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Abstract: Designing automatic optimizing compilers is an advanced engineering process requiring
a great deal of expertise, programming, testing, and experimentation. Maintaining the approach
and adapting it to evolving libraries and environments is a time-consuming effort. In recent years,
OpenAI has presented the GPT model, which is designed for many fields like computer science,
image processing, linguistics, and medicine. It also supports automatic programming and translation
between programming languages, as well as human languages. This article will verify the usability
of the commonly known LLM model, GPT, for the non-trivial NPDP Nussinov’s parallel algorithm
code within the OpenMP standard to create a parallel equivalent of CUDA for NVIDIA graphics
cards. The goal of this approach is to avoid creating any post-processing scripts and writing any
lines of target code. To validate the output code, we compare the resulting arrays with the ones
calculated by the optimized code for the CPU generated employing the polyhedral compilers. Finally,
the code will be checked for scalability and performance. We will concentrate on assessing the
capabilities of GPT, highlighting common challenges that can be refined during future learning
processes. This will enhance code generation for various platforms by leveraging the outcomes from
polyhedral optimizers.

Keywords: NPDP; LLM, artificial intelligence; CUDA; parallel computing; automatic programming;
RNA folding; locality, scalability; GPU computing

1. Introduction

Source-to-source compilers optimize program loops because they contain the majority
of computations. Most of these tools utilize the polyhedral model, a mathematical frame-
work for analyzing and optimizing nested loop structures in programs [1]. It allows for
advanced loop transformations, which are particularly beneficial for regular computation
patterns in scientific and numerical applications. Solutions like polyhedral compilers, such
as TRACO [2], DAPT [3], and Pluto [4], produce parallel and cache-efficient code annotated
with OpenMP pragmas [5]. The challenge lies in porting this code to target platforms
like graphics cards, given libraries like CUDA [6], SYCL [7], and Kokkos [8]. Compiler
development teams focus on defining code at a high level of abstraction, independent of
the target programming architecture. Adapting the resulting code to a specific architec-
ture is tedious, error-prone, time-consuming, and hard to maintain. Many solutions are
poorly documented or are overshadowed by other libraries. The limited popularity or
constraints of solutions like polyhedral compilers (i.e., Pluto, PPCG [9]) indicate a need for
alternative approaches.

Introduced in 2022, the Generative Pre-trained Transformer 3 (GPT-3.5) [10] marked
a transformative advancement in the realm of human–computer interactions. Crafted
by OpenAI, GPT-3.5 (also named ChatGPT) represents the third iteration of prediction-
based large language models (LLMs) and serves as the backbone for numerous AI-driven
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applications that produce human-like textual content. ChatGPT employs sophisticated deep
learning techniques to process and respond to textual inputs. By leveraging vast amounts of
textual data from sources like books, articles, and online content, it can comprehend intricate
linguistic structures and nuances. This extensive training enables ChatGPT to generate
insightful and coherent responses consistent with human-like language understanding.

In recent years, other chatbot solutions based on artificial intelligence have been also
developed, facilitating automated programming with the assistance of large language
models [11–21]. For example, ChatSonic [13], which was trained on a similar dataset as
ChatGPT and naturally became an alternative to it. Compared to ChatGPT, it also allows
users to generate images and voice support and has a code editor. It enables automatic code
completion, suggestions for optimization, and advice on good programming practices.

Along with the possibility of generating code using artificial intelligence, the Github
CoPilot [14] tool appeared, which was created in cooperation between Github and OpenAI.
It allows code generation in the development environment as an extension. It is based on
the GPT-4 language model. Through the extension, it supports developers in creating code
using context-based code generation and analysis of existing code.

The widespread utilization of LLMs in high-performance computing (HPC) code
generation has garnered increasing interest and has been extensively documented in recent
publications. Nichols et al. [22] refined the application of LLMs to enhance the generation
of OpenMP pragmas in parallel algorithm implementations, encompassing MPI cases. In a
related context, Chen et al. [23] introduced LM4HPC, a framework designed for HPC-
specific tasks within the realm of LLMs. They emphasized the scarcity of training and
evaluation datasets in the field of high-performance computing (HPC). It is noteworthy
that the paper presented an attempt to detect parallelism in codes from the dataset using
machine learning.

In [24], the authors assessed AI-driven generative capabilities on fundamental nu-
merical kernels in high-performance computing (HPC), covering AXPY, GEMV, GEMM,
SpMV, Jacobi Stencil, and CG. They examined the generated kernel codes across various
programming models, including OpenMP, CUDA, and others, for the C++, Fortran, Python,
and Julia languages, employing CPU and GPU processing. They leveraged GitHub Copi-
lot [14], powered by OpenAI Codex [25], in Visual Studio Code to generate numerous
implementations based on simple prompt variations such as <kernel> + <programming
model> + <optional hints>. To assess and compare the results, they introduced a proficiency
metric based on the initial 10 suggestions for each prompt. Their findings indicated that
OpenAI Codex outputs for C++ correlate with the popularity and maturity of programming
models, with high scores for OpenMP and CUDA but lower scores for HIP. Prompts in
targeted languages like Fortran or the more general-purpose Python benefit from code
keywords, whereas Julia prompts perform well for its mature programming models (e.g.,
Threads and CUDA.jl). The considered benchmarks aim to serve as a reference point
for each programming model’s community. The authors claimed that understanding the
synergy of large language models, AI, and HPC is crucial due to its rapidly evolving nature
and its impact on redefining human–computer interactions.

In a subsequent study [26] conducted by the same research team a few months later,
the authors revisited the experimental investigation using the Llama-2 engine [12]. Llama-2
is available for free for both research and commercial use. This follow-up research aimed
to generate high-quality HPC codes for the same set of benchmarks and programming
language models. In their comparison of Llama-2 with GitHub Copilot, the authors
observed that although Llama-2 strives to provide more optimized code solutions, it
exhibits a trade-off in terms of reliability when compared to Copilot.

In the realm of high-performance computing (HPC), where hardware and program-
ming models exhibit extreme diversity, ChatGPT-assisted code generation has the potential
to revolutionize the way we create, deploy, and test software for optimizing compilers and
target HPC systems.
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In this article, we pose the following question: Using AI-based solutions, is it possible
to generate code for graphics cards based on parallel OpenMP code without significant
effort? Is this code valid, and most importantly, can a trained model consistently regenerate
code for computational tasks that are similar but vary significantly in structure? For this
purpose, we have chosen Nussinov’s RNA folding algorithm [27], which is not trivial
to optimize using polyhedral compilers [28]. To train our model, we will rely on the
outcomes of the TRACO compiler, which can produce parallel code but solely for CPUs.
We anticipate that GPT will generate CUDA code that is both compilable and efficient.
The code is expected to facilitate valid memory transfers between the CPU and GPU,
accurately perform kernel calculations, and yield results consistent with the host version.

The Nussinov algorithm is classified as a non-serial polyadic dynamic programming
(NPDP) kernel. These NPDP kernels are employed to evaluate the efficiency of tiled code
generated through state-of-the-art optimizing compilers [28–31]. The NPDP dependence
pattern represents the most complex category of dynamic programming (DP) due to its
non-uniform dependences, characterized by irregularities and represented using affine
expressions. The idea of DP is to start from the simplest instance of a problem, find an
optimal solution for it, and extend the optimal solution to bigger instances.

In this paper, we utilize the TRACO output to compare two other automatic compilers,
namely Pluto [4] and DAPT [3], for the generation of optimized codes in the context of
the Nussinov algorithm [32]. The base algorithms, like Nussinov’s approach, encompass
intricate NPDP dependence patterns that pose limitations in achieving high-performance
and energy-efficient code through automatic optimizers. These tools not only facilitate
multi-threading of the code but also enhance its locality by employing techniques like
loop tiling. Pluto utilizes the affine transformation framework (ATF), TRACO implements
the transitive closure of the dependence relation graph, and DAPT applies space-time
tiling with the dependence uniformization approach. Unfortunately, compilers cannot
automatically translate their generated OpenMP code into other programming languages
like CUDA or adapt it to run on specific hardware such as GPUs. Therefore, we conduct
experiments using the GPT-3.5 [10] approach to replicate multi-threaded code for GPU
platforms, assessing the feasibility of AI-assisted code generation. To evaluate the outcomes,
we employ modern machines equipped with Intel Xeon Gold and NVIDIA A100 GPUs.

We justify the selection of the CUDA programming interface based on the high per-
formance guaranteed by the library creators and NVIDIA, the manufacturer of the target
graphics card. Although there are other standards, such as OpenMP target offloading [5],
the effectiveness of these can vary depending on the specific code and the GPU hardware.
Toward the end of our research, we conduct a comparison between the generated CUDA
code and OpenMP target, which could easily be derived from the polyhedral compiler’s
OpenMP code designed for the CPU.

The remaining sections of this paper are structured as follows. Section 2 provides
a detailed description of Nussinov’s RNA folding algorithm, GPT-driven CUDA code
generation based on the OpenMP code, and guidelines for the AI code generation provided
by the compiler and expert. Section 3 presents the experimental methodology and results.
Section 4 discusses the role of automatic programming with GPT for HPC and analyzes the
generated codes. Finally, the paper concludes in Section 5, highlighting future directions
for research.

2. NPDP Code Optimization

Our motivating code is the Nussinov algorithm [27]. The kernel is a representative
NPDP problem that is challenging to optimize using traditional transformations and com-
pilers based on ATF (affine transformation framework) [28,31,33]. Many publications are
dedicated to its manual optimization methods (e.g., the “Four Russians” method [34]
and transposition method [35]), as well as automatic approaches (like ATF [36], tile correc-
tion [32], and time spacing [3]) using CPU and GPU platforms.
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2.1. Nussinov’s RNA Folding Algorithm

Nussinov made one of the first attempts at folding RNA in a computationally efficient
way with the base pair maximization approach in 1978 [27]. An RNA sequence is a chain of
nucleotides from the alphabet: G (guanine), A (adenine), U (uracil), and C (cytosine). Given
an RNA sequence, the Nussinov algorithm addresses the problem of RNA non-crossing
secondary structure prediction by computing the maximum number of base pairs for sub-
sequences, starting with sub-sequences of length 1 and building upwards, storing the result
of each sub-sequence in a dynamic programming array.

Let N be an n × n Nussinov matrix and σ(i, j) be a function, which returns 1 if RNA[i],
RNA[j] are a pair in the set (AU, UG, GC) and i < j − 1, or 0 otherwise. Then, the following
recursion N(i, j) is defined over the region 1 ≤ i ≤ j ≤ n as

N(i, j) = max(N(i + 1, j − 1) + σ(i, j), max
1≤j≤n

(N(i, k) + N(k + 1, j))) (1)

and zero elsewhere [31].
This equation leads directly to the C/C++ code with triple-nested loops presented in

Listing 1 [28].

Listing 1. Nussinov loop nest.

for (i = N-1; i >= 0; i--) {
for (j = i+1; j < N; j++) {
for (k = 0; k < j-i; k++) {
S[i][j] = MAX(S[i][k+i] + S[k+i+1][j], S[i][j]); //s0

}
S[i][j] = MAX(S[i][j], S[i+1][j-1] + signa(i,j));//s1

}
}

2.2. GPT-Driven CUDA Code Generation

Using the TRACO compiler, we generated a valid parallel code in OpenMP (Listing 2).
This code can also be calculated by applying other polyhedral optimizers such as DAPT or
Pluto. To parallelize the input code, we applied the well-known loop skewing transforma-
tion [32]. Loop skewing is a transformation employed to reconfigure an iteration space by
introducing a new loop, where the index is a linear combination of two or more existing
loop indices. This transformation yields code in which the outermost loop becomes serial,
enabling the parallelization of the remaining loops.

Listing 2. The OpenMP code of the Nussinov loop nest generated using the TRACO compiler.

for( c1 = 1; c1 < 2 * n - 2; c1 += 1)
#pragma omp parallel for
for( c3 = max(0, -n + c1 + 1); c3 < (c1 + 1) / 2; c3 += 1) {

for( c5 = 0; c5 <= c3; c5 += 1)
S[(n-c1+c3 -1) ][(n-c1+2*c3)] = MAX(S[(n-c1+c3 -1) ][(n-c1+c3+

c5 -1)] + S[(n-c1+c3+c5 -1) +1][(n-c1+2*c3)], S[(n-c1+c3 -1)
][(n-c1+2*c3)]);

S[(n-c1+c3 -1) ][(n-c1+2*c3)] = MAX(S[(n-c1+c3 -1) ][(n-c1+2*c3)],
S[(n-c1+c3 -1) +1][(n-c1+2*c3) -1] + sigma((n-c1+c3 -1), (n-c1

+2*c3)));

}

Then, we instructed GPT-3.5 to generate CUDA code using the provided OpenMP
code as input. Listing 3 presents the CUDA kernel of Nussinov’s calculations generated
by GPT. The full documentation of the GPT session is available on the GitHub repository
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page: https://markpal.github.io/electronics_jan_2024/, accessed on 22 January 2024. We
employed straightforward, communicative English, which proved sufficient for GPT.

The first answer (Listing 3) is somewhat distant from the target code we desire. First,
we needed to inform the GTP model that the outermost loop, labeled as c1, should be
executed serially, whereas the second loop should be parallel. The remaining loops were
executed sequentially. GPT could not identify data dependencies within the loop, but
providing the aforementioned hints enabled it to generate a valid code.

Listing 3. The CUDA kernel of the Nussinov loop nest with unnecessary atomic statements (generated
with GPT).

__global__ void dynamicProgrammingKernel(int *d_S , int n) {
int c1 = blockIdx.x + 1;
int c3 = threadIdx.x + max(0, -n + c1 + 1);

if(c3 < (c1 + 1) / 2) {
for(int c5 = 0; c5 <= c3; c5++) {

atomicMax (&d_S[(n-c1+c3 -1)*n + (n-c1+2*c3)], d_S[(n-c1+c3
-1)*n + (n-c1+c3+c5 -1)] + d_S[(n-c1+c3+c5 -1+1)*n + (n-
c1+2*c3)]);

}
atomicMax (&d_S[(n-c1+c3 -1)*n + (n-c1+2*c3)], d_S[(n-c1+c3

-1+1)*n + (n-c1+2*c3) -1] + sigma ((n-c1+c3 -1), (n-c1+2*c3))
); // Assuming you have the sigma function implemented

}
}

The GTP chatbot explained, ‘Use the atomicMax function to ensure correct concurrent
updates, if necessary’. It is known that the parallel code generated by the tool is valid and
respects all data dependencies. GPT rectified this by restoring the original MAX functions
and recorded this modification for future code transformations.

In the main code, GPT introduced memory transfers (Listing 4). However, we clarified
that memory transfers are only required at the beginning and end of GPU calculations.
Transferring the scoring array, S, between iterations is unnecessary. This information can
be derived from the TRACO optimizer, which analyzes the structure of the original loop.
The S array is transferred only before and after parallel calculations. GPT corrected the
code according to our hints.

Listing 4. The unnecessary memory transfer between executions of CUDA kernels in sequential
program loop (generated with GPT).

for (int c1 = 1; c1 < 2 * n - 2; c1++) {
// Copy current state of S to device at the beginning of each

c1 iteration
cudaMemcpy(d_S , S, n * n * sizeof(int),

cudaMemcpyHostToDevice);

// Launch the CUDA kernel
dynamicProgrammingKernel <<<1, (n + 1) / 2>>>(d_S , n, c1);

// Copy the results back to the host after each kernel
execution

cudaMemcpy(S, d_S , n * n * sizeof(int),
cudaMemcpyDeviceToHost);

}

https://markpal.github.io/electronics_jan_2024/
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We requested GPT to include the device prototype of the sigma function (representing
a base pair in Nussinov). It is worth noting that this function uses two read-only arrays
containing RNA strands, which also need to be copied to the device memory.

We also asked the GPT model to use 2D arrays in both the kernel and host code (this
is possible in CUDA). This resulted in the creation of 2D references within the code body
and the addition of flattened arrays for data allocation and transfer. The kernel is more
readable for developers and similar to the TRACO OpenMP output code (Listing 5).

Listing 5. The kernel with 2D pointers and parts of the main code (generated with GPT).

__global__ void dynamicProgrammingKernel(int** d_S , int n, int c1) {
int c3 = threadIdx.x + max(0, -n + c1 + 1);

if(c3 < (c1 + 1) / 2) {
for(int c5 = 0; c5 <= c3; c5++) {

d_S[n-c1+c3 -1][n-c1+2*c3] = max(d_S[n-c1+c3 -1][n-c1+c3+c5
-1] + d_S[n-c1+c3+c5 -1+1][n-c1+2*c3], d_S[n-c1+c3 -1][n
-c1+2*c3]);

}
d_S[n-c1+c3 -1][n-c1+2*c3] = max(d_S[n-c1+c3 -1][n-c1+2*c3],

d_S[n-c1+c3 -1+1][n-c1+2*c3 -1] + sigma((n-c1+c3 -1), (n-c1
+2*c3)));

}
}

// Allocate and initialize 2D host array
int** S = new int*[n];
for(int i = 0; i < n; i++) {

S[i] = new int[n];
// Optionally , initialize the array elements here.

}

// Allocate 2D device array (interpreted from a flattened layout)
int* flat_d_S;
int** d_S;

cudaMalloc (&flat_d_S , n * n * sizeof(int));
cudaMalloc (&d_S , n * sizeof(int*));

int* h_S[n];
for(int i = 0; i < n; i++) {

h_S[i] = flat_d_S + i * n;
}
cudaMemcpy(d_S , h_S , n * sizeof(int*), cudaMemcpyHostToDevice);

It is worth noting that programming with pointers can be challenging and prone to
manual errors.

Subsequently, we requested GPT to generate host calculations and compared the
outputs to ensure correctness. GPT introduced the S_CPU array and added validation
code at the end. Initially, when we tried to compile the code with the nvcc compiler, we
encountered an error, indicating that the sigma function had no implementation for the
host. GPT resolved this issue.

Following this, our generated code compiled without any syntax errors, but we
discovered a logic error when running the code. The CPU and GPU arrays differed. GPT
assisted us in identifying the problem.

We resolved the issue of array differences by adding synchronization with the fol-
lowing message: ‘Synchronization: After the kernel launch, use cudaDeviceSynchronize(); to
ensure all threads have finished before copying the data back to the host’. In the OpenMP code,
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synchronization is implicit at the end of the pragma parallel and is executed automatically.
In the CUDA code, explicit barriers are required.

However, the arrays still exhibited differences. GPT provided guidance with the mes-
sage ‘Ensure Coherent Memory Accesses’. We identified the issue: the memory allocation
for 2D data was fragmented over time and needed defragmentation. In memory transfer,
we declared that the arrays were aligned. We informed GPT about this, and the model
corrected the code accordingly. The changes are illustrated in Listing 6.

Listing 6. The defragmented dynamic 2D array allocation (generated with GPT).

// Allocation
int* flatArray_S = new int[n * n];
int** S = new int*[n];
int* flatArray_S_CPU = new int[n * n];
int** S_CPU = new int*[n];

for(int i = 0; i < n; i++) {
S[i] = &flatArray_S[i * n];
S_CPU[i] = &flatArray_S_CPU[i * n];

}

The code was functional for short RNA strands, but when their length exceeded 2048,
the CPU and GPU arrays exhibited discrepancies. GPT pointed out that we did not have
enough threads in the block and recommended the addition of chunking (Listing 7). As a
result, the kernel executed a group of c3 values of the index variable in a parallel loop. We
employed this chunking model to generate the subsequent codes.

Listing 7. The chunking calculations into blocks (generated with GPT).

...
int threadsNeeded = (n + 1) / 2;

int numBlocks = (threadsNeeded + BLOCK_SIZE - 1) / BLOCK_SIZE;
int chunk_size = (threadsNeeded + numBlocks * BLOCK_SIZE - 1) / (

numBlocks * BLOCK_SIZE);

for (int c1 = 1; c1 < 2 * n - 2; c1++) {
dynamicProgrammingKernel <<<numBlocks , BLOCK_SIZE >>>(d_S , n,

c1, chunk_size);
cudaDeviceSynchronize (); // Ensure all threads finish before

proceeding to the next iteration
}

...

In summary, for code generation, the GPT model needs to be informed about the
following tasks:

• Determine which loop is serial or parallel;
• Specify arrays to copy between the CPU and GPU memory (in, out, or in/out);
• Avoid unnecessary communication between the host and device memory dur-

ing calculations;
• Provide the internal function prototypes;
• Synchronize parallel calculations;
• Declare dynamic memory arrays as flattened;
• Utilize 2D array floating pointers in the kernel;
• Provide chunking;
• Verify with the input OpenMP code on the CPU.
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The first four points can be handled by the compiler, whereas the remaining steps
require expert control to produce readable and CUDA-valid code. Summing up, the output
was generated without any manual coding effort.

3. Results

In the subsequent step, we attempted to employ the procedure outlined in the previous
section to re-generate the CUDA code corresponding to the optimized program loops
calculated with DAPT and Pluto. However, GPT failed to reproduce the results when we
provided instructions as a single group or sequentially. The model seemed to forget the
prior hints about the non-identical nature of code generation with the target, resulting in
codes that deviated significantly from the desired pattern. Consequently, each session was
stateless; hence, we explored an alternative solution.

We provided the input code produced by TRACO and the achieved output code
as examples. We then requested GPT to replicate these steps for other OpenMP codes
generated with DAPT and Pluto. The GitHub repository page https://markpal.github.io/
electronics_jan_2024/CreateDAPTandPlutofromTracoCUDA.html (accessed on 21 January
2024) presents a short session on creating these codes. This approach proved highly effec-
tive, as it enabled us to obtain compilable code with all the desired features. In conclusion,
we established a framework outlining the entire procedure for generating the results, as
illustrated in Figure 1.

Input Code
C/C++

Polyhedral 
compiler

Parallel Tiled 
Code C/C++ CPU

Parallel  Code
C/C++

GPT model

OpenMP

OpenMP

GPU
Parallel  Code

C/C++

CUDA

icc/clang/g++

nvcc

Traco/PluTo/DAPT

Polyhedral 
model

Options: code 
validation and 

readability

Options: arrays 
(in/out), loops 
(serial/parallel)

Figure 1. GPT-driven CUDA code generation using polyhedral parallel codes.

According to the schema, the main idea is the usage of the polyhedral compiler and
the LLM model to produce target-optimized code for new platforms. First, input C++ code
is optimized using polyhedral frameworks such as ATF. The compiler provides technical
details regarding parallelism and the input/output arrays of data. The OpenMP code is
transformed into the target code, such as CUDA, using additional information for code
validation and readability. The GPT model is also trained with its own generated codes to
produce similar ones in the future. The output code is compiled using the nvcc compiler and
executed on the target GPU card. The GPT model can be replaced with other LLM models,
and changes can be made to the target hardware, language, or framework in the schema.

To evaluate the quality of the generated CUDA codes for Nussinov’s approach, we
executed them on a modern machine equipped with a parallel processor and a graphics
card. To measure the performance of both the CPU and GPU codes, we utilized an Intel
Xeon Gold 632 machine, boasting 32 hardware threads, operating at 3.5 GHz in turbo
mode, with a 48 MB L3 cache and 128 GB of RAM. Additionally, the system featured an
NVIDIA A100 Tensor Core GPU, equipped with 6912 CUDA cores and 80 GB of memory.
The machine was operating under Ubuntu 22.04, and we compiled the programs using
the Intel C Compiler (icc 2021) and nvcc 12.3 (2023 release) with the -O3 optimization flag.

https://markpal.github.io/electronics_jan_2024/CreateDAPTandPlutofromTracoCUDA.html
https://markpal.github.io/electronics_jan_2024/CreateDAPTandPlutofromTracoCUDA.html
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To validate the results, we compared the outputs of the CPU and GPU codes after each
experiment. The code generated by GPT consistently returned correct results each time,
indicating the advanced language model proficiency of the OpenAI product.

The NVIDIA A100 graphics processor represents an advanced solution within the
NVIDIA Ampere family of graphics processors, designed for deep computing workloads.
Significant improvements in performance and energy efficiency are key aspects of this
processor, contributing significantly to the optimization of computational results and the
sustainable use of energy resources [37].

The third-generation Tensor core in the NVIDIA Ampere architecture allows for data
sharing among all 32 threads in a wrap, representing a significant improvement compared
to Volta’s Tensor core, which allows for data sharing among 8 threads. Enhanced data
sharing reduces the register file bandwidth required to deliver data to Tensor cores. Addi-
tionally, the amount of redundant data loaded into shared memory (SMEM) registers is
also reduced, leading to savings in both bandwidth and register file storage. In pursuit of
increased performance, the A100 Tensor core’s instructions increase the k-matrix dimension
per instruction by up to 4 times compared to the V100. When performing matrix multipli-
cation operations, the A100 issues 8× times fewer instructions and performs 2.9× times
fewer register accesses than the V100 [37].

The codes for the experimental study are available on the GitHub repository:
https://github.com/markpal/electronics_jan_2024, accessed on 22 January 2024.

Our primary objective in this study is time comparison. However, on the 32-core
Intel Xeon processor, we have access to parallel and tiled versions of the Nussinov algo-
rithm through well-known compilers—Pluto, TRACO, and DAPT—from previous pub-
lications [38,39]. On the A100 graphics card, boasting 6192 CUDA cores, the code must
be scalable and fine-grained to fully utilize its resources. To address this, we investi-
gated various sizes of input sequences for the Nussinov algorithm, ranging from 5000 to
30,000 nucleotides.

Table 1 presents the time results in seconds for the original code executed on a single
thread on the Xeon Gold CPU, parallelized code on all 32 Xeon Gold cores, and parallel
and tiled code generated using the TRACO, DAPT, and Pluto compilers for the CPU
using OpenMP pragmas. For 30,000 RNA strands, the best time was achieved using the
DAPT compiler, with a time of 917.96 s. When using the A100 card, the time results were
significantly improved. The best time was observed using the Pluto compiler as input.
However, although Pluto did not exhibit the best performance for the CPU codes, its parallel
version of the Nussinov algorithm demonstrated outstanding results on the GPU (318.94 s).
The parallel code generated using ATF was exceptionally well balanced and scalable, which
is crucial for fine-grained calculations. The remaining codes from TRACO and DAPT
also exhibited faster execution compared to the CPU. With larger sizes, we observed a
significant reduction in computation time on the graphics card, showcasing its advantage
over processor computations. The GPT-driven model played a pivotal role in adapting
this code for GPU architecture with CUDA, significantly expanding the applicability of
commonly known polyhedral optimizers. The CPU and GPU codes consistently produced
the same outputs in every experimental case.

The latest versions of OpenMP [5] have introduced support for graphics cards using
the pragma omp target. In our study, we aimed to compare the time results obtained using
the GPT model with OpenMP codes. We selected the fastest code from the Pluto compiler
and implemented it for OpenMP with GPU offload. The code, presented in Listing 8,
was compiled with the nvc -mp=gpu -O3 compiler flags. The time results demonstrate
the superiority of CUDA codes over OpenMP codes with GPU offloading (Figure 2).
Therefore, our target compilers are native CUDA and OpenCL codes, which, although more
challenging to generate, allow for better performance.

https://github.com/markpal/electronics_jan_2024
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Table 1. Time results for Nussinov’s algorithm optimized using polyhedral compilers and GPT-
driven transformation.

Size Original

CPU + OpenMP GPU + CUDA

Parallel Parallel and Tiled Parallel + GPT

TRACO TRACO Pluto DAPT TRACO Pluto DAPT

5000 165.32 15.06 7.84 4.33 6.71 11.70 7.53 9.38

7500 754.11 54.95 21.29 16.46 21.09 31.03 17.97 25.48

10,000 1696.16 149.64 44.83 115.71 48.49 58.58 32.44 45.58

15,000 5183.39 538.95 133.99 398.54 127.81 137.57 75.92 108.58

20,000 13,924.45 1426.72 295.48 1100.78 283.14 250.61 134.98 193.44

30,000 60,565.98 5272.49 972.52 4056.29 917.96 585.67 318.94 458.44

The shortest time for each size was highlighted in bold in the table.

Listing 8. Pluto kernel implemented with OpenMP target offload for GPU.

#pragma omp target map(tofrom:S)
for( c1 = 1; c1 < 2 * n - 2; c1 += 1)
#pragma omp parallel for private(c3 ,c5) shared(c1)
for( c3 = max(0, -n + c1 + 1); c3 < (c1 + 1) / 2; c3 += 1) {

for( c5 = 0; c5 <= c3; c5 += 1)
S[(n-c1+c3 -1) ][(n-c1+2*c3)] = max(S[(n-c1+c3 -1) ][(n-c1+c3+c5 -1)

] + S[(n-c1+c3+c5 -1) +1][(n-c1+2*c3)], S[(n-c1+c3 -1) ][(n-c1
+2*c3)]);

S[(n-c1+c3 -1) ][(n-c1+2*c3)] = max(S[(n-c1+c3 -1) ][(n-c1+2*c3)],
S[(n-c1+c3 -1) +1][(n-c1+2*c3) -1] + sigma((n-c1+c3 -1), (n-c1
+2*c3)));

}
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4. Discussion

Polyhedral compilers consist of three stages: input code analysis and dependence test,
loop transformations, and code generation. While dependency analysis and, especially,
transformations currently surpass the capabilities of substitution by chatbots—primarily
for achieving correct parallelization and code optimization—AI algorithms have made
significant progress in parsing, syntax analysis, and code generation. However, there are
still many tasks they cannot perform at a human level.

Without specifying parallelism through polyhedral compilers, GPT generates sequen-
tial code using atomic operations (without concurrency), or it generates code without
honoring dependencies. GPT (Generative Pre-trained Transformer) and similar language
models are primarily designed for generating human-like texts based on the training data
provided to them. They are not specifically created for the analysis or understanding of the
structure of computer programs, including dependencies in program loops.

In our experimental study, we observed that GPT has a limited and stateless ability
to generate target code in one step without input from compilers and human experts.
However, it is able to reproduce a result from a pattern consisting of input and output code
at a satisfactory level. Suggestions by experts must be precise and clear. Importantly, we
were able to create code without any manual effort or programming any line of code.

The use of tools like GPT is not entirely straightforward. Firstly, there is no established
method for validating the generated output. We relied on our experience and examined the
code in terms of the expected result, scrutinizing the structural form of kernels, ensuring
correct parallelism implementation, variable passing to kernels as arguments and memory
transfer. GPT, however, requires a clear definition of the parallelism location. It lacks its
own dependence analysis engine at the input code analysis stage, and we cannot replace
data from polyhedral compilers. Ultimately, it could potentially replace certain elements of
a compiler, for example, in the structural analysis phase of the input loop.

The usefulness of the codes was assessed after validating the generated results. Sur-
prisingly, these codes were syntactically correct from the first compilations, and further
corrections were more related to establishing more detailed input data, such as characteris-
tics of NPDP codes.

The use of TRACO CUDA code to generate DAPT and Pluto code is the most signif-
icant observation in this article. The example provided, along with the generated code
for the next instance, immediately tuned GPT to produce the desired result. This code
underwent minimal editing for error correction and was immediately ready for practical
use. In the context of solving similar problems, GPT effectively replaces human effort and
can generate many correct solutions with minimal tuning. GPT is also useful for finding
errors in code and advising on how to fix them.

In technical terms, the code quality from GPT is very good; memory handling functions
did not contain errors, and pointers were handled correctly. We had to specify the form of
parallel code, indicating where the synchronization points were (in the OpenMP code, these
are implicit places, e.g., with the end of the parallel pragma). Additionally, we instructed
that copying data in each iteration of the outer loop was unnecessary. The sequential
outer loop forced kernels to be executed many times in NPDP-like codes, which is not a
template solution that GPT could learn from other source codes. GPT tended to forget
the state and insisted on its solutions, but it responded to commands such as converting
array handling in kernels from 1 to 2 dimensions or adding code to check results with the
host. Parsing techniques were at a high level and could provide significant support for
developers, especially during the prototyping of their future tools.

When source-to-source polyhedral compilers automatically generate OpenMP-
optimized target code with parallelism and cache efficiency, chatbots can assist in gener-
ating the target code for CUDA or other formats like Kokkos and SyCL. Evaluating the
performance and portability of high-level programming models necessitates extensive
experimental study and is contingent on the target machine [40]. Therefore, automating
compilers that can generate code for any of these frameworks is preferable. The establish-
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ment of a new branch of optimizing compilers with practical implementation holds the
potential to significantly reduce the time required for such evaluations.

In this article, we utilized the GPT-3.5 version, which proved to be adequate in terms
of both code performance and correctness. This decision serves as an initial step for future
research, laying the groundwork for exploration with subsequent versions of the GPT
model, which exhibit considerable variation [41].

5. Conclusions

In this paper, we have presented the utilization of increasingly popular large language
models (LLMs), specifically GPT-3.5, for the automatic generation of code based on the
results of polyhedral compilers for graphics cards. This allows for saving programmers
time, avoiding errors, and expanding the applicability of optimizing compilers.

We experimented with several approaches to train the chatbot for complete code
generation. Unfortunately, there were instances where it tended to forget certain code
generation guidelines. Therefore, in the future, we will consider adopting a divide-and-
conquer strategy. Nevertheless, the results of the generated code are promising. We
demonstrated that the generated code is correct and exhibits satisfactory performance. It is
noteworthy that GPT-3.5, with examples at its disposal, is more adept at generating target
codes for similar parallel loops.

GPT functions as a statistical model, producing outputs with a degree of randomness.
While our primary goal of generating valid and efficient code has been achieved, we
recognize the need to delve into the consistency of these outputs. We are committed
to investigating this aspect and exploring potential strategies to address any observed
inconsistencies. In the future, we also plan to validate the proposed approach with other
polyhedral benchmarks using different chatbots and NPDP algorithms.

Despite concerns about the unforeseen impact of new artificial intelligence tools on
various aspects of life, code generation automation is particularly attractive, especially
for challenging tasks such as high-performance computing (HPC). Providers of parallel
hardware and libraries introduce new interfaces each year, requiring the adaptation of
existing programming practices. Large language models (LLMs) provide an opportunity
for developers to keep up with the creation of efficient code for emerging architectures.
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