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Abstract: To solve the online path planning of multi-robots in dynamic environments, a novel sec-
ondary immune responses-based immune path planning algorithm (SIRIPPA) is presented. The
algorithm comprises two immune stages. In the primary immune stage, the antibodies are mainly
designed for obstacle avoidance and a primary immune kinetic model is designed in terms of the
different impacts of obstacles on robot behaviors. The primary immune antibodies and their concen-
tration values are mainly taken as the prior knowledge to accelerate the secondary immune response.
In the secondary immune stage, aiming at the same obstacle antigens, which invade once more, the
immune system quickly produces many behavior antibodies. Combining the primary immune results
and secondary immune response results, the path planning performance of multi-robots is improved.
The simulation experiment indicates that, in static environment tests, compared to corresponding
immune planning algorithms, the SIRIPPA exhibits an average reduction of 6.22% in the global
path length, a decrease of 23.00% in the average smoothness, and an average energy consumption
reduction of 27.55%; the algorithm exhibits a better performance for path planning. The simulation
test in a dynamic environment shows the good flexibility and stability of the SIRIPPA. Additionally,
the experimental results in a real environment further support the validity of the SIRIPPA.

Keywords: multi-robots; path planning; immune network; secondary immune response; dynamic

environment

1. Introduction

As one of the most important tasks for autonomous mobile robot navigation, path
planning refers to searching for the optimal and collision-free path from the starting point
to the goal based on the optimization criteria (e.g., minimal working cost or shortest
route) [1]. According to the environmental acquisition mode and the size of the acquired
environment, path planning can be divided into global path planning and local path
planning. Global path planning methods include the genetic algorithm (GA) [2] and ant
colony algorithm (ACA) [3]. The genetic algorithm (GA) is an optimization search algorithm
that simulates the evolutionary process of natural organisms. Witch has a wide range
of applications in combinatorial optimization, function optimization, automatic control,
production scheduling, and path planning processes [4]. The GA possesses excellent global
and distributed search capabilities. However, when addressing path planning problems,
the algorithm tends to have a high computational load, impacting its real-time performance.
The ACA is characterized by its global optimization capability, positive feedback, and high
robustness. However, its search efficiency is low, and the search capability is limited to
the division of grids. The commonly used algorithms for local path planning include the
artificial potential field (APF) method [5], fuzzy algorithm [6], neural network algorithm [7],
and rapidly exploring random tree (RRT) algorithm [8]. The APF method solves path
planning by constructing the attractive and repulsive potential fields and is characterized
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by a simple model and its low calculation requirements. However, it can also easily become
trapped in local minima. The fuzzy planning algorithm overcomes the issue of becoming
trapped in local minima. However, the acquisition of fuzzy rules and the selection of the
fuzzy set universe are influenced by human factors. As for the neural network algorithm,
it is difficult to acquire complete learning samples, especially the samples in dynamic
environments. The significant characteristic of the RRT (rapidly exploring random tree)
algorithm and its variants lies in the random exploration of space, particularly in path
planning for high-dimensional spaces. However, due to the inherent randomness of the
RRT algorithm, the computational efficiency of the algorithm is relatively low, impacting
its real-time applicability in complex environments.

In recent years, in order to continuously enhance the performance of path planning
algorithms, particularly in terms of their search capabilities and convergence speeds in
complex dynamic environments, many researchers have undertaken a series of design
improvements. Kairong Li et al. [9] improved the method for establishing the initial
population, crossover operators, etc., and proposed an improved multi-objective genetic
algorithm (IMGA), which improved the feasibility of the initial path and the shortcomings
of traditional genetic algorithms, such as slow convergence speed and susceptibility to local
traps, effectively shortening the path length. However, there is still significant randomness
in individual selections and the stability of the algorithm is low. Kangjing Shi et al. [10]
conducted genetic operations, including crossovers and mutations, on the initial path
obtained by the ant colony algorithm (ACA) to achieve an enhanced path planning solution.
They introduced a path planning algorithm that integrated the GA and ACA (GA-ACO),
resulting in the improved efficiency and accuracy of path planning. Nevertheless, since the
turning angles of robots are still constrained by the number of distance-detection sensors,
further enhancements are required for the planning performance in terms of the length and
smoothness. AD Sabiha et al. [11] integrated and optimized the GA and PSO, applied the
TLBO to determine the optimal online path, and minimized the path smoothness. They
proposed a new GA-PSO path planning algorithm, which improved the planning efficiency;
however, there is still a need for the improvement of local planning performances in
dynamic, unpredictable environments. Path planning in complex environments is a hotspot
and difficulty research area in robotics studies. Although considerable planning methods
are provided for online dynamic planning, they still remain in the simulation phase.

Inspired by the biological immune system (BIS), the artificial immune system (AIS)
has been an active area of research in robotics for its strong adaptability, diversity, learning,
recognition, and memory capabilities. [12]. The secondary immune response is a crucial
feature of the biological immune system. Its advantage lies in its rapid and robust immune
reaction against pathogens previously encountered, leading to more effective resistance
against invasions. If the mechanism of the secondary immune response is incorporated
into artificial immune-based path planning algorithms, this advantage translates into a
faster search ability and the enhanced adaptability of the algorithm to complex, dynamic
environments. Therefore, in order to solve online path planning in dynamic environments,
a new secondary immune response-based immune path planning algorithm (SIRIPPA) is
proposed in this paper. Its planning performance is initially tested through simulations
in both static and dynamic environments. Subsequently, an experiment is conducted to
further validate its efficacy.

2. Path Planning Model Based on the Immune Network Theory
2.1. Idiotypic Immune Network Hypothesis

The biological immune system is a highly evolved, complex, and adaptable system
capable of identifying and resisting antigenic foreign bodies, such as bacteria and viruses,
while maintaining stability in an in vivo environment. The idiotypic network hypothe-
sis [13] developed by Jerne in 1972 is one of the important immune theories. The idea of the
hypothesis is schematically shown in Figure 1. The biological immune network involves a
series of processes related to self-recognition and the elimination of differences [14]. When
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an antigen invades, the B cell whose paratope can identify the antigen is activated. Most
of the activated B cells differentiate and produce antibodies to clear the antigen, while
the others differentiate into memory cells. Through the identification of paratopes and
idiotopes among multi-antibodies, a complex immune network is constructed to effectively
cope with the invasion of foreign antigens.

Antibodyl Stimulation

<«— — Suppression

KEA Antibody2,

%\ Antibody3
B cell #1 N

Idiotope

N

N
A W,
Paratope Antigen

Figure 1. Biological immune network.

B cell #2

2.2. Descriptions of Immune Planning Model

To solve the path planning problem in dynamic environments, inspired by Jerne’s
idiotopic network hypothesis, an immune path planning model was designed, as shown
in Figure 2 in this paper. The environmental information was chosen as the antigen and
the robot behaviors were selected as the antibodies. In the artificial immune system,
an omni-directional mobile robot (see Figure 2a) was selected as an immune agent. It
was equipped symmetrically, but unevenly, with eight distance-detection sensors around
it. Eight detection directions, D; (i.e., L90°, L60°, L30°, front, R30°, R60°, R90°, and
back) corresponded to eight movement directions, M1, of the robot, namely M; = D;.
Figure 2b shows the construction principle of the immune planning network. Because
of the complexity and uncertainty of the environment surrounding the robots, it was
difficult for the multi-robots to cope with the environmental information effectively using
a single immune network. To address the balance between the influence of obstacles and
the goal, a mutual-coupled immune network was employed, consisting of an obstacle-
oriented network and a goal-oriented network. In the obstacle-oriented network, the
obstacle information (i.e., the distance between an obstacle and a robot) was defined as
the obstacle antigen. In the goal-oriented network, the goal information (i.e., the direction
of an obstacle relative to a robot) was defined as the goal antigen. Once a mobile robot
detected an obstacle antigen and a goal antigen, the obstacle-oriented and goal-oriented
networks were produced. During the immune path planning phase, a series of optimal
antibodies (i.e., optimal robot behaviors) were selected for the multi-robots to complete
their navigations through the stimulation and suppression among antigens and antibodies
in the planning network.

Based on the genetic algorithm, the IMGA [9], GA-ACO [10], and GA-PSO [11] could
complete their path planning activities by selecting optimal antibodies. However, because
the number of antibodies presented in the three algorithms above was limited to the number
of robot distance sensors and the included angle between the two adjacent sensors was
relatively large, the turning angle for obstacle avoidance was usually larger, especially in
the environments with many obstacles. A large turning angle easily resulted in the longer
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length and reduced smoothness of the planned path. In addition, some antibodies with
the same concentrations were easily produced based on a single immune concentration
calculation and the robot approached its goal by zigzagging because of the random selection
of antibodies. The stronger adaptive and self-adjusting functions of the BIS had a great
relationship with the action of the secondary immune response. To solve the path planning
in dynamic environments and further improve the planning performance, based on the
biological secondary immune response, a secondary immune planning model was designed
in this paper to subdivide the turning angles of the robots, which was helpful in shortening
the length and improving the smoothness of the planned path.

— Stimulation

Obstacle antigen < - Suppression

Goal antigen @ Behavior antibody

@ Optimal antibody
P —

Obstacle-oriented Goal-oriented Path planning
network network network
(b)

Figure 2. Immune path planning model. (a) Immune agent; (b) principle of the immune path
planning network.

3. Secondary Immune Path Planning
3.1. Secondary Immune Response

In a biological immune system, memory cells generated by the primary immune
response can exist for long time. When the same antigen invades the body again, the
memory cells are quickly activated, proliferated, and differentiated to produce effector
B cells. Then, the effector B cells produce antibodies to clear the antigen in time. This
phenomenon in the BIS is called the second immune response. Figure 3 shows the principle
of the biological secondary immune response [15]. The secondary immune response plays
a crucial role in maintaining the dynamic immune balance of the BIS owing to the vast
number of antibodies and the faster response speed. In view of this, the introduction of the
secondary immune response was implemented in the path planning process to enhance the
planning performance.

Due to the paramount importance of obstacle avoidance in the path planning process
for mobile robots, we exclusively addressed the influences of obstacles on robots during
the primary immune stage. In this stage, we specifically regarded the obstacle information
in the direction of M; as the memory B cells. In the secondary immune stage, when the
same antigen invaded the body again, the memory B cells underwent rapid proliferation
and differentiation, and more movement directions M> (i.e., L90°, L80°, L70°, L60°, L50°,
L40°, L30°, L20°, L10°, front, R10°, R20°, R30°, R40°, R50°, R60°, R70°, R80°, R90°, and
back) were produced for the mobile robot, as shown in Figure 4.
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Figure 3. Biological secondary immune response.
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Figure 4. The proliferation and differentiation of memory B cells.

3.2. Definitions of Antigen and Antibody

Definition 1. Let the obstacle information detected by a robot be the primary immune antigen, ¢'.

1)

where ¢’ is coded by a binary value. d/, (1) is the detection result regarding obstacles in direction
L. V1e(l, 2, ...,8}d,(l) € {0,1}, where the elements “0” and “1” represent “no obstacle”
and “obstacle” in direction I, respectively. The string length, 8, of ¢’ depends on the number of

distance-detection sensors.
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Definition 2. Let the information for the obstacle and goal be the secondary immune antigen, e'”.

e = (e,¢g) = (U 1), D g (1) @
where e, is the obstacle antigen coded by the binary value, which has a string length of 20. It is
related to the moving directions of a mobile robot in the secondary immune stage. V1€ (1,2, ...,
20}, d, (1) € {0,1}. € is the goal antigen and is also coded by the binary value. V1€ {1,2, ...,
20}, dg (1) € {0,1}, where the elements “0” and “1” denote “no goal” and “goal” in direction
I, respectively.

Definition 3. The primary immune antibody is designed according to the primary immune antigen,
¢/, and consists of the paratope and idiotope. The preconditions of the obstacle and robot behavior are
taken as the paratope, and the interaction antibody, stimulation value, and suppression value are
taken as the idiotope.

Figure 5 shows the model of primary immune antibody i (a}).

Interaction antibody j (IA;), stimulation
Precondition of obstacle | Behavior yj (14)

value m; and suppression value m;;

Paratope Idiotope
Figure 5. Definition of antibody i.

Antibody a; can be formulated as:

a; = (P, 1) (3)
P = (00, b) @
I; = (1Aj, mj;, m;) (5)

where P/ is the paratope of primary immune antibody i. The term Uld’ (I) denotes the

precondition of the obstacle, and its string length corresponds to the number of distance-
detection sensors. V1€ {1,2, ..., 8}, dj(l) € {0,1,#}, where the elements “0” and “1”
still denote “no obstacle” and “obstacle”, respectively. The element “#” denotes that the
condition can be taken as either “0” or “1”. b} denotes the robot’s behavior (i.e., movement
direction) and bf € M. The detailed definitions of the paratope, Pi’ , are shown in Table 1.
I is the idiotope of a;; IA; denotes the interaction with antibody a;. mj; represents the
stimulation value of a; on a; and m;; represents the suppression value of a; on a;.

Table 1. Definitions regarding the paratopes of primary immune antibodies.

ID of o Robot Behavior
Antibody Precondition of Obstacle (Movement Direction)
1 # # # 0 # # # # Front
2 1 1 1 1 1 1 1 0 Back
3 # # # 1 0 # # # R30°
4 # # 1 1 1 0 # # R60°
5 # 1 1 1 1 1 0 # R90°
6 # # 0 1 # # # # L30°
7 # 0 1 1 1 # # # L60°
8 0 1 1 1 1 1 # # L90°
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Definition 4. The secondary immune antibody is designed according to the secondary immune
antigen ¢” and still consists of the paratope and idiotope.

In the secondary immune stage, because the turning angles of the robots were sub-
divided based on the proliferation and differentiation of the memory cells, more moving
directions were produced. Thus, the number of secondary immune antibodies was ex-
panded. The secondary immune antibody, i (a;’ ), can be formulated as:

= (P!, 1) (6)
P = (luldl (1),b) @)
I = (mf,m) (8)

The detailed definitions of the paratope, Pl.”, are shownin Table2. V1€ {1,2,...,20},
d;’ (I) € {0,1,#}, where the elements “0”, “1”, and “#” are defined as the same definitions
in P/. b:-/ € M, is the robot’s behavior (i.e., movement direction). m{ and mlg are the
stimulation values of ¢, and eg on a;, respectively.

Table 2. Definitions regarding the paratopes of secondary immune antibodies.

ID of Paratope Robot Behavior
Antibody P (Movement Direction)
1 # # # # # # # # # 0 # # # # # # # # # # Front
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 Back
3 # # # # # # # # # 1 0O # # # # # # # # # R10°
4 # # # # # # # # 1 1 1 0o # # # # # # # # R20°
5 # # # # # # # 1 1 1 1 1 0O # # # # # # # R30°
6 # # # # # # 1 1 1 1 1 1 1 0O # # # # # # R40°
7 # # # # # 1 1 1 1 1 1 1 1 1 0 # # # # # R50°
8 # # # # 1 1 1 1 1 1 1 1 1 1 1 0 # # # # R60°
9 # # # 1 1 1 1 1 1 1 1 1 1 1 1 1 0 # # # R70°
10 # # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 # # R80°
11 # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 # R90°
12 # # # # # # # # 0 1 # # # # # # # # # # L10°
13 # # # # # # # 0 1 1 1 # # # # # # # # # L20°
14 # # # # # # 0 1 1 1 1 1 # # # # # # # # L30°
15 # # # # # 0 1 1 1 1 1 1 1 # # # # # # # L40°
16 # # # # 0 1 1 1 1 1 1 1 1 1 # # # # # # L50°
17 # # # 0 1 1 1 1 1 1 1 1 1 1 1 # # # # # L60°
18 # # 0 1 1 1 1 1 1 1 1 1 1 1 1 1 # # # # L70°
19 # 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # # # L80°
20 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 # # L90°
Thus, the primary immune antibody set, A" = [a],4),---,a5], and the secondary
immune antibody set, A” = [a’ll, a;, e ago], were obtained.

3.3. Antibody Selection of Robots Based on the Immune Concentration

Although two types of antibody sets, A’ and A”, were designed and presented in
Section 3.2, only activated antibodies were likely to be selected to execute the path planning
stage. In the primary immune stage, aiming at the obstacle antigen, the activated primary
antibody group, A”, was obtained through operator T?.

AP<—TP((3/’A/): ai’,aé’,.. ﬂN|VlE(1N e’\/P’ Zd/ __ )

where the symbols “~” and “V” denote the “NOT” and “AND” operators, respectively. N
is the number of activated primary antibodies and N < 8.V d;,(I) € {0,1}; if d}(I) = #, then
dy (1) v di(l) =
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On the basis of Farmer’s immune kinetic model, the concentration, C”(t), of the
activated primary antibody group, A”, at time, ¢, is obtained through operator Y.

CP(t) < P (A, AP, 0y, a7)

L e 3 o) 10)
= cf(t),cg(t),-~ ,cﬁ,(t) Vi€ [1,N], cf(t) = —

where a; and a; are the stimulation and suppression coefficients among the primary
immune antibodies, respectively. In the braces, the last equational term was the primary
immune kinetic model for the calculation of concentration C?.

The stimulation value, m;;, of a;- on a} is described as:

where the symbol “@®” denotes the “exclusive-or” operator.
Vd;»(l) € {0,1}; if di(I) = #, then d;.(l) @ d;(l) = 1.vd}(l) € {0,1}, and if d}(l) =#
then d;-(l) @di(l)=0

The suppression value, 1, of a; on a;. is described as:

<Zd’ @d’ >/8 (12)

If dj(1) = #or di(l) = #, then di(l) & di(I) =

In the secondary immune stage, when the same obstacle antigen invaded again, some
of the secondary immune antibodies in A” were activated through operator T° to form an
activated secondary immune antibody group, A°.

_ - 20
A° +— T(ey,A") = {ai,u§,~',a§3 | Vie (1,D), e, vd =) e, vd: (l) ——1} (13)

where D is the number of activated secondary immune antibodies and D < 20. Ve, (1) €
{0,1};if d; (I) = #, thene; vV d; (1) = 0.

To improve the quality of the activated secondary immune antibodies and accelerate
the planning speed, the concentration, C¥, of the activated primary immune antibodies
was taken as a priori knowledge to initialize the concentration, C*, of A°.

The initial concentration, C*, of D activated secondary immune antibodies is de-

scribed as:
0 ={c, ey, e (14)

cr, 1<i<?2
p . _ . . .
¢ k= fix(i/3)+1, 3<i<17

Vie[L,D], P =14 & fixi/3) ) (15)
o, 18<i1 <19
ck, i =20

where fix(-) is the round function and returns the integer part of a number.

The selection of the activated secondary immune antibodies for path planning de-
pended on the final concentration, C°, of the activated secondary immune antibodies, A®.
Vi € {1, D}; the concentration cf € C° of antibody i at time ¢ is calculated according to the
secondary immune kinetic model (i.e., Equations (16)—(18)):

dci(t)

Si(t) =ci(t=1)+—

(16)
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A (cf.o + By + o’ — k) xcS(t—1) (17)

s 1
ci(t) = —
1+ exp(0.5 — S;(t))
In Equation (16), S;(t) is the stimulation level at time t. ci(f — 1) is the normalized
concentration of antibody a; at time t — 1. In Equation (17), B is the stimulation coefficient
of ¢) on a;’. B2 is the stimulation coefficient of eg on a;’. The consumption factor, k, denotes
the natural death of the antibody, 4. .
The stimulation value, m¢, of ey on af is described as:

mi = (eg@PT” )/H: (20

=1

(18)

e (1) ead(l)) /20 (19)

vd; (1) € {0,1}; if eg (1) = #, then e, (1) @ d; (1) = 0.
The stimulation value, mlg , of € on a/ is described as:

m$ = et () AP =Y els(l) Ad] (1) (20)

Veg (1) € {0,1};if d; (1) = #, then eg (1) A d; (1) = 0.
The whole acquisition process regarding concentration ¢j of the activated secondary
immune antibodies A® can be described through operator ¥* as:

C ¥ (C, By, Ba ke, A") = {c],c5 - ,cp } (21)
Finally, the optimal antibody, a*, was selected through operator I in A®.
a* T (A°,C°) = {a] € A®: ¢ =max(C°),i € [1,D]} (22)

3.4. Flow of the Secondary Immune Planning Algorithm

To further improve the immune planning performance, inspired by the secondary
immune response, a secondary immune planning model was designed and a new sec-
ondary immune responses-based immune path planning algorithm was put forward. The
algorithmic steps presented in Algorithm 1 illustrate the key stages of the SIRIPPA path
planning algorithm.

Algorithm 1. SIRIPPA Algorithm

Begin:
Initialization: stimulation coefficient &1, suppression coefficient a;, stimulation coefficient 8, suppression
coefficient 85, consumption factor k, etc.
Set the primary immune antibody set, A’, and secondary immune antibody set, A”.
While (robots that have not achieved their goals)
Code the primary immune antigen, ¢/, and secondary immune antigen, ¢”, according to the
environmental information.
Primary immune stage: AP < T?(¢/,A’)
CP(t) «+ YP(A', A, 0y, 7)
Secondary immune stage: A° < T*(¢, ,A")
C0={c', - ep)
C° + ¥°(C, By, B2, k, 0%, A?)
Select the optimal antibody: a* < I'(A%, C%)
end while
end

4. Simulation Tests of the SIRIPPA

To test and verify the validity and stability of the proposed SIRIPPA, selected simula-
tions were performed using MATLAB 8.2 on an Intel Core 11th 2.4 GHz computer (Intel
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Co., Santa Clara, CA, USA) with 8 GB of RAM. In the SIRIPPA, a1 = 0.2, ap = 0.04, B; = 0.5,
B2 =0.5,and k =0.5.

4.1. Simulation Tests in Static Environments

To verify the path planning performance of the SIRIPPA and considering the four
different static environments, shown in Figure 6, selected simulation tests were performed
firstly, and the planning results of the SIRIPPA were compared with those of the IMGA,
GA-ACO, and GA-PSO. All the parameter values of the IMGA, GA-ACO, and GA-PSO
were from the relevant literature. Figure 6 shows the planning results for the four im-
mune algorithms.

8 —— IMGA 8 —*— IMGA
—+&— GA-ACO S —8— GA-ACO
—*— GA-PSO ——— GA-PSO

6t —— SIRIPPA | |

—&— SIRIPPA | - 6t

G

2t 1 2t X
G

S
of {1 o} 1
0 4 ym 6 8 10 0 2 4 ym 6 8 10

(a) (b)

8f 1 8f .

—— IMGA
—— GA-ACO
— > GA-PSO

—¢— IMGA
—L— GA-ACO
—*— GA-PSO

6f —e—SIRIPPA i{ || —®— SIRIPPA
2F 1 2t J
iG
Oy ! 1 or .
0 4 x/m 6 8 10 0 2 4 yim 6 8 10
(c) (d)

Figure 6. Path planning results for four immune algorithms in static environments. (a) Environment
I; (b) environment II; (c¢) environment III; (d) environment IV.

In environment I, the obstacles were distributed sparsely around the line between S
and G. From Figure 6a, it can be observed that the paths planned by the IMGA, GA-ACO,
and GA-PSO appear to be the same. In the SIRIPPA, the turning angles of the robots
were effectively subdivided based on the secondary immune response, and the secondary
immune planning model enhanced the rationality of the antibody selection. As a result, the
robot could navigate around the obstacles with smaller turning angles and approach the
goal more rapidly. Comparing the path of the SIRIPPA with the paths of other immune
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algorithms, it can be observed that the path length of the SIRIPPA is shorter than the
other paths. The reduced number of zigzags in the path of the SIRIPPA indicates greater
path smoothness. In environment II (Figure 6b), the obstacles are densely distributed
around the line between S and G. Due to the limitation of the number of antibodies, both
the IMGA and GA-ACO reached the goal, G, after several turns, revealing their limited
planning capabilities. In the GA-PSO, the addition of antibodies and the provision of
more robot behaviors contributed to greater smoothness compared to the IMGA and
GA-ACO. However, because the functions of the added antibodies in the GA-PSO were
similar, the competition among these similar antibodies restricted further improvements
in the planning performance. In the SIRIPPA, a large number of antibodies were not
only provided, but also consistently matched the secondary immune planning model.
Additionally, there was no function conflict among the different antibodies, effectively
enhancing the planning performance of the SIRIPPA. The path planned by the SIRIPPA
was obviously better than that of the GA-PSO. The planning results of the SIRIPPA in
environments III and IV (Figure 6¢,d) also show its better planning performance.

Table 3 provides detailed performance comparisons in terms of the path length,
smoothness, and energy consumption, ¢, among the four immune planning algorithms. ¢
relates to the length, /, and the smoothness, 9, of the planned path:

18

e= 0 (23)

where L is the linear distance between the starting point, S, and goal, G. 6 is the angle
between the x-axis and the direction from S to G. The parameter / indeed represents the
current displacement or movement distance of the mobile robot, and ¢ denotes the angle
between the robot’s direction and the x-axis.

Table 3. Comparisons among four immune planning algorithms in four environments.

Performance
Environment Algorithm c Smoothness of Energy
Planned Path Consumption (%)
IMGA 11.88 8.61° 44.73
| GA-ACO 11.88 6.39° 33.20
GA-PSO 11.66 5.38° 27.43
SIRIPPA 11.44 5.10° 25.51
IMGA 12.98 8.39° 40.06
I GA-ACO 12.98 6.86° 32.75
GA-PSO 12.10 5.73° 25.50
SIRIPPA 11.22 5.20° 21.46
IMGA 12.76 6.72° 24.63
I GA-ACO 12.54 6.32° 22.51
GA-PSO 12.32 4.82° 17.06
SIRIPPA 11.88 4.44° 15.15
IMGA 13.2 7.95° 30.71
v GA-ACO 13.2 7.05° 27.24
GA-PSO 12.8 6.09° 22.82
SIRIPPA 124 5.40° 19.60

From the table, it can be observed that, for the IMGA and GA-ACO, the paths of the
GA-ACO are smoother than the paths of the MIGA, and the energy consumption of the
GA-ACO decrease by about 17.43% because the redefinitions of the immune antibodies in
the GA-ACO improve its planning performance. However, due to the similarity between
the immune planning model of the GA-ACO and the IMGA model, the advantage of
the GA-ACO is not evident, and the path lengths of the IMGA and GA-ACO in the four
environments are similar. In the GA-PSO, the provision of a large number of antibodies
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enabled the robot to effectively and swiftly avoid obstacles by selecting more appropriate
behaviors. Consequently, the planning performance in terms of the path length, smoothness,
and energy consumption was superior to the performance of the IMGA and GA-ACO. In
the SIRIPPA, to enhance the flexibility of the antibody selection, a considerable number
of primary and secondary immune antibodies were provided. Drawing inspiration from
the secondary immune response, a secondary immune kinetic model was designed for the
calculation of the antibody concentration. All the aforementioned enhancements effectively
improved the planning performance of the SIRIPPA. From Table 3, it can be seen that the
path lengths of the SIRIPPA in four environments are the shortest, the smoothness of the
SIRIPPA is highest, and the energy consumption is the lowest, which shows the validity and
advantage of the SIRIPPA in complicated environments. Compared to the corresponding
immune planning algorithms, the SIRIPPA demonstrates an average reduction of 6.22%
for the global path length, a decrease of 23.00% for average smoothness, and an average
reduction of 27.55% for energy consumption. The proposed SIRIPPA algorithm exhibited a
superior performance for path planning.

4.2. Simulation Test in a Dynamic Environment

Path planning in static environments can effectively validate the variations in plan-
ning capabilities among different immune algorithms. However, in practical applications,
dynamic obstacles inevitably exist in the working environments of robots. To validate
the effectiveness of the proposed SIRIPPA in dynamic environments, a simulation test for
multi-robots was conducted. The dynamic environment is illustrated in Figure 7, featuring
two mobile robots, several static obstacles, and three dynamic obstacles approaching from
various directions at different velocities. The partial parameters of the dynamic environ-
ment are shown in Table 4. It should be noted that, although the paper provides the motion
parameters of the dynamic obstacles, the information about the dynamic obstacles in the
actual environment was obtained through the robot’s autonomous detection.

Figure 7. Path planning results of the SIRIPPA in a dynamic environment. (a) Avoid D_obs;; (b) avoid
D_obsy; (c) avoid D_obss; (d) achieve the goals.
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Table 4. Partial parameters of the dynamic environment.
Parameters Robot 1 Goal 1 Robot 2 Goal 2 Dynamic Obstacles
(Ry) (G1) (Ry) (G2) D_obs;y D_obs; D_obs;
Initial position (m) [0, 217 [20, 717 [0, 617 [20, 11T [1.8, 6.8]T [4,08]T [17.5,7.2]T
Velocity (m-s~1) [0.25, 017 [0, 01" [0.25, 017 [0, 01" [0.03, —0.18]T  [0.02,0.13]T  [-0.10, —0.15]T

The entire dynamic planning process is depicted in Figure 7. Figure 7a illustrates that
robots Ry and R; initiate their movements from the starting points S, and Sy, respectively.
As initially no obstacles were detected by Ry, it moved straight to the goal, G;, demon-
strating the uniqueness and stability of antibody selection. R, encountered the dynamic
obstacle D_obs; quickly and activated the primary immune antibodies. Under the continu-
ous stimulation of the same antigen regarding D_obs;, a large number of antibodies were
produced through proliferation and differentiation in a short time relying on the secondary
immune response. R; attempted to avoid D_obs; by selecting the optimal antibody based
on the concentration. Figure 7b shows that R, successfully avoids D_obs1, and R; attempts
to avoid D_obs, through the antibody selection. Afterward, R; and R; enter the influence
range of static obstacles. At this moment, although there are no external dynamic obstacles,
the two robots act as dynamic obstacles for each other. They should not only avoid the
static obstacles, but also avoid each other at the same time. Figure 7c shows that the two
robots avoid static obstacles and each other, and R; encounters dynamic obstacle D_obss
again. Unlike the avoidance manner of D_obs,, R; actively detours D_obs3 from its front.
From Figure 7d, it can be observed that the two robots can avoid the static and dynamic
obstacles and reach their goals safely, which shows the strong planning capability of the
SIRIPPA in dynamic environments.

5. Experiment
5.1. Experimental Environment

To further verify the validity of the proposed SIRIPPA in a real environment, an
online dynamic planning experiment was performed. Figure 8 provides an experimental
environment for the path planning of multi-robots, where there are three mobile robots
(i.e., R1, Ry, and Ry), seven static obstacles (i.e., O1, O,, ..., O7), two overhead cameras, a
wireless module, and a host computer. Two cameras were used as the global vision system
to capture the environment of multi-robots, and the final global environment map was
produced based on the image mosaic technique [16]. Figure 9 shows the designed mobile
robot, which was driven in the differential mode by connecting two direct motors to two
wheels. The mobile robot was equipped symmetrically, but unevenly, with five ultrasonic
distance sensors and three infrared distance sensors around it. The ultrasonic sensor model
was HC-SR04 and the infrared sensor model was GP2Y0A41SKOF. These sensors were
primarily used for rapidly determining whether obstacles were present around the mobile
robot. When both the ultrasonic and infrared sensors detected the absence of obstacles in
the robot’s surroundings, the distributed vision system did not need to check for obstacle
information in that direction. The distributed vision system was activated only when
obstacles were detected within the sensor’s coverage area, allowing it to further confirm the
specific direction and distance information of the obstacles. To obtain the accurate position
and pose information, a color-label plate [17] was installed on the top of the robot, which
consisted of one baseplate (black) and four color labels. Label 2 (blue) was the main color
label. Label 3 was the auxiliary color label and its color could be red or yellow. The center
coordinate of the main color label was defined as the robot coordinate. The direction of
the vector between the middle auxiliary color label (i.e., label 3) and main color label (i.e.,
label 2) was defined as the forward direction of the mobile robot. Different robots could
be distinguished according to the different color sequences of three auxiliary color labels.
The localizations of three robots were realized based on two overhead cameras, shown
in Figure 8.
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Figure 8. Experimental environment for path planning.

Color label plate

Wireless module
e
(NRF905)

Ultrasonic
distance sensor

Infrared
distance sensor

Figure 9. Mobile robot.

Figure 10a,b show the left and right images captured by the two cameras. Figure 10c
shows the whole working environment of the multi-robots after the image mosaic. The
experimental requirements can be described as follows: robots R and R, executed the
online path planning from S; and S, to G; and Gy, respectively, using the proposed SIRIPPA.
Robot R; was considered a dynamic obstacle moving in the environment. All robots could
wirelessly communicate with the host computer and receive control commands through

the NRF905 wireless module.
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(@) (b) (©)

Figure 10. Acquisition of the robot working environment. (a) Left image; (b) right image; (c) whole
working environment.

5.2. Experimental Results

Figure 11 displays the planning outcomes acquired from the experiment. Figure 11a
illustrates the initial state of the path planning, where the two robots, Ry and Ry, initially
detect obstacles Oy and Og, respectively. Taking into account the detected environmental
information, R; endeavors to evade Oy by selecting primary and secondary immune
antibodies via the SIRIPPA and proceed towards the goal, G;. Similarly, R, attempts to
avoid Og and make its way towards the goal, G,. Figure 11b—d show the avoidance process
regarding Oy and Og. Figure 11e demonstrates that both R; and R, entered the environment
of O4. Figure 11f illustrates that the two robots successfully avoided O4. Meanwhile, since
the distance between R; and R; is less than the detection range of the robot sensors, both
Rj and R; are considered as dynamic obstacles to each other. This implies that R; or R;
not only have to avoid Oy, but also must steer clear of R, or R;. Figure 11g illustrates that
the dynamic obstacle, Ry, initiated its movement and swiftly entered the detection range
of Ry, as depicted in Figure 11h. Figure 11i-n depict the avoidance process concerning
the dynamic obstacle, R;. At t =50 s, there are no obstacles in front of Ry and Ry, and
both robots proceed directly towards their respective goals, as depicted in Figure 11m,n.
Figure 110 shows that R; successfully reached G, while R; attained the goal, Gy, at t =60 s,
as illustrated in Figure 11p.

(e) () (8) (h)

Figure 11. Cont.
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(m) (n) (0) P)

Figure 11. Experimental results of path planning based on the SIRIPPA. (a) t =0s; (b) t = 6's;
(c)t=10s;(d)t=20s;(e)t=32s; ()t =36s;(g) t=38s; (h)t=40s; (i) t =41s; (j) t =42s; (k) t =43 s;
(1)t=45s;,(m)t=50s;(n)t=51s;(0)t=53s;(p)t=60s.

6. Conclusions

Indeed, path planning is a crucial task in the autonomous navigation of mobile robots.
Effective path planning algorithms and techniques enable robots to navigate safely and
efficiently in complex and dynamic environments. To enhance the path planning perfor-
mance of multi-robots in dynamic environments, we proposed a new algorithm called
the secondary immune response-based immune path planning algorithm. This algorithm
builds upon the basic immune path planning framework and introduces secondary im-
mune responses to better handle complex and changing environments. By incorporating
this approach, we aimed to improve the adaptability, robustness, and efficiency of path
planning for multiple robots operating in dynamic scenarios. The following conclusions
can be drawn from the results of the simulations and experiment:

1. During the primary immune stage, the antibodies were designed solely based on the
obstacle antigen. This approach effectively avoided the constraint of the goal antigen
in the antibody selection stage, increasing the probability that the primary immune
antibodies were activated.

2. Inspired by the secondary immune response, a large number of immune antibodies
were proliferated and differentiated. As a result, the corresponding turning angles of
a mobile robot were subdivided, which helped to reduce the turning magnitude of the
robots for obstacle avoidance and improved the flexibility of the immune planning
algorithm. This approach enabled the robots to adapt more effectively to dynamic
environments and achieve a better path planning performance.

3. Based on the Farmer’s immune kinetic model, the proposed secondary immune kinetic
model further enhanced the rationality of antibody selection. This improvement was
achieved by integrating the influence of both the obstacle antigen and goal antigen on
the secondary immune antibodies. By considering both factors, the algorithm could
make more informed decisions during the antibody selection process, leading to an
improved path planning performance in dynamic environments.

4. Compared to the IMGA, GA-ACO, and GA-PSO algorithms, the simulation results
in four static environments demonstrated that the proposed SIRIPPA algorithm ex-
hibited shorter path lengths and greater smoothness in the planned paths. Moreover,
the simulation test involving two robots in a dynamic environment showcased the
flexibility and stability of the SIRIPPA in uncertain environments. Finally, the online
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experiment conducted in a real environment served as further verification of the
effectiveness of the proposed SIRIPPA algorithm.
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