
Citation: Ouardirhi, Z.; Mahmoudi,

S.A.; Zbakh, M. Enhancing Object

Detection in Smart Video Surveillance:

A Survey of Occlusion-Handling

Approaches. Electronics 2024, 13, 541.

https://doi.org/10.3390/

electronics13030541

Academic Editor: Jitae Shin

Received: 7 December 2023

Revised: 19 January 2024

Accepted: 22 January 2024

Published: 29 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Review

Enhancing Object Detection in Smart Video Surveillance:
A Survey of Occlusion-Handling Approaches
Zainab Ouardirhi 1,2,* , Sidi Ahmed Mahmoudi 1 and Mostapha Zbakh 2

1 Computer and Management Engineering Department, UMONS Faculty of Engineering, University of Mons,
7000 Mons, Belgium; sidi.mahmoudi@umons.ac.be

2 Communication Networks Department, Ecole Nationale Supérieure d’Informatique and Systems Analysis,
Mohammed V University in Rabat, Rabat 10000, Morocco; mostapha.zbakh@ensias.um5.ac.ma

* Correspondence: zainab.ouardirhi@umons.ac.be; Tel.: +32-465582420

Abstract: Smart video surveillance systems (SVSs) have garnered significant attention for their
autonomous monitoring capabilities, encompassing automated detection, tracking, analysis, and
decision making within complex environments, with minimal human intervention. In this context,
object detection is a fundamental task in SVS. However, many current approaches often overlook
occlusion by nearby objects, posing challenges to real-world SVS applications. To address this crucial
issue, this paper presents a comprehensive comparative analysis of occlusion-handling techniques
tailored for object detection. The review outlines the pretext tasks common to both domains and
explores various architectural solutions to combat occlusion. Unlike prior studies that primarily
focus on a single dataset, our analysis spans multiple benchmark datasets, providing a thorough
assessment of various object detection methods. By extending the evaluation to datasets beyond
the KITTI benchmark, this study offers a more holistic understanding of each approach’s strengths
and limitations. Additionally, we delve into persistent challenges in existing occlusion-handling
approaches and emphasize the need for innovative strategies and future research directions to drive
substantial progress in this field.

Keywords: video surveillance; object detection; deep learning; generative models; graphical models;
data augmentation; occlusion handling

1. Introduction

The advent of smart cities has ushered in a transformative era in computer science,
placing a significant emphasis on data acquisition and processing [1]. Within this landscape,
cameras play a pivotal role by continuously capturing images and videos in various
resolutions, ranging from HD to 4K and 8K [2]. This extensive data feed from cameras fuels
computer vision and video surveillance applications, enabling the recognition of objects
and events in both 2D and 3D realms [3]. These applications include diverse tasks, such as
identifying and tracking suspicious objects, predicting hazardous scenarios, and facilitating
real-time industrial analysis [4].

Object recognition and action/event detection serve as essential pillars of video surveil-
lance systems, employing a combination of image-processing algorithms, convolutional
morphological operations, and machine learning techniques to extract salient features
and objects [5,6]. The recent advancements in high-speed computing and big data have
propelled object detection systems to remarkable heights, achieving outstanding perfor-
mance [7].

However, a significant challenge persists in these learning approaches—the handling
of object occlusion as illustrated in Figure 1. Partial occlusion, especially in realistic en-
vironments where objects intertwine and obscure each other, introduces complexity into
the data distribution. This intricacy involves overlaps in terms of shape, appearance, and
positioning, making it challenging to describe using fixed training data [8,9].
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Figure 1. Challenging Object Detection Scenario: Illustration of a complex object detection scenario
with elevated levels of partial occlusion in a crowded environment, utilizing the UA-DETRAC
dataset [10].

Even with the state-of-the-art deep learning algorithms [11], there is a noticeable gap
in emulating human-like recognition, particularly when faced with partially occluded
objects [12]. This limitation becomes more apparent despite rigorous training on datasets
with significant occlusion levels, indicating a fundamental deficiency in current computer
vision systems. Research studies, such as that of Jha et al. [13], have highlighted the
performance gap between modern deep neural networks and human vision in detecting
partially occluded objects.

Motivated by the challenges posed by occlusion in object detection, this paper cen-
ters its attention on recent endeavors addressing object detection techniques tailored for
occlusion handling (as illustrated in Figure 2). Occlusion handling involves developing
algorithms and strategies that enable the accurate and robust detection of objects, even
when they are partially obscured by other objects or background elements in the scene. The
goal is to establish a cornerstone for forthcoming research in this field.

Figure 2. Evolution of some object detection approaches: a timeline of occlusion-handling techniques
[14–33].

Previous recent surveys and reviews in the domain of occlusion handling have pro-
vided valuable insights into the evolving landscape of object detection. Notable works such
as [34–37] have contributed to our understanding of various techniques and challenges
associated with occlusion in object detection. However, to the best of our knowledge, our
survey distinguishes itself by our distinctive contributions that comprise the following:

1. Thorough literature summary: Provides a comprehensive overview of successful
techniques for occlusion handling in object detection.
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2. Extensive algorithm evaluation: Conducts a detailed evaluation of current object de-
tection algorithms in occlusion scenarios, offering experimental analysis and insights.

3. Identification of challenges: Highlights the challenges faced by state-of-the-art deep
learning algorithms in handling partial occlusion, emphasizing the need for more
effective solutions.

4. Motivation for future research: Serves as a foundational resource, guiding future
research in the realm of object detection in occluded scenes.

5. Utilization of multi-object datasets: Integrates the use of multi-object datasets for
occlusion-handling evaluations, ensuring the robustness and applicability of proposed
techniques to diverse real-world scenarios.

In summary, our contributions encompass a comprehensive overview, an extensive
evaluation, experimental insights, exploration of alternative approaches, performance
comparison of generative and deep learning models, identification of limitations, and
guidance for future research.

The paper unfolds in two main sections. The Related Works section (Section 2) offers
an insightful overview of effective techniques for occlusion handling, classifying them
into distinct categories, including deep learning, generative models, graphical models,
and data augmentation. Figure 3 explains the structural flow of mentioned methodolo-
gies. Following this, the Proposed Comparative Analysis section (Section 3) engages in a
thorough examination of current object detection algorithms within occlusion scenarios,
presenting detailed experimental analyses and valuable insights. The paper culminates
with a comprehensive discussion in the Conclusion section, summarizing key findings,
addressing limitations, and outlining potential avenues for future research.

Figure 3. Taxonomy of occlusion-handling methodologies in object detection: an organized overview.

2. Related Works

One of the foremost challenges in object detection is the ability to accurately identify
objects despite occlusion and deformations. Historical research in this domain has pre-
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dominantly focused on two primary approaches: firstly, algorithms centered on extracting
background information when objects are occluded and secondly, methods leveraging the
depth information of the objects [14].

Early studies have shown that conventional learning algorithms tend to perform well
when less than 10% of an object is occluded as reported by Perez et al. [38]. However, as the
degree of occlusion increases, traditional methods encounter progressively higher detection
failure rates, making it considerably challenging to recognize objects when occlusion
levels reach approximately 50% [37]. In contrast, generative models have demonstrated
remarkable capabilities in distinguishing between the background context and the targeted
objects. This distinction significantly contributes to resolving occlusion-related issues [39].
Object detection has benefited greatly from state-of-the-art deep learning-based approaches,
which we will delve into in Section 2.2.

In the context of our research, we categorize existing approaches into four distinct
groups: (1) generative models, (2) deep learning approaches, (3) graphical models, and
(4) data augmentation techniques. The generative models encompass methodologies that
understand the generative process of objects, allowing for recognition of occluded object
sections from various angles and spatial patterns. Conversely, deep learning approaches
deploy neural networks to automatically learn object features. This automation not only
reduces the time required for manual feature selection but also enhances detection speed
and accuracy.

The quality, quantity, and dimensionality of the data, whether in the form of 2D or
3D images, exert a profound influence on model performance, especially during occlusion.
Hence, the preprocessing and augmentation of data are crucial to address challenges asso-
ciated with occlusion [14]. Additionally, graphical models provide a structured framework
for modeling object relationships, incorporating contextual information and addressing
occlusion challenges [40]. Data augmentation, as proposed by Cubuk et al. [41], enriches
datasets with occluded objects and transformations, thereby enhancing the robustness and
generalization of object detection models to occlusion scenarios.

In the subsequent subsections, we will delve into each of these four approaches,
highlighting their methodologies and contributions to tackling the complex problem of
occlusion in object detection.

2.1. Generative Algorithms for Occlusion Handling

Generative models, as applied to object detection under occlusion, play a crucial
role in overcoming the challenges posed by obscured objects. These models employ a
unique approach by simulating the generation process of occluded scenes, allowing them
to distinguish between background context and targeted objects with a higher degree of
accuracy [42]. Mathematically, generative algorithms aim to capture the intricate rela-
tionships between the observed data and the underlying occlusion patterns, enabling the
synthesis of informative representations [43].

These generative models offer distinct advantages over conventional approaches,
particularly when compared to training on occlusion-rich datasets or employing data
augmentations [44]. By inherently understanding the generative process, these models
excel in scenarios where objects are partially obscured. Unlike traditional methods, they
do not solely rely on fixed training datasets, making them adaptable to varying occlusion
levels, shapes, and appearances.

Generative models offer an innovative approach to addressing occlusion challenges
by reconstructing obscured portions of objects. This section explores diverse generative
models, shedding light on their distinct capabilities. Notable among these are Generative
Adversarial Networks (GANs) [35] and, in the context of occlusion handling, the Prob-
abilistic Occupancy Map (POM) method [45] and Compositional Generative Networks
(CompNets) [15]. Each of these approaches contributes unique solutions to the complex
issue of occlusion, providing a comprehensive overview of the various strategies employed
in object detection.
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2.1.1. Generative Adversarial Networks Approach

Generative Adversarial Networks (GANs) constitute a powerful unsupervised gener-
ative model (Figure 4) defined by a generator function (G) and a discriminator function
(D) engaged in an adversarial learning process. The optimization objectives for the genera-
tor and discriminator in GANs are encapsulated in Equation (1) as initially designed by
Goodfellow et al. [46]. The objective function V(D, G) is defined as follows:

min
G

max
D

V(D, G) = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1 − D(G(z)))] (1)

where D distinguishes between real (x) and generated (G(z)) data, and G creates data to
deceive D. The first term encourages D(x) to be close to 1 for real data, and the second
term encourages D(G(z)) to be close to 0 for generated data. This adversarial game aims
for an equilibrium where the generator produces data indistinguishable from real data,
resulting in high-quality realistic samples.

Figure 4. Computational workflow and architectural overview of Generative Adversarial Networks
(GANs) [42].

Various GAN-based networks have demonstrated effectiveness in addressing occlu-
sion challenges. For instance, Zhan et al. [16] employed Conditional GAN (CGAN) and
partial convolution to regenerate the content of missing regions in a 2D image. This in-
volved a self-supervised approach, where occluded data were labeled by strategically
placing occluders from the dataset on objects. The model, composed of Partial Completion
Network-mask (PCNet-M) and Partial Completion Network-content (PCNet-C), partially
completed both the mask and appearance of the occluded object.

Similarly, Ehsani et al. [17] introduced SeGAN, a GAN-based model designed to
generate the occluded regions of objects. SeGAN follows a two-step process: segmentation
and painting. The segmentation part, a convolutional neural network (CNN), takes a
2D image and outputs a mask for the object based on information from visible regions.
Subsequently, the painting part employs a conditional GAN to generate the occluded parts
of the object.

Despite the notorious stability issues and training challenges of GANs, they prove
instrumental in extending incomplete representations to complete ones [47]. However, their
applicability varies across tasks; for instance, GANs perform exceptionally well in amodal
appearance reconstruction but are less commonly employed in amodal segmentation and
order recovery tasks. Combining GANs with other architectures and learning strategies
enhances their potential across diverse occlusion-related challenges.

Nevertheless, GANs have their drawbacks, including stability issues and the com-
plexity of training. While they exhibit impressive performance in amodal appearance
reconstruction, their usage in amodal segmentation and order recovery tasks is compar-
atively limited [48]. Despite these challenges, leveraging GANs for occlusion handling
remains pivotal in computer vision applications. Amodal completion tasks facilitated by
GANs, such as predicting the full shape of objects and inferring occlusion relationships,
contribute significantly to advancements in SVS applications. The creative and generative
capabilities of GANs bring machine learning systems closer to human-like predictions of
occluded areas, despite the existing challenges in their implementation.
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2.1.2. Probabilistic Occupancy Map (POM) Approach

Probabilistic Occupancy Map (POM) [45] stands as a sophisticated multi-camera
generative technique designed to deduce ground plane occupancy from diverse viewpoints
through background removal. The methodology involves synthetically fitting a background
subtraction model to binary foreground motion, allowing the repetitive computation of
occupancy probabilities.

POM operates within a mathematical framework that excels in predicting ground
plane occupancy at specific time steps. Unlike its counterparts, this framework boasts a
distinct advantage; it enables the precise localization of individuals not only in camera
views (RGB) but also on the 3D ground plane. This precision is achieved through the POM
detector, which adeptly manages complex occlusion interactions among detected individ-
uals. The detector employs an advanced generative model to estimate the probability of
occupancy [49].

In an innovative extension, Timur et al. [18] build upon POM, introducing a model
termed Depth Probabilistic Occupancy Map (DPOM). This model decodes images into a
collection of people detection in crowded environments, utilizing POM as the foundational
model for occlusion management. DPOM takes a step further by synthesizing depth maps
instead of binary images. It explicitly considers occlusions while estimating the probability
of target objects being present in the scene.

Experimental results using DPOM showcase an improvement in accuracy when lever-
aging object depth in the image. However, a trade-off arises, as DPOM modifies original
images to extract object depth, resulting in information loss and hindering object dis-
tinguishability. This limitation negatively impacts the recognition phase, leading to the
formation of unrecognizable objects [18].

2.1.3. Compositional Generative Networks Approach

Compositional Generative Network (CompNet) [15] stands as an innovative genera-
tive compositional model designed to accurately classify 2D images of partially occluded
objects. Employing a voting system and an explicit representation of objects as parts, Comp-
Net excels in the precise classification of objects based on the configuration of selected
visible parts (Figure 5).

Figure 5. The CompNet classification model architecture: illustration depicting the feed-forward
inference process within a CompNet for object classification [15].

However, similar to other Deep Convolutional Neural Network (DCNN) architectures,
CompNet lacks the explicit disentanglement of context and object representations. Further-
more, it lacks robust mechanisms for estimating the bounding box of the object, rendering
it unsuitable for object detection [15]. These limitations have been corroborated by Wang
et al. [19], who demonstrated that biases in context, prevalent in training data, adversely
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affect detection performance. Additionally, when objects are heavily occluded, the need to
reduce detection thresholds increases, leading to an amplified influence of object context
and resulting in false-positive detections in contextually barren regions.

To address these constraints, Wang et al. proposed significant enhancements to
CompNet for the robust recognition of partially obscured objects [19]. They advocated
deconstructing image representation into a mixture of context and object representations
by generalizing contextual features through bounding box annotations in training data.
Introducing a detection layer, they limited the impact of context on detection results. To
enhance robust bounding box estimation, they expanded the CompNet part-based voting
system, allowing votes for two opposing corners of the bounding box in addition to the
object center.

In a related vein, Sun et al. [50] contributed to the research field of amodal segmenta-
tion under partial occlusion by inferring amodal segmentation into CompNet. Leveraging a
Bayesian generative model with neural network features, they replaced the fully connected
classifier in the CNN. The Bayesian model describes the image’s features, including object
classes and amodal segmentation, with a probability distribution. Although this method
enhances the model’s resistance to occlusion, its reliance on significant form priors limits
its suitability to rigid objects, such as vehicles.

2.2. Deep Learning Strategies for Occlusion Handling

In recent years, deep learning has emerged as a powerful paradigm for tackling
challenges posed by partial occlusion [51,52]. This section explores various deep learning-
based strategies that have been employed to enhance object detection performance in
the presence of occluded elements. Deep learning models have innovatively integrated
concepts, such as part-based representations [53], refined decision processes [54], and the
incorporation of 3D scene data [55], to leverage depth information effectively.

Among the various models in the deep learning realm, two prominent categories of
CNN-based models have emerged for object detection [56]. The first category encompasses
the two-stage detector method, exemplified by techniques like the Region-Convolutional
Neural Network (R-CNN) series [20] and Spatial Pyramid Pooling Networks (SPPNets) [57].
In these methods, the detection process involves segregating target location and recognition
into distinct components. However, the computational expense and relatively slower
detection speed have been drawbacks of two-stage frameworks.

On the other hand, the second category presents single-stage frameworks that sacri-
fice some accuracy for enhanced speed. Methods like the You Only Look Once (YOLO)
series [58] (including YOLOv5 [59], YOLOv6 [60], YOLOv7 [61], YOLOv8 [62], and YOLO-
NAS [63]), Single-Shot MultiBox Detector (SSD) [64], and OverFeat [65] fall into this
category. Single-stage frameworks bypass the region proposal generation stage, directly
predicting class probabilities and bounding box offsets from entire images simultaneously.

It is imperative to note that while these exemplary networks have significantly con-
tributed to object detection, they were not explicitly developed to handle occlusion chal-
lenges. As such, their performance with occlusion is limited. The subsequent sections
(Sections 2.2.1 and 2.2.2) will delve into models specifically tailored for SVSs, shedding
light on how they navigate the unique challenges posed by occlusion in this context.

2.2.1. Single-Stage Detector Algorithms

Chen et al. [14] introduced an innovative approach to address occlusion challenges
by leveraging precise depth information obtained from 3D image sensors, specifically
Laser Imaging Detection and Ranging (LIDAR). Their proposed model, the end-to-end
multi-view 3D object detection network (MV3D), integrates a regional fusion network and
a 3D proposition network. Operating on both the bird’s eye view and frontal views of the
LIDAR point cloud, along with an RGB image, MV3D capitalizes on the complementary
strengths of the accurate depth data of LIDAR and the rich visual features from the camera.
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By adopting the “LIDAR–camera fusion” paradigm, which harnesses the strengths
of both LIDAR and RGB image inputs, MV3D optimally utilizes the accurate depth in-
formation provided by LIDAR and the rich visual features captured by the camera. This
synergistic combination results in a more precise object detection and recognition process.
MV3D initiates the pipeline by generating 3D object proposals from a bird’s-eye-view
map, projecting them into three distinct views. The deep fusion network then integrates
region-wise features through an ROI pooling layer for each view. This fused information
becomes instrumental in predicting object classes and executing oriented 3D box regression.
The ultimate output of MV3D consists of oriented 3D bounding boxes as visually depicted
in Figure 6.

Figure 6. MV3D Architecture: Overview of the multi-view 3D object detection network, highlighting
the fusion of LIDAR and RGB information for enhanced object detection in 3D space [14].

A notable advantage of this model is its capability to handle occlusions. By directly
performing 3D object detection on the truncated cone corresponding to the 2D bounding
box in the RGB image, MV3D enhances accuracy in the presence of occluded objects.
However, the fusion of LIDAR and camera data introduces additional time complexity to
the overall detection process, impacting real-time applications.

Ali et al. [21] introduced a distinctive solution, YOLO3D, an extension of the YOLOv4
generic object detector [66], specifically designed for handling occlusion scenarios. YOLO3D
operates on the “LIDAR-only” paradigm, utilizing the projected LIDAR point cloud as a bird’s-
eye-view grid to preserve essential 3D information. In contrast to MV3D, YOLO3D focuses
solely on LIDAR data for object detection. YOLO3D extends the successful single-shot
regression meta-architecture from 2D perspective images to generate oriented 3D object
bounding boxes. This approach provides a unique perspective on handling occlusion by
emphasizing the depth information captured by LIDAR. However, it is essential to note
that the detection accuracy of YOLO3D falls short when compared to MV3D. The choice
between “LIDAR-only” and “LIDAR–camera fusion” paradigms may depend on specific
use cases and the trade-off between simplicity and detection performance.

Takahashi et al. [22] introduced the expandable YOLO (E-YOLO) technique, an
enhanced version of YOLOv3 [67] designed to address occlusion challenges effectively.
Operating under the “Camera-only” paradigm, E-YOLO (Figure 7) leverages the strengths
of a stereo camera to achieve high-quality 3D object recognition, particularly during occlu-
sion scenarios.
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The model utilizes edge detection and frame differences to enhance the detection
process, incorporating prior knowledge about the size of 2D objects. By predicting 3D
bounding boxes based on stereo camera information, E-YOLO perfoms well when han-
dling occluded objects. Experimental results highlight the algorithm’s ability to overcome
limitations associated with the frame difference method, resulting in a high-speed detection
characteristic with promising commercial applications.

Figure 7. E-YOLO framework architecture: illustration of the Expandable YOLO (E-YOLO) frame-
work, emphasizing the integration of edge detection and frame differences for improved 3D object
recognition using a stereo camera [22].

However, it is important to note that E-YOLO exhibits lower discrimination in de-
tecting non-occluded objects compared to DCNNs. The trade-off between speed and
discrimination capabilities should be considered based on specific application requirements
and priorities.

Wanli et al. introduced DeepID-Net [23], a deformable deep convolutional neu-
ral network (DCNN) tailored for general object detection. This network incorporates a
deformation-constrained pooling layer designed to consider part deformation during object
detection. Inspired by deformable RoI pooling, this layer significantly enhances the model’s
ability to handle complex object structures.

Despite its increased complexity, DeepID-Net utilizes an innovative pre-training tech-
nique that enhances the efficacy of model averaging. This technique enables the network to
learn feature representations better suited for the object identification problem. The pro-
posed algorithm further suggests that various components interact automatically through
jointly learned deep features, deformable parts, occlusion handling, and classification
processes. This holistic approach contributes to the network’s robust performance in
addressing occlusion challenges during object detection.

2.2.2. Two-Stage Detector Algorithms

Yang et al. [24] introduced the Semantics-Geometry Non-Maximum-Suppression
(SG-NMS) algorithm as part of the Serial R-FCN network [68], aiming to enhance object
detection through a heuristic-based approach. This two-stage detector combines bounding
boxes based on detection scores obtained from the Serial R-FCN, suppressing overlapping
boxes with lower scores.

The processing pipeline begins with a backbone CNN that analyzes the input im-
age, producing feature maps (Figure 8). A Region Proposal Network (RPN) [25] identifies
regions of interest (ROIs). In the serial pipeline, the regression head refines ROIs before pass-
ing them to the classification head, generating detection scores. An additional Semantics–
Geometry Module, unique to the SG-NMS algorithm, learns Semantics–Geometry Em-
beddings (SGEs) for each refined box. The SG-NMS algorithm utilizes these embeddings,
detection scores, and detected boxes to determine the final detections.
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Figure 8. SG-Det model overview: A concise depiction illustrating the essential components and
structure of the SG-Det model. This model incorporates SG-NMS to improve detection performance,
especially in scenarios involving overlapping bounding boxes and occluded objects [24].

SG-NMS addresses occlusion challenges by mapping potential detections to a latent
space, dividing occluded objects in the image. Detections belonging to the same physical
object cluster tightly in this space, while those belonging to different objects are pushed
apart. The algorithm selects the box with the highest detection score as the pivot box for the
SGE, measuring distances to determine box retention. If the distance exceeds a predefined
monotonically increasing function, the box is retained. This approach effectively manages
occlusion scenarios during object detection.

2.3. Alternative Approaches for Occlusion Handling

While generative models and deep learning strategies contribute significantly to
occlusion handling, alternative approaches offer diverse perspectives and techniques to
enhance object detection performance in challenging scenarios. In this section, we delve
into alternative strategies that go beyond generative models and deep learning, exploring
the realms of graphical models [34] and data augmentation [41].

2.3.1. Graphical Models for Occlusion Handling

In the realm of addressing occlusion challenges in object detection, graphical mod-
els offer a distinctive approach by leveraging probabilistic relationships and structural
dependencies. These models, such as graph-matching algorithms [26] and probabilistic
graphical models [69], provide a powerful framework for enhancing data association and
object detection performance in complex scenarios with occlusion.

Graph-matching algorithms play a pivotal role in establishing correspondences be-
tween nodes in different graphs, where each node represents an object or a feature. This
approach formulates data association as an optimization problem, with quadratic graph
matching being a notable technique [70]. It minimizes pairwise dissimilarity measures be-
tween nodes, leading to improved object detection accuracy. Noteworthy applications include
frameworks combining quadratic graph matching with deep learning features, showcasing
significant enhancements, particularly under challenging conditions like occlusions.

The integration of temporal dependencies becomes crucial in scenarios where objects
undergo occlusion or abrupt changes. Techniques such as temporal–spatial structured
deep metric learning utilize recurrent neural networks (RNNs) [71] to capture both short-
term and long-term temporal dependencies [27]. This approach enhances object detection
performance, especially in the presence of occlusions. However, challenges may arise in
scenarios with highly complex motion patterns.

Graph-based frameworks, incorporating spatial constraints, provide a structured
way to represent relationships between objects across frames. Objects are depicted as
nodes, and pairwise spatial relationships define edge weights. This approach enforces
consistent associations based on spatial relationships, resulting in improved object detection
accuracy [28]. While effective, challenges may emerge in environments with dynamically
changing spatial relationships.
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Probabilistic graphical models, such as Markov Random Fields (MRFs), represent a
powerful tool for modeling complex dependencies and incorporating contextual informa-
tion in object detection [29]. MRFs utilize an undirected graph to represent joint probability
distributions over variables. The incorporation of appearance and motion cues, along
with contextual information, through MRFs enhances data association in object detection,
particularly in challenging scenarios with occlusions.

The exploration of graphical models in occlusion handling provides valuable insights
into their strengths and limitations [27–29,70]. From quadratic graph matching to the
utilization of temporal–spatial dependencies, these models contribute to advancing the
field of object detection under complex scenarios, shedding light on tailored solutions for
robust data association.

2.3.2. Data Augmentation for Occlusion Handling

Beyond generative models, data augmentation emerges as a pivotal strategy to bolster
the resilience of object detection models when confronted with the complexities of occlu-
sion [44]. This approach is centered on enriching datasets with a spectrum of occlusion
scenarios, thereby equipping the model to navigate variations in object visibility with
greater adeptness.

Within the realm of data augmentation, region-level strategies [72] have risen to
prominence due to their effectiveness, particularly in domains such as object detection
within crowded settings or visual tracking, where occlusion presents formidable challenges.
Diverging from the traditional approach of uniformly transforming entire input images,
these strategies tactically apply image transformation techniques to localized patches. The
essence of region-level augmentation lies in its ability to forestall overfitting to specific fea-
tures within localized sub-regions of training samples, accomplished by infusing diversity
through targeted transformations.

In addition to Cutout and Random Erasing, various other techniques like Hide and
Seek [30] , FenceMask [31], GridMask [73], and GridCut are displayed in Figure 9, show-
casing the diversity of region-level data augmentation strategies.

Figure 9. Visual effects of various region deletion methods for enhanced occlusion handling in object
detection [44].

Region deletion, akin to dropout regularization but at the input level, involves elimi-
nating random regions from input samples during training. This technique, exemplified
by approaches like Cutout [32] and Random Erasing [33], contributes to the introduction
of diversity by varying visual features across different training samples. In the context of
occlusion simulation, region deletion proves particularly valuable. Visual tracking applica-
tions, where occlusion is commonplace due to object interactions or dynamic environmental
changes, benefit from this approach.
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While region-level deletion strategies offer benefits in simulating occlusion and pre-
venting overfitting, certain limitations exist. The effectiveness of these approaches may vary
based on the specific characteristics of the dataset and the nature of occlusion scenarios [44].
Additionally, careful consideration is required when setting hyperparameters, such as
deletion probabilities and aspect ratios, to ensure that the augmentation process remains
realistic and aligns with the challenges posed by occluded objects.

2.4. Summary

In navigating the challenges of occlusion in object detection, we explored a diverse
array of approaches, encompassing generative models (including GANs, POM, and Comp-
Nets), deep learning approaches, graphical models (encompassing graph-matching algo-
rithms, temporal dependencies, graph-based frameworks, and Markov random fields), and
data augmentation through region-level strategies. Deep learning techniques delve into the
intricate layers of neural networks, leveraging diverse strategies like depth extraction and
penalty-based mechanisms to enhance object detection in the face of occlusion. Generative
models offer unique perspectives, distinguishing background context from target objects
and utilizing innovative approaches like CompNet. Graphical models provide robust
solutions, incorporating high-order structure features and probabilistic frameworks to
model complex dependencies and improve data association in multiple object tracking.
Region-level data augmentation strategies, a subset of data augmentation, focus on lo-
calized patches, providing effective tools such as region deletion to simulate occlusion
conditions and prevent overfitting. Although each approach helps to address the challenges
of occlusion, a comprehensive comparative analysis is crucial for discerning their strengths,
limitations, and overall effectiveness. The upcoming Section 3 will illuminate the nuances
through experimental evaluations, offering insights into the performance of selected object
detection models, ultimately bridging the existing gap between automated detectors and
human-level perceptual capabilities.

3. Proposed Comparative Analysis
3.1. Occlusion-Handling Databases

Several datasets play a pivotal role in evaluating occlusion-handling approaches,
each offering unique challenges and diverse scenarios for comprehensive testing. The
Occluded-Vehicles dataset, derived from the PASCAL3D+ dataset by Xiang et al. [74],
artificially introduces occlusions using segmented objects, white patches, random noise,
and textures, providing distinct occlusion levels (L0 to L3). Kortylewski et al. [39] present
the Occluded-COCO-Vehicles dataset, featuring real-world occlusions by removing objects
from the MS-COCO dataset, aligning with the Occluded-Vehicles’ occlusion levels.

The choice of datasets was deliberate, with each serving a specific purpose in our study.
The KITTI dataset [75], developed jointly by the Karlsruhe Institute of Technology and
the Toyota Technological Institute at Chicago, offers 2D and 3D images, accommodating
a wide range of occlusion complexities. Additionally, the NuScenes dataset by Caesar
et al. [76] focuses on autonomous driving scenarios, PascalVOC 2012 [77] extends the
PASCAL3D+ dataset for robust object detection, and CityPersons by Zhang et al. [78]
addresses pedestrian detection in urban environments.

The use of these databases is outlined in Table 1. It is essential to note that each dataset
served a specific purpose, contributing to a more comprehensive evaluation of occlusion-
handling models. The rich set of challenges presented by these datasets encompasses
diverse occlusion scenarios and real-world complexities, ensuring a thorough examination
of occlusion-handling models tailored to different scenarios.
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Table 1. Summary of 3D and 2D datasets for multi-object detection occlusion analysis.

Dataset Description Number of
Classes

Number of
Images Data Type

KITTI [75]
Real-world urban scenes with varying

3 (Car,
Pedestrian,

Cyclist)
7481 3D LIDAR scans

occlusion levels (high occlusion focus) and camera
images

NuScenes [76]
Diverse urban driving scenarios with 10+ 1000+ 3D LIDAR scans

extensive sensor data (low occlusion focus) and camera
images

OccludedPascal3D [74]
Varied indoor and outdoor scenes with 12 2073 RGB Images
varying occlusions (high occlusion focus) and point clouds

PascalVOC 2012 [77]
Diverse scenes and environments for 20+ 17,125 Camera images
object detection (low occlusion focus)

CityPersons [78]
Urban pedestrian detection with varying 1 (Pedestrian) 5000 Camera images
occlusion levels (high occlusion focus)

3.2. Evaluation Criteria

The KITTI dataset is a comprehensive benchmark for object detection and 3D orien-
tation estimation. Its evaluation criteria for occlusion handling involve precise 2D/3D
bounding boxes for object classes like cars, vans, trucks, pedestrians, cyclists, and trams.
Occlusion levels are categorized into three complexity levels: “Easy” (objects fully visible),
“Moderate” (partial occlusion), and “Difficult” (objects challenging to identify) [75]. The
dataset adopts principles like “DontCare” annotation for areas with distant or occluded
objects, not counting them as true positives (TPs) or false positives (FPs). False positives and
false negatives are treated differently based on the overlap relative to the predicted bound-
ing box’s area. Objects with a height of less than 30 pixels are excluded from evaluation
due to their susceptibility to error [79].

The CityPersons dataset focuses on pedestrian detection in urban environments, and
its evaluation criteria for occlusion handling consider annotated objects under different oc-
clusion scenarios. Occlusion levels are specified, and evaluations are conducted separately
for each level, allowing a detailed analysis of the model’s performance in handling occluded
instances. False positives and false negatives are carefully addressed, with specific rules
in place for handling occluded regions [78]. Similar to KITTI, difficulty levels are defined
based on factors like occlusion, and evaluations are reported independently for different
difficulty levels. The dataset’s evaluation criteria provide a robust framework for assessing
pedestrian detection performance under various occlusion conditions in urban settings.

The PASCAL VOC 2012 dataset is a widely used benchmark for object detection, and its
evaluation criteria for occlusion handling involve annotated objects with distinct occlusion
levels. These levels typically include “unoccluded”, “partially occluded”, and “heavily
occluded”. Evaluation metrics encompass precision, recall, and the F1 score, reported
separately for different occlusion levels. False positives and false negatives are carefully
handled, considering specific rules for occluded regions [77]. The dataset categorizes objects
into difficulty levels based on occlusion, size, and truncation, and evaluations are reported
independently for each difficulty level. This class-wise evaluation provides insights into
how well a model handles occlusion across different object categories.

3.3. Experimental Results

For the sake of interpretability, researchers often utilize average precision (AP) as a
standard metric. AP is considered superior to the F1 score, primarily because it provides a
comprehensive measure across various thresholds. The calculation of this metric involves
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the cumulative distribution of true positives (TPs), false positives (FPs), and false negatives
(FNs) as expressed in the following formulas:

AP =
k=n−1

∑
k=0

[Recalls(k)− Recalls(k + 1)] ∗ Precisions(k) (2)

With : Recalls(n) = 0, Precisions(n) = 1, n = Number o f thresholds
And :

Recall=
tp

tp+ f n
(3)

Precision=
tp

tp+ f p
(4)

Here, Recalls(k) denotes the recall at a specific threshold k, signifying the ratio of true
positives correctly identified among all actual positives. Correspondingly, Precisions(k)
represents precision at the same threshold, indicating the ratio of true positives among all
instances predicted as positives. These values are inherently threshold-dependent, with k
representing various threshold levels. The calculation of AP, as expressed in Equation (2),
involves a comprehensive assessment across different thresholds, capturing the nuanced
performance of the object detection model [80].

Our experimental design involves three main comparisons. Initially, we evaluate estab-
lished deep learning networks on KITTI 2D and CityPersons datasets, focusing on their per-
formance in handling occlusion. Subsequently, we explore alternative occlusion-handling
approaches, such as YOLONAS-Cutout [32], DeepLab-CRF [81], and RGRN [82], using the
Pascal VOC 2012 dataset. Finally, we conduct a comparative analysis between generative
(CompNet [15]) and specialized deep learning models (MV3D [14] and YOLO3D [21])
designed explicitly for occlusion scenarios. We use the AP metric for interpretability
and present diverse datasets to assess model robustness across varying complexities and
occlusion levels.

In our comprehensive experiments, we rigorously assessed the performance of es-
tablished deep learning networks on KITTI 2D and CityPersons datasets, with a specific
emphasis on addressing challenges related to occlusion. As detailed in Table 2, the AP
values for Car, Pedestrian, Cyclist (KITTI 2D), and Person (CityPersons) reveal crucial
insights. Notably, during low-occlusion conditions, all models demonstrate competitive
AP values, with YOLO-NAS consistently outperforming others as showcased by its top-
ranking AP values. However, when confronted with high occlusion levels during testing
on both KITTI and CityPersons, a decline in AP is observed across all models. Specifi-
cally, YOLO-NAS maintains the highest performance, but the decrease in AP highlights
the inherent challenges faced by 2D object detection models in real-world scenarios with
significant occlusion. The nuanced analysis of AP values for each class provides a detailed
understanding of the models’ strengths and weaknesses, emphasizing the need for robust
occlusion-handling strategies in future developments (see Figure 10).

Table 2. Object detection AP results for deep learning models without occlusion handling on KITTI
2D [79] and CityPersons [78] datasets under high-occlusion conditions.

Model
AP(%) (KITTI 2D) (CityPersons)

Car Pedestrian Cyclist Person

F-RCNN 57.2 53.8 48.5 79.3
YOLOv5s 65.6 63.3 58.4 82.5
YOLOv6s 66.7 64.4 58.1 84.1
YOLOv7 59.2 58.4 47.6 80.9
YOLOv8s 67.2 63.4 60.7 85.7

YOLO-NAS 69.2 64.3 61.7 87.3
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Figure 10. Training progress: average precision and validation loss for deep learning networks
without occlusion handling.

Turning our attention to the exploration of alternative approaches for occlusion han-
dling, we conducted a meticulous evaluation of a modified version of YOLO-NAS, incorpo-
rating both the Cutout and GridMask techniques. The comparison also included graphical
models, DeepLab-CRF, and RGRN, with a focus on improving analytical functions in
image processing. The results, as presented in Table 3, reveal compelling insights into the
performance of these techniques across various object classes. Notably, the YOLO-NAS
model enhanced with the Cutout technique exhibits superior performance, achieving the
highest AP values across almost all object classes. This outcome signifies the effective-
ness of the Cutout approach in mitigating the impact of occlusion on object detection.
DeepLab-CRF demonstrates competitive results, outperforming RGRN in several classes.
The nuanced analysis of AP values per class provides valuable information for researchers
and practitioners seeking effective occlusion-handling strategies in real-world scenarios.

Table 3. Alternative approaches for object detection AP results on PascalVOC dataset [77].

Model

AP per Class
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DeepLab-CRF 79.3 76.7 78.7 77.6 76.1 78.5 79.5 74.8 76.4 73.7 78.4 73.7 78.0 78.9 79.1 76.8 74.4 77.3
RGRN 76.3 73.7 75.9 74.3 72.6 75.9 76.9 71.8 73.6 71.0 76.1 70.9 75.6 75.9 76.2 73.9 70.7 75.1

YOLONAS-Cutout 92.4 88.7 89.8 88.3 87.9 90.1 91.3 86.6 88.3 85.8 91.2 85.9 91.0 89.3 91.4 87.8 86.5 88.6
YOLONAS-GridMask 89.1 86.1 87.6 86.4 85.4 88 .3 89.2 83.5 85.9 82.9 89.2 82.9 89.0 87.0 89.3 85.5 83.5 87.0

In the culminating experiment dedicated to occlusion handling for SVSs, we conducted
an exhaustive comparison using the KITTI dataset. This evaluation focused on assessing
the performance of various approaches across different occlusion levels, providing nuanced
insights into their efficacy. The results, outlined in Table 4, showcase distinct strengths
among the evaluated networks, including both occlusion-handling object detection methods
and alternative approaches for object detection referenced in another table, ensuring a
comprehensive analysis using the same dataset for a more holistic perspective.

MV3D emerges as the standout performer, particularly excelling in scenarios with
’Moderate’ and ’Hard’ occlusion levels, demonstrating superior efficacy with AP values of
88.4% and 86.1%, respectively. CompNet also demonstrates commendable performance
across different occlusion levels, exhibiting competitive results, with AP values ranging
from 72.3% to 81.6%. YOLO3D, designed for LIDAR data, exhibits relatively lower effi-
cacy, particularly in challenging scenarios with increased occlusion, presenting AP values
ranging from 49.3% to 79.8%. Notably, the inclusion of YOLONAS-Cutout enriches our
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understanding by revealing its proficiency in scenarios with ’Easy’ occlusion levels, with
precision gradually decreasing as the occlusion levels intensify as indicated by the AP
values. The network comparison indicates that YOLONAS-Cutout performs exceptionally
well in detecting objects in less challenging scenarios. Furthermore, our evaluation of
CompNet involved adapting its original object segmentation [50] evaluation script into a
detection network, emphasizing its versatility. These comprehensive results offer valuable
insights into the relative strengths of generative and deep learning approaches tailored for
SVS applications.

Table 4. AP results for occlusion-handling approaches on KITTI dataset [79].

Network Data
Car Pedestrian Cyclist

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

YOLO-NAS 2D 97.4 80.5 69.2 92.5 76.8 64.3 89.8 73.2 61.7

DeepLab-CRF 2D 79.3 70.7 68.7 76.1 69.5 65.5 74.8 66.4 63.7
RGRN 2D 76.3 69.7 67.9 74.3 67.6 63.9 71.8 64.6 60.0
YOLONAS-Cutout 2D 98.0 85.5 73.2 94.7 80.2 69.9 90.9 75.1 70.7
YOLONAS-GridMask 2D 97.5 82.3 70.8 93.1 79.6 68.2 89.3 74.8 69.1

CompNet 2D 81.6 76.8 72.3 78.9 71.2 66.7 75.2 69.1 65.6
YOLO3D LIDAR 79.8 64.5 49.3 75.2 60.1 45.8 69.7 54.6 39.4
MV3D 2D + LIDAR 92.5 88.4 86.1 89.7 84.5 81.2 82.6 79.1 75.4

3.4. Discussion

In our experimental evaluation, we observed nuanced performance results in var-
ious occlusion-handling approaches, revealing challenges for deep learning networks,
particularly in scenarios with significant occlusion. Alternative strategies and the impact
of data augmentation techniques on precision and recall, especially in the presence of
occluded objects, played crucial roles. Tailoring occlusion-handling models for SVS ap-
plications, specifically with the KITTI dataset, exposed distinct performance variations.
MV3D demonstrated superiority in moderate and hard occlusion levels, while CompNet
exhibited commendable performance. However, YOLO3D showed reduced efficacy as
the occlusion levels intensified. Acknowledging challenges in severe occlusion scenarios,
dynamic changes, and diverse object scales, we underscore the ongoing need for research to
address these complexities. Looking ahead, our future directions emphasize refining exist-
ing models, exploring hybrid approaches, and proposing innovative evaluation metrics to
advance the field’s understanding and capabilities. This comprehensive analysis provides
a deeper understanding of occlusion handling in object detection within the context of
Surveillance Video Systems.

4. Conclusions and Future Directions

In conclusion, our survey meticulously explored diverse strategies for occlusion han-
dling in object detection, categorizing them into distinct approaches such as deep learning,
generative models, graphical models, and data augmentation. Our experiments, particu-
larly within the realm of SVS using the KITTI dataset, shed light on the relative strengths
and limitations of various occlusion-handling techniques. While deep learning models
exhibit remarkable performance, challenges persist, especially in the face of significant
occlusion. The comparative analysis, including alternative approaches and specialized
models, emphasized the need for context-specific strategies. Recognizing the significance
of data augmentation in enhancing occlusion handling, our findings highlight the nuanced
performance of different models across varying occlusion levels.

However, it is crucial to acknowledge inherent limitations, including challenges in
severe occlusion scenarios, dynamic changes, and diverse object scales, which impact
precision and recall. Adapting object detection models for SVS applications requires a
delicate balance between accuracy and speed, particularly in real-time scenarios. These
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identified limitations underscore the necessity for ongoing research and innovation in
occlusion-aware object detection.

Our future research endeavors will be anchored in addressing the concrete challenges
identified during our study. To enhance the effectiveness of occlusion-handling frame-
works in SVS applications, we will concentrate on refining existing models, exploring
hybrid approaches, and advancing evaluation metrics. Specifically, we aim to make sig-
nificant contributions to the field by focusing on the detection of objects and handling
occlusion primarily from 2D images. Building upon the limitations observed in current
approaches, our work will strategically leverage existing models that extract depth from
2D images. Through enhancements and tailored modifications, we anticipate providing a
more nuanced understanding of occlusion patterns. This strategic approach is poised to
contribute substantially to the development of robust object detection frameworks capable
of addressing occlusion challenges more effectively.

In summary, this survey, coupled with practical experiments, serves as a compre-
hensive guide for future research and the development of more resilient frameworks for
occlusion-aware object detection, contributing to the evolving landscape of computer vision
applications.
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