcity and imbalance. Therefore, future
research can investigate the generalizability of this study by incorporating additional
techniques, such as data augmentation. Furthermore, other influencing factors, such as
the impact of different OOD datasets on model learning and the relationship between the
similarity of the new task and the OOD datasets, can also be explored.
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