
Citation: Tsai, J.; Chang, Y.-T.; Chen,

Z.-Y.; You, Z. Autonomous Driving

Control for Passing Unsignalized

Intersections Using the Semantic

Segmentation Technique. Electronics

2024, 13, 484. https://doi.org/

10.3390/electronics13030484

Academic Editor: Mohamed Karray

Received: 26 December 2023

Revised: 19 January 2024

Accepted: 22 January 2024

Published: 24 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Autonomous Driving Control for Passing Unsignalized
Intersections Using the Semantic Segmentation Technique
Jichiang Tsai *, Yuan-Tsun Chang, Zhi-Yuan Chen and Zhehao You

Department of Electrical Engineering, Graduate Institute of Communication Engineering,
National Chung Hsing University, Taichung 402202, Taiwan; d110064007@mail.nchu.edu.tw (Y.-T.C.);
g110064009@mail.nchu.edu.tw (Z.-Y.C.); g111064801@mail.nchu.edu.tw (Z.Y.)
* Correspondence: jichiangt@nchu.edu.tw

Abstract: Autonomous driving in urban areas is challenging because it requires understanding
vehicle movements, traffic rules, map topologies and unknown environments in the highly complex
driving environment, and thus typical urban traffic scenarios include various potentially hazardous
situations. Therefore, training self-driving cars by using traditional deep learning models not only
requires the labelling of numerous datasets but also takes a large amount of time. Because of
this, it is important to find better alternatives for effectively training self-driving cars to handle
vehicle behavior and complex road shapes in dynamic environments and to follow line guidance
information. In this paper, we propose a method for training a self-driving car in simulated urban
traffic scenarios to be able to judge the road conditions on its own for crossing an unsignalized
intersection. In order to identify the behavior of traffic flow at the intersection, we use the CARLA
(CAR Learning to Act) self-driving car simulator to build the intersection environment and simulate
the process of traffic operation. Moreover, we attempt to use the DDPG (Deep Deterministic Policy
Gradient) and RDPG (Recurrent Deterministic Policy Gradient) learning algorithms of the DRL
(Deep Reinforcement Learning) technology to train models based on the CNN (Convolutional Neural
Network) architecture. Specifically, the observation image of the semantic segmentation camera
installed on the self-driving car and the vehicle speed are used as the model input. Moreover, we
design an appropriate reward mechanism for performing training according to the current situation
of the self-driving car judged from sensing data of the obstacle sensor, collision sensor and lane
invasion detector. Doing so can improve the convergence speed of the model to achieve the purpose
of the self-driving car autonomously judging the driving paths so as to accomplish accurate and
stable autonomous driving control.

Keywords: self-driving cars; deep reinforcement learning (DRL); deep deterministic policy gradient
(DDPG); recurrent deterministic policy gradient (RDPG); CARLA (CAR Learning to Act)

1. Introduction

In recent years, the advent of Artificial Intelligence (AI) and rapid advancements in
chip technologies have revolutionized the field of autonomous driving [1]. AI-powered
systems, combined with sophisticated sensors and efficient processing units, have pro-
pelled the development of self-driving vehicles, representing a significant milestone in
the transportation industry. This intersection of AI and chip technologies has not only
enhanced the capabilities of autonomous vehicles but has also paved the way for a safer,
more efficient and sustainable future in transportation.

The escalation of traffic accidents at intersections, especially those without traffic
signals in densely populated urban areas, underscores the pressing need for enhanced
safety measures in the realm of autonomous driving. Statistics reveal a staggering 35%
increase in the incidence of fatalities and injuries at unsignalized intersections [2], highlight-
ing the urgency for autonomous driving technologies to possess an elevated capacity to

Electronics 2024, 13, 484. https://doi.org/10.3390/electronics13030484 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13030484
https://doi.org/10.3390/electronics13030484
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics13030484
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13030484?type=check_update&version=1

Electronics 2024, 13, 484 2 of 20

adapt to unpredictable scenarios. These areas present complex and dynamic environments,
demanding that autonomous driving technologies possess an elevated capacity to adapt
to unpredictable scenarios. The intricacies of navigating through uncontrolled intersec-
tions and densely trafficked cityscapes require autonomous vehicles to swiftly process
and respond to real-time changes, making split-second decisions to ensure the safety of
passengers and pedestrians alike.

In the past, numerous experts and scholars have proposed the feasibility assessments
of Intelligent Transportation Systems (ITS) and autonomous driving technologies [3]. These
propositions emphasized the potential of establishing vehicle-to-infrastructure communi-
cation networks, fostering collective action and accident prevention. Such systems were
envisioned to enhance overall traffic convenience, minimize commuting time and costs and
reduce the occurrence of accidents [4]. However, due to the substantial costs associated with
the initial infrastructure setup and network integration, achieving widespread adoption
and implementation has posed significant challenges [5,6].

As a result, the current focus primarily revolves around the integration of Advanced
Driver Assistance Systems (ADAS) and blind-spot detection systems [7] as mainstream
solutions. These systems serve to alert drivers and offer limited, passive driving assis-
tance capabilities. Yet, they fall short of meeting the aforementioned requirements, thus
highlighting the necessity for further advancements in autonomous driving technologies.

To better facilitate the application of autonomous driving technologies in heavily
congested urban areas, researchers have made notable strides in integrating deep learning
models and simulated environments [8]. Chen et al. [9] utilized ConvNet [10] feature
extractors to simulate multi-lane highway driving behaviors in the TORCS simulator [11].
Building upon this work, Sauer et al. [12] extended the application by implementing a
Conditional Affordance-Based Learning Model based on VGG16 [13]. Here, the traditional
PID controller serves as the decision module, mapping the model’s predicted affordance
indicators into actions, thereby addressing the limitations highlighted in [9] and achieving
advanced autonomous driving behavior control in urban areas.

Furthermore, several studies have endeavored to integrate Deep Reinforcement Learn-
ing (DRL) with the field of autonomous driving [14]. Wolf et al. [15] employed DQN to teach
self-driving cars lane-keeping behaviors in simulated environments. Kendall et al. [16]
utilized forward-facing camera imagery, current vehicle speed and steering angles as in-
puts to train lane-keeping policies, demonstrating the applicability of DRL in real-world
self-driving scenarios. Agarwal et al. [17] proposed DRL strategies for urban driving tasks,
encompassing lane tracking, intersection navigation and adherence to relevant traffic rules.
Their training process incorporated top-view semantic segmentation images and traffic
light states, enabling the learning of driving strategies to facilitate decision-making in
urban environments.

In many cases, research endeavors in the field of autonomous vehicles have leveraged
simulators such as CARLA [18], TORCS [11], AirSim [19] and AWS DeepRacer [20] to mini-
mize costs and streamline development efforts. Considering the environmental requisites
and the feasibility assessment for implementation, this paper ultimately opts to utilize
CARLA as the platform for self-driving car training to accomplish the goals outlined in
this research.

The structure of this paper is divided into five sections. Section 1 describes the purpose
and motivation for writing this paper, along with discussing related research. Section 2
provides the theories and knowledge required for this paper, e.g., DQN, the DDPG, the
RDPG and so on. In Section 3, we carefully formulate an appropriate reward-generation
mechanism and elaborate the two DRL models proposed by us. Section 4 constructs the
simulation environments required for training and testing of our models and analyzes the
experimental results. Finally, Section 5 provides a summary of this paper.

Electronics 2024, 13, 484 3 of 20

2. Preliminaries
2.1. Modular Pipeline

Modular pipeline (MP) is an approach in autonomous driving systems that comprises
a series of modules, primarily including perception, decision-making and motion plan-
ning modules. Each module is tasked with specific responsibilities within the overall
architecture. The perception module collects data from onboard sensors such as cameras,
LiDAR and RADAR, which creates a high-dimensional state representation of the vehicle’s
surroundings and includes tasks such as semantic segmentation [21], object tracking [22],
object detection [23] and traffic sign identification [24].

The decision-making module is responsible for receiving the vehicle’s state and mak-
ing decisions such as lane-keeping, left-lane changing and right-lane changing. Meanwhile,
the motion planning module adheres to the decision commands and state displays, con-
trolling actions such as steering, throttle and braking based on the instructions. Given the
interdependencies between the modules, integrating them effectively becomes crucial for
achieving optimal behavioral control in the concatenated applications.

2.2. Reinforcement Learning

Reinforcement learning (RL) focuses on improving an autonomous agent’s behavior
in accomplishing assigned tasks through interactions with the environment, resembling
human or biological learning patterns. The functioning of reinforcement learning is illus-
trated in Figure 1, where the agent observes each step (t) and obtains the environment’s
state (St ∈ S). Based on the input state, the agent selects discrete or continuous actions
(At ∈ A) as the output. After executing the action and interacting with the environment,
the agent acquires a new state (St+1) and receives a reward (Rt+1 ∈ R).

Electronics 2024, 13, x FOR PEER REVIEW 3 of 20

2. Preliminaries
2.1. Modular Pipeline

Modular pipeline (MP) is an approach in autonomous driving systems that com-
prises a series of modules, primarily including perception, decision-making and motion
planning modules. Each module is tasked with specific responsibilities within the overall
architecture. The perception module collects data from onboard sensors such as cameras,
LiDAR and RADAR, which creates a high-dimensional state representation of the vehi-
cle’s surroundings and includes tasks such as semantic segmentation [21], object tracking
[22], object detection [23] and traffic sign identification [24].

The decision-making module is responsible for receiving the vehicle’s state and mak-
ing decisions such as lane-keeping, left-lane changing and right-lane changing. Mean-
while, the motion planning module adheres to the decision commands and state displays,
controlling actions such as steering, throttle and braking based on the instructions. Given
the interdependencies between the modules, integrating them effectively becomes crucial
for achieving optimal behavioral control in the concatenated applications.

2.2. Reinforcement Learning
Reinforcement learning (RL) focuses on improving an autonomous agent’s behavior

in accomplishing assigned tasks through interactions with the environment, resembling
human or biological learning patterns. The functioning of reinforcement learning is illus-
trated in Figure 1, where the agent observes each step (t) and obtains the environment’s
state (St ∈ S). Based on the input state, the agent selects discrete or continuous actions (At ∈ A) as the output. After executing the action and interacting with the environment, the
agent acquires a new state (St+1) and receives a reward (Rt+1 ∈ R).

Figure 1. The procedure of reinforcement learning.

The Markov decision process (MDP) elucidates the theoretical framework and stand-
ards followed by the agent in dealing with decision-making problems within reinforce-
ment learning. MDP is composed of a set of states (S), a set of actions (A), transition prob-
abilities (P) and a reward function (R), denoted collectively as (S, A, P, R).

The performance of the RL agent is evaluated by the reward mechanism, making the
design of such a mechanism a crucial aspect in aligning the actions executed by the agent
with the desired outcomes. The goal of the agent is to maximize the cumulative reward
obtained during its lifetime, which can be represented by Equation (1) [25]: 𝑅 = ∑ 𝛾 𝑟 (1)

Here, 𝛾 represents the discount factor that signifies the discounting value of future
rewards, ranging between 0 and 1. Specifically, a value close to 0 implies a focus on im-
mediate actions, with the agent considering short-term rewards. Conversely, a value
closer to 1 signifies a more forward-thinking approach, considering future rewards to

Figure 1. The procedure of reinforcement learning.

The Markov decision process (MDP) elucidates the theoretical framework and stan-
dards followed by the agent in dealing with decision-making problems within reinforce-
ment learning. MDP is composed of a set of states (S), a set of actions (A), transition
probabilities (P) and a reward function (R), denoted collectively as (S, A, P, R).

The performance of the RL agent is evaluated by the reward mechanism, making the
design of such a mechanism a crucial aspect in aligning the actions executed by the agent
with the desired outcomes. The goal of the agent is to maximize the cumulative reward
obtained during its lifetime, which can be represented by Equation (1) [25]:

R = ∑H
k=0 γkrt+k (1)

Here, γ represents the discount factor that signifies the discounting value of future
rewards, ranging between 0 and 1. Specifically, a value close to 0 implies a focus on
immediate actions, with the agent considering short-term rewards. Conversely, a value
closer to 1 signifies a more forward-thinking approach, considering future rewards to

Electronics 2024, 13, 484 4 of 20

achieve better long-term rewards. On the other hand, H refers to the time steps in the MDP,
where H = ∞ under unrestricted conditions. However, in typical training contexts, H is
often set as a finite value since scenarios terminate either after a fixed number of time steps
or when the agent reaches a designated goal state, referred to as a terminal state.

When the state (s) is input, an action (a) is chosen to enter the environment, resulting in
a new state (s′), a transition probability p(s′,r|s,a) ∈ (0,1) and a reward R(s,a). The Stochastic
Policy π: S → P(A) maps probabilities from the state space to the action set. The goal
of reinforcement learning is to find the optimal policy π* that maximizes the expected
cumulative discounted reward, as denoted in Equation (2) [25]:

π∗ = argmaxEπ
π

{
∑H−1

k=0 γkrk+1|s0 = s} (2)

2.3. Q Learning

Q learning is an off-policy algorithm which applies the temporal-difference (TD) [26]
equation. At the beginning, the Q function and the initial state s are randomly initialized,
and action a is selected according to ε-greedy. After the selected action a is applied to the
environment, a reward R and a new state s’ will be obtained, and subsequently the Q value
of the pair (s, a) is updated according to the following equation:

Q(s, a) = Q(s, a) + α[R + γmax
a′

Q
(
s′, a′

)
− Q(s, a)

]
(3)

After updating the Q function, we can continue to choose a random action with
ε-greedy or choose the action a with the largest Q value, repeating the above steps until the
final state is reached. More specifically, the update method of Q-Learning is to continually
update the Q function with the largest Q value of the next state. That is, Qπ(s, a) represents
the expected cumulative return after taking action a from state s under the policy π, as
shown in Equation (4) [25]:

Qπ(s, a) = Eπ

{
∑H−1

k=0 γkrk+1|s0 = s, a0 = a} (4)

2.4. DQN

In environments with large state spaces, traditional Q-Learning struggles with the im-
practicality of learning and storing Q-values for each state. The deep Q-Network (DQN) [27]
addresses this by integrating deep learning with Q-Learning by using a deep neural net-
work (DNN) to approximate Q-values for high-dimensional states so as to manage the vast
computational complexity and storage issues. More specifically, this approach approxi-
mates the Q-value distribution using a function, as depicted in the equation below:

Q(s, a, ω) ≈ f (s, a, ω) (5)

In the above equation, Q(s, a,ω) represents the approximate Q-value with the param-
eter ω of the DNN, which needs to be precisely adjusted during the raining procedure.

By leveraging the power of deep learning, DQN efficiently handles complex and high-
dimensional state spaces, contributing significantly to the advancement of reinforcement
learning in various applications, including autonomous driving systems. Particularly, in
advanced DQN versions, a target network that is identical in structure to the main network
but with periodically updated parameters is used to estimate the target value for enhancing
training stability, as the architecture shown in Figure 2.

Electronics 2024, 13, 484 5 of 20
Electronics 2024, 13, x FOR PEER REVIEW 5 of 20

Figure 2. The architecture of DQN.

2.5. Policy Gradient
Policy Gradient and Q-Learning are two different reinforcement learning strategies.

The latter seeks to learn the best actions based on the highest expected rewards using a
method like ε-greedy; while the former directly learns the best policy through a probabil-
istic approach, determining actions based on a learned probability distribution. Within
Policy Gradient, Stochastic Policy Gradient (SPG) [28] is used for discrete action spaces,
adjusting policy based on probability distribution; while Deterministic Policy Gradient
(DPG) [29] is better for continuous action spaces, aiming for a deterministic policy solu-
tion.

2.6. Actor–Critic
Actor–Critic [30] is an algorithm that combines Policy Gradient and value function

algorithms, i.e., a hybrid of Policy Gradient and value function-based algorithms. It em-
ploys two networks for training: Actor and Critic. The Actor is trained using the Policy
Gradient method, determining which action to take based on the input state. The Critic,
on the other hand, uses the value function method. It updates network parameters based
on the current state and action from the Actor, as well as the received reward. Based on
this, it evaluates actions using the value function. Finally, the Actor improves its actions
based on the Critic’s evaluations.

2.7. DDPG
Deep Deterministic Policy Gradient (DDPG) [31], introduced by DeepMind in 2016,

is an algorithm derived from the Actor–Critic architecture, enabling learning through both
the Q-function and policy methods, effectively addressing problems with continuous ac-
tion spaces. More specifically, the DDPG algorithm combines deep learning techniques
with DPG, structured into the Actor and Critic networks. The Actor component utilizes a
deep neural network to approximate a deterministic policy function for predicting actions;
while the Critic component employs a deep neural network to approximate the state-ac-
tion Q function for action value prediction. This approach resembles the methodology of
DQN. Hence, DDPG can be seen as an extension of DQN tailored for continuous action
spaces, which is rooted in the principles of the Actor–Critic method. Moreover, the Actor–
Critic architecture is further segmented into the target network and the online network
for enhancing training stability, just like DQN.

To further enhance the stability and convergence speed of the algorithm, DDPG em-
ploys the Experience Replay mechanism. This technique involves storing a collection of
past experiences and then randomly sampling from this collection during training. By

Figure 2. The architecture of DQN.

2.5. Policy Gradient

Policy Gradient and Q-Learning are two different reinforcement learning strategies.
The latter seeks to learn the best actions based on the highest expected rewards using a
method like ε-greedy; while the former directly learns the best policy through a probabilistic
approach, determining actions based on a learned probability distribution. Within Policy
Gradient, Stochastic Policy Gradient (SPG) [28] is used for discrete action spaces, adjusting
policy based on probability distribution; while Deterministic Policy Gradient (DPG) [29] is
better for continuous action spaces, aiming for a deterministic policy solution.

2.6. Actor–Critic

Actor–Critic [30] is an algorithm that combines Policy Gradient and value function
algorithms, i.e., a hybrid of Policy Gradient and value function-based algorithms. It
employs two networks for training: Actor and Critic. The Actor is trained using the Policy
Gradient method, determining which action to take based on the input state. The Critic, on
the other hand, uses the value function method. It updates network parameters based on
the current state and action from the Actor, as well as the received reward. Based on this, it
evaluates actions using the value function. Finally, the Actor improves its actions based on
the Critic’s evaluations.

2.7. DDPG

Deep Deterministic Policy Gradient (DDPG) [31], introduced by DeepMind in 2016, is
an algorithm derived from the Actor–Critic architecture, enabling learning through both
the Q-function and policy methods, effectively addressing problems with continuous action
spaces. More specifically, the DDPG algorithm combines deep learning techniques with
DPG, structured into the Actor and Critic networks. The Actor component utilizes a deep
neural network to approximate a deterministic policy function for predicting actions; while
the Critic component employs a deep neural network to approximate the state-action Q
function for action value prediction. This approach resembles the methodology of DQN.
Hence, DDPG can be seen as an extension of DQN tailored for continuous action spaces,
which is rooted in the principles of the Actor–Critic method. Moreover, the Actor–Critic
architecture is further segmented into the target network and the online network for
enhancing training stability, just like DQN.

To further enhance the stability and convergence speed of the algorithm, DDPG em-
ploys the Experience Replay mechanism. This technique involves storing a collection of past
experiences and then randomly sampling from this collection during training. By learning
from a diverse set of experiences, the algorithm can improve its robustness and overall
performance. Furthermore, OU Noise (Ornstein–Uhlenbeck Process) is typically combined

Electronics 2024, 13, 484 6 of 20

with DDPG to aid in learning deterministic policies [32]. During the training phase, OU
Noise is incorporated into the actions to enhance the agent’s exploration rate. Particularly,
OU Noise assists the agent in exploring temporal correlations between neighboring actions,
thereby enhancing the exploration intensity in the selected direction.

The structural layout of the DDPG algorithm is shown in Figure 3, emphasizing
the interplay between the Actor and Critic networks and the integration of Experience
Replay. Note that µ(·) and µ′(·) denote the output of the online network and the target
network according to their input, respectively. Moreover, yi is the temporary target Q value
predicted by the Target Critic network for the Online Critic network to update its future
evaluation on the Q value of the current state-action pair.

Electronics 2024, 13, x FOR PEER REVIEW 6 of 20

learning from a diverse set of experiences, the algorithm can improve its robustness and
overall performance. Furthermore, OU Noise (Ornstein–Uhlenbeck Process) is typically
combined with DDPG to aid in learning deterministic policies [32]. During the training
phase, OU Noise is incorporated into the actions to enhance the agent’s exploration rate.
Particularly, OU Noise assists the agent in exploring temporal correlations between neigh-
boring actions, thereby enhancing the exploration intensity in the selected direction.

The structural layout of the DDPG algorithm is shown in Figure 3, emphasizing the
interplay between the Actor and Critic networks and the integration of Experience Replay.
Note that µ(·) and µ’(·) denote the output of the online network and the target network
according to their input, respectively. Moreover, yi is the temporary target Q value pre-
dicted by the Target Critic network for the Online Critic network to update its future eval-
uation on the Q value of the current state-action pair.

Figure 3. The architecture of DDPG.

2.8. RDPG
RDPG (Recurrent Deep Deterministic Policy Gradient) [33] is an advancement built

upon the DDPG algorithm, incorporating two key modifications. First, RDPG replaces the
hidden layer neurons in DDPG with long short-term memory (LSTM) cells [34]. Specifi-
cally, an LSTM cell involves three critical gate units that regulate information flow: Forget
gate, Input gate and Output gate. The Forget gate determines which information to dis-
card or retain, while the Input gate controls the incorporation of current input and new
memory units. Both of these stages utilize Sigmoid functions to generate values in the [0,
1] range, dictating the proportion of data flow. Finally, the Output gate decides which
information needs to be output, with the values constrained to the [–1, 1] range via the
Tanh function. The architecture of an LSTM cell is depicted in Figure 4.

Figure 3. The architecture of DDPG.

2.8. RDPG

RDPG (Recurrent Deep Deterministic Policy Gradient) [33] is an advancement built
upon the DDPG algorithm, incorporating two key modifications. First, RDPG replaces the
hidden layer neurons in DDPG with long short-term memory (LSTM) cells [34]. Specifically,
an LSTM cell involves three critical gate units that regulate information flow: Forget gate,
Input gate and Output gate. The Forget gate determines which information to discard or
retain, while the Input gate controls the incorporation of current input and new memory
units. Both of these stages utilize Sigmoid functions to generate values in the [0, 1] range,
dictating the proportion of data flow. Finally, the Output gate decides which information
needs to be output, with the values constrained to the [−1, 1] range via the Tanh function.
The architecture of an LSTM cell is depicted in Figure 4.

Secondly, RDPG introduces historical states ht as inputs, enabling the model to capture
the dynamic nature and long-term influences of the environment. These enhancements
equip RDPG with the capability to adapt to complex and evolving scenarios more effectively.
The structural layout of the RDPG algorithm is shown in Figure 5.

Electronics 2024, 13, 484 7 of 20
Electronics 2024, 13, x FOR PEER REVIEW 7 of 20

Figure 4. The architecture of an LSTM cell.

Secondly, RDPG introduces historical states ℎ as inputs, enabling the model to cap-
ture the dynamic nature and long-term influences of the environment. These enhance-
ments equip RDPG with the capability to adapt to complex and evolving scenarios more
effectively. The structural layout of the RDPG algorithm is shown in Figure 5.

Figure 5. The architecture of RDPG.

2.9. CARLA Simulator
CARLA [18] is an open-source autonomous driving simulator focusing on urban en-

vironments. It offers detailed urban content like city layouts, vehicles, pedestrians and

Figure 4. The architecture of an LSTM cell.

Electronics 2024, 13, x FOR PEER REVIEW 7 of 20

Figure 4. The architecture of an LSTM cell.

Secondly, RDPG introduces historical states ℎ as inputs, enabling the model to cap-
ture the dynamic nature and long-term influences of the environment. These enhance-
ments equip RDPG with the capability to adapt to complex and evolving scenarios more
effectively. The structural layout of the RDPG algorithm is shown in Figure 5.

Figure 5. The architecture of RDPG.

2.9. CARLA Simulator
CARLA [18] is an open-source autonomous driving simulator focusing on urban en-

vironments. It offers detailed urban content like city layouts, vehicles, pedestrians and

Figure 5. The architecture of RDPG.

2.9. CARLA Simulator

CARLA [18] is an open-source autonomous driving simulator focusing on urban
environments. It offers detailed urban content like city layouts, vehicles, pedestrians and
road signs, using the Unreal Engine for realistic scene rendering and physical behavior
simulation. The simulator includes both static and dynamic 3D objects and allows for
environmental customization with 18 weather and lighting conditions.

Electronics 2024, 13, 484 8 of 20

2.10. Driving Scenes

To train autonomous driving behaviors effectively in dynamic traffic environments [35,36],
we employ a semantic segmentation camera on the training vehicle. This camera captures
the driving scene and uses semantic segmentation to classify each pixel, simplifying the
visual data by focusing on relevant features and reducing complexity. This technique’s
significant impact on training efficiency in deep reinforcement learning is noted. However,
due to GPU memory constraints, image frames are resized to 224 × 224 pixels and undergo
preprocessing to match the neural network’s input format. Specifically, images from
the CARLA sensor are initially in RGBA format and are converted to RGB by removing
the alpha channel, which reduces image transparency but does not affect the semantic
segmentation’s ability to differentiate objects based on color, as shown in Figure 6 below.

Electronics 2024, 13, x FOR PEER REVIEW 8 of 20

road signs, using the Unreal Engine for realistic scene rendering and physical behavior
simulation. The simulator includes both static and dynamic 3D objects and allows for en-
vironmental customization with 18 weather and lighting conditions.

2.10. Driving Scenes
To train autonomous driving behaviors effectively in dynamic traffic environments

[35,36], we employ a semantic segmentation camera on the training vehicle. This camera
captures the driving scene and uses semantic segmentation to classify each pixel, simpli-
fying the visual data by focusing on relevant features and reducing complexity. This tech-
nique’s significant impact on training efficiency in deep reinforcement learning is noted.
However, due to GPU memory constraints, image frames are resized to 224 × 224 pixels
and undergo preprocessing to match the neural network’s input format. Specifically, im-
ages from the CARLA sensor are initially in RGBA format and are converted to RGB by
removing the alpha channel, which reduces image transparency but does not affect the
semantic segmentation’s ability to differentiate objects based on color, as shown in Figure
6 below.

(a) (b)

Figure 6. An example driving vision captured by (a) the ordinary camera and (b) the semantic seg-
mentation camera.

3. Our DRL Models
In this section, we begin to clearly explain how we devised and trained our two DRL

models for controlling a self-driving car to perform the behavior of crossing an unsignal-
ized intersection, including turning right, going straight and especially turning left. In
particular, both our models are constructed mainly based on the existing Convolutional
Neural Network (CNN) architecture. Although CNN architecture is well known in build-
ing models for extracting critical features from an image to facilitate decision making, we
still need to decide how many convolution layers and pooling layers should be used for
our application. On the one hand, the two DDPG and RDPG learning algorithm proposed
in the literature are exploited for training our DRL models. However, we have to carefully
design the reward mechanism for these two algorithms to train the models to be faster
and more accurate. Note that the above two issues both must be manipulated by building
a proper experimental learning environment and carrying out a long process of trial and
error. This is our work’s main contribution. Here, the block diagram shown in Figure 7 is
exploited to illustrate the relationship between CARLA and our driving-control DRL
models. Thanks to the architecture of such a simulation tool, for the different DRL learning
algorithms, such as DDPG and RDPG, we just need to replace the source code in the DRL
model with another one. Furthermore, CARLA can generate realistic sensed data and send

Figure 6. An example driving vision captured by (a) the ordinary camera and (b) the semantic
segmentation camera.

3. Our DRL Models

In this section, we begin to clearly explain how we devised and trained our two
DRL models for controlling a self-driving car to perform the behavior of crossing an
unsignalized intersection, including turning right, going straight and especially turning left.
In particular, both our models are constructed mainly based on the existing Convolutional
Neural Network (CNN) architecture. Although CNN architecture is well known in building
models for extracting critical features from an image to facilitate decision making, we still
need to decide how many convolution layers and pooling layers should be used for our
application. On the one hand, the two DDPG and RDPG learning algorithm proposed in
the literature are exploited for training our DRL models. However, we have to carefully
design the reward mechanism for these two algorithms to train the models to be faster and
more accurate. Note that the above two issues both must be manipulated by building a
proper experimental learning environment and carrying out a long process of trial and
error. This is our work’s main contribution. Here, the block diagram shown in Figure 7
is exploited to illustrate the relationship between CARLA and our driving-control DRL
models. Thanks to the architecture of such a simulation tool, for the different DRL learning
algorithms, such as DDPG and RDPG, we just need to replace the source code in the DRL
model with another one. Furthermore, CARLA can generate realistic sensed data and send
them directly to the DRL model for the training procedure. After the training has finished,
upon receipt of the required sensed data, the DRL model can continuously provide decision
actions to CARLA for the purposes of emulating the process of crossing an unsignalized
intersection autonomously.

Electronics 2024, 13, 484 9 of 20

Electronics 2024, 13, x FOR PEER REVIEW 9 of 20

them directly to the DRL model for the training procedure. After the training has finished,
upon receipt of the required sensed data, the DRL model can continuously provide deci-
sion actions to CARLA for the purposes of emulating the process of crossing an unsignal-
ized intersection autonomously.

Figure 7. The relationship between CARLA and the DRL model.

3.1. The Reward Mechanism
The reward mechanism plays a key role in training the DRL model since it determines

the convergence speed and the decision accuracy. Here, our reward mechanism is com-
posed of six main constituents for accurate driving control, including velocity control and
steering control. Their numeric values are derived according to the current situation of the
self-driving car judged from sensed data of certain sensors, like the obstacle sensor, lane
invasion detector and collision sensor, that are additionally installed on the car module.
Note that the above sensors are only utilized for evaluating the reward obtained by per-
forming the chosen action during the training procedure. Their sensed data are not actu-
ally fed into the DRL model. This means that we need not to really mount these sensors
on a self-driving car for normal operations. Only the observation image of the road ahead
captured by the semantic segmentation camera, installed beside the rearview mirror of
the car, and the car speed are employed as the inputs of our DRL models for the training
procedure and decision making in real applications. Through the reward mechanism, the
DRL model will learn how to transform information obtained by sensors used for training
into that obtained by sensors used for rewarding.

First of all, the concept of navigation with waypoints used in [35] is adopted to pre-
vent the training car from deviating from the driving path properly arranged when it
crosses the intersection. Before each behavior, a sequence of waypoints will be generated
via navigation in advance, as seen in the example shown in Figure 8 for the going-straight
behavior of crossing the intersection. The car will follow these waypoints to obtain a
higher score and thus accomplish correct path keeping by designing an appropriate re-
ward constituent 𝑅 for this objective, expressed as follows: 𝑅 = (𝑇 − 𝑃 − 𝑃) × 𝑤 (6)

where 𝑇 is the threshold for deciding whether the car deviates from the waypoint
too much, 𝑃 is the position of the car, 𝑃 is the position of the next waypoint
and waypoint is the regulation weight for the deviation distance. Specifically, because the
car is required to pass through a waypoint as closely as possible, the method for the above
equation to calculate the score is to measure the straight-line distance between the car and
the next waypoint and then subtract the square of such a value from a predefined baseline
to get the result.

Figure 7. The relationship between CARLA and the DRL model.

3.1. The Reward Mechanism

The reward mechanism plays a key role in training the DRL model since it determines
the convergence speed and the decision accuracy. Here, our reward mechanism is composed
of six main constituents for accurate driving control, including velocity control and steering
control. Their numeric values are derived according to the current situation of the self-
driving car judged from sensed data of certain sensors, like the obstacle sensor, lane invasion
detector and collision sensor, that are additionally installed on the car module. Note that
the above sensors are only utilized for evaluating the reward obtained by performing the
chosen action during the training procedure. Their sensed data are not actually fed into the
DRL model. This means that we need not to really mount these sensors on a self-driving
car for normal operations. Only the observation image of the road ahead captured by the
semantic segmentation camera, installed beside the rearview mirror of the car, and the
car speed are employed as the inputs of our DRL models for the training procedure and
decision making in real applications. Through the reward mechanism, the DRL model
will learn how to transform information obtained by sensors used for training into that
obtained by sensors used for rewarding.

First of all, the concept of navigation with waypoints used in [35] is adopted to prevent
the training car from deviating from the driving path properly arranged when it crosses
the intersection. Before each behavior, a sequence of waypoints will be generated via
navigation in advance, as seen in the example shown in Figure 8 for the going-straight
behavior of crossing the intersection. The car will follow these waypoints to obtain a
higher score and thus accomplish correct path keeping by designing an appropriate reward
constituent Rwaypoint for this objective, expressed as follows:

Rwaypoint =
(

Twaypoint −
∣∣Pcar − Pwaypoint

∣∣2)× wwaypoint (6)

where Twaypoint is the threshold for deciding whether the car deviates from the waypoint
too much, Pcar is the position of the car, Pwaypoint is the position of the next waypoint and
waypoint is the regulation weight for the deviation distance. Specifically, because the car
is required to pass through a waypoint as closely as possible, the method for the above
equation to calculate the score is to measure the straight-line distance between the car and
the next waypoint and then subtract the square of such a value from a predefined baseline
to get the result.

Electronics 2024, 13, 484 10 of 20

Electronics 2024, 13, x FOR PEER REVIEW 10 of 20

Next, the self-driving car cannot run into any obstacle upon its driving. Hence, an
obstacle sensor is mounted on the car for detecting the obstacle ahead on the driving path,
like the building, vehicle, pedestrian and so on. Such a sensor can provide the distance to
the obstacle detected and thus is utilized to calculate the score. If the safe distance is too
short, the training car must be rewarded a negative score to ensure driving safety. The
resultant equation for this new reward constituent 𝑅 is expressed in the following:

𝑅 = 𝐶 × 𝑤 , 𝐷 < 𝑇 −𝐶 × 𝑤 , 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (7)

where 𝐶 is a constant denoting the baseline magnitude of this constituent affecting
the total reward, 𝑤 is the regulation weight for 𝐶 , 𝑇 is the threshold
for deciding whether the car is keeping a safe distance from the obstacle ahead and 𝐷 is the distance between the car and the detected obstacle.

Figure 8. An example sequence of waypoints generated via navigation for the going-straight behav-
ior of crossing the intersection.

Furthermore, the training car must keep running on the lane assigned to it in a way
that it cannot deviate from its navigation route and move into another lane or even onto
the sidewalk. To detect such a scenario of traffic regulations violation, a lane invasion de-
tector is installed on the self-driving car, which can also assist the car in identifying the
driving area so as to improve the control accuracy of the autonomous driving system and
reduce the risk of accidents. The equation of this constituent Rlane is shown below: 𝑅 = −𝐶 × 𝑤 , 𝐿𝑎𝑛𝑒 𝐼𝑛𝑣𝑎𝑠𝑖𝑜𝑛0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (8)

where 𝐶 is a constant denoting the baseline magnitude of the above constituent
affecting the total reward and 𝑤 is the regulation weight for 𝐶 .

On the other hand, another reward constituent 𝑅 is used to indicate whether
the self-driving car really collides with a car or an obstacle and should consequently be
awarded a negative score to prevent such a scenario from occurring. To identify this fatal
problem, a collision sensor is installed on the car. The equation of this constituent is shown
below:

Figure 8. An example sequence of waypoints generated via navigation for the going-straight behavior
of crossing the intersection.

Next, the self-driving car cannot run into any obstacle upon its driving. Hence, an
obstacle sensor is mounted on the car for detecting the obstacle ahead on the driving path,
like the building, vehicle, pedestrian and so on. Such a sensor can provide the distance
to the obstacle detected and thus is utilized to calculate the score. If the safe distance is
too short, the training car must be rewarded a negative score to ensure driving safety. The
resultant equation for this new reward constituent Robstacle is expressed in the following:

Robstacle =

Cobstacle × wobstacle, Dobstacle < Tobstacle

−Cobstacle × wobstacle, Otherwise
(7)

where Cobstacle is a constant denoting the baseline magnitude of this constituent affecting
the total reward, wobstacle is the regulation weight for Cobstacle, Tobstacle is the threshold for
deciding whether the car is keeping a safe distance from the obstacle ahead and Dobstacle is
the distance between the car and the detected obstacle.

Furthermore, the training car must keep running on the lane assigned to it in a way
that it cannot deviate from its navigation route and move into another lane or even onto the
sidewalk. To detect such a scenario of traffic regulations violation, a lane invasion detector
is installed on the self-driving car, which can also assist the car in identifying the driving
area so as to improve the control accuracy of the autonomous driving system and reduce
the risk of accidents. The equation of this constituent Rlane is shown below:

Rinvasion =

{
−Cinvasion × winvasion, Lane Invasion

0, otherwise
(8)

where Cinvasion is a constant denoting the baseline magnitude of the above constituent
affecting the total reward and winvasion is the regulation weight for Cinvasion.

On the other hand, another reward constituent Rcollision is used to indicate whether
the self-driving car really collides with a car or an obstacle and should consequently be
awarded a negative score to prevent such a scenario from occurring. To identify this

Electronics 2024, 13, 484 11 of 20

fatal problem, a collision sensor is installed on the car. The equation of this constituent is
shown below:

Rcollision =

{
−Ccollision × wcollision, Obstacle Collision

0, otherwise
(9)

where Ccollision is a constant denoting the baseline magnitude of this new constituent
affecting the total reward, and wcollision is the regulation weight for Ccollision.

The last two constituents concern the motion stability of the self-driving car, the
purpose of which is to train the car to run more steadily, that is, without much deviation
in its driving direction and velocity, so as to make the passengers within the car feel more
comfortable. If the current change has not deviated much compared with the previous
one, the reward score is higher; otherwise, it is lower. The equations of these two reward
constituents Rsteer and Rthrottle are expressed as below:

Rsteer = (Tsteer − |Srt − Srt−1|)× wsteer (10)

Rthrottle = (Tthrottle − |Tht − Tht−1|)× wthrottle (11)

In Equation (10), Tsteer is the threshold for deciding whether the car has changed its direction
suddenly, Srt and Srt−1 separately denote the steering angles at times t and t − 1 (t > 0)
and wsteer is the regulation weight for the fifth constituent. In Equation (11), Tthrottle is the
threshold for deciding whether the car has changed its velocity abruptly, Tht and Tht−1
denote the throttle values at times t and t − 1(t > 0) and wthrottle is the regulation weight
for the sixth constituent.

Eventually, the total reward Rtotal is constructed by summing the above six reward
constituents, and thus its equation is expressed as follows:

Rtotal = Rwaypoint + Robstacle + Rinvasion + Rcollision + Rsteer + Rthrottle (12)

3.2. System Architecture

This paper proposes a hybrid framework, as shown in Figure 9. It shows a stack
of semantic segmentation images as input to a Convolutional Neural Network (CNN).
In addition to the CNN, various measurements such as speed, lane invasion, collision,
obstacles and waypoints are also input to a combined module. Such a module is then con-
nected to a DDPG (Deep Deterministic Policy Gradient) or RDPG (Recurrent Deterministic
Policy Gradient) agent. The agent processes these inputs and decides on actions such as
steering angle, brake and throttle. The output of the agent’s actions is then evaluated in
the environment, resulting in a reward value that is fed back to the agent for updating
future decisions. This setup illustrates a closed-loop system where the agent learns from
the environment to improve its driving policy.

Electronics 2024, 13, 484 12 of 20
Electronics 2024, 13, x FOR PEER REVIEW 12 of 20

Figure 9. The system architecture of our hybrid framework.

3.3. Training Process
DDPG and RDPG differ only in their input dimensions and the structure of the hid-

den layers in their neural networks. The training stages are identical. More specifically,
the steps of the training process are listed as follows:
1. First, the simulation environment is initialized. Multiple reference vehicles are gen-

erated at specified locations, and a training vehicle is placed at the starting point. A
reference vehicle autonomously selects a path to enter the intersection, while the
training vehicle must travel a short initial section to achieve a speed of over 20 km
per hour. This is to prevent a low speed from triggering the environment’s reset
mechanism.

2. After obtaining the current environmental state (𝑠), it is input into the two Actor
networks of DDPG and RDPG. The Actor networks then generate an action output
(𝑎) based on the input state, including throttle, brake and steering control values.
These actions are applied to the simulation environment, leading to the acquisition
of the next state (𝑠) and the cumulative reward (𝑟). The collection of experiences (𝑠 , 𝑎 , 𝑟 , 𝑠) is stored in the Replay Buffer accordingly.

3. Once the Replay Buffer stores a set amount of training data, a batch of N experiences (𝑠 , 𝑎 , 𝑟 , 𝑠) is selected and fed into the training model for the update of the Actor
and Critic networks.

4. To maintain the correct operation of the training vehicle, reset conditions are estab-
lished. These include detecting unstable acceleration and deceleration behaviors of
the vehicle, sensing collisions with other objects and whether the vehicle reaches the
final goal. If any of these conditions are met, the training environment is reset and
corresponding penalties are applied. In contrast, if the conditions are normal, the ve-
hicle’s driving actions continue to be controlled by the Online Actor network.
The overall training process flow is thus depicted in Figure 10.

Figure 9. The system architecture of our hybrid framework.

3.3. Training Process

DDPG and RDPG differ only in their input dimensions and the structure of the hidden
layers in their neural networks. The training stages are identical. More specifically, the
steps of the training process are listed as follows:

1. First, the simulation environment is initialized. Multiple reference vehicles are gen-
erated at specified locations, and a training vehicle is placed at the starting point. A
reference vehicle autonomously selects a path to enter the intersection, while the train-
ing vehicle must travel a short initial section to achieve a speed of over 20 km per hour.
This is to prevent a low speed from triggering the environment’s reset mechanism.

2. After obtaining the current environmental state (st), it is input into the two Actor
networks of DDPG and RDPG. The Actor networks then generate an action output
(at) based on the input state, including throttle, brake and steering control values.
These actions are applied to the simulation environment, leading to the acquisition
of the next state (st+1) and the cumulative reward (rt). The collection of experiences
(st, at, rt, st+1) is stored in the Replay Buffer accordingly.

3. Once the Replay Buffer stores a set amount of training data, a batch of N experiences
(st, at, rt, st+1) is selected and fed into the training model for the update of the Actor
and Critic networks.

4. To maintain the correct operation of the training vehicle, reset conditions are estab-
lished. These include detecting unstable acceleration and deceleration behaviors of
the vehicle, sensing collisions with other objects and whether the vehicle reaches the
final goal. If any of these conditions are met, the training environment is reset and
corresponding penalties are applied. In contrast, if the conditions are normal, the
vehicle’s driving actions continue to be controlled by the Online Actor network.

The overall training process flow is thus depicted in Figure 10.

Electronics 2024, 13, 484 13 of 20Electronics 2024, 13, x FOR PEER REVIEW 13 of 20

Figure 10. The flowchart of the DDPG and RDPG training processes.

4. Experimental Results and Discussion
4.1. Training Environment

The Town04 map of CARLA, as shown in Figure 11, is the environment adopted by
us for the training of autonomous driving. We select an intersection on this map to serve
as the training spot, which is a crossroad where two-way single-lane roads converge.

The map setup for the training spot is further detailed in Figure 12, which shows
specific points of interest relevant to the training exercises. The starting point for the au-
tonomous driving training is marked with a red dot on the map. This is the location from
which the autonomous vehicle begins its navigation training. The endpoints, which are
the goals the autonomous vehicle aims to reach during training, are marked with dots in
different colors corresponding to different driving maneuvers. The endpoint for a right
turn is indicated with a purple dot, the endpoint for continuing straight is marked with a
yellow dot and the endpoint for a left turn is shown with a green dot. Each of these colored
dots represents the final coordinates that the autonomous vehicle is trained to reach, de-
pending on the control training it undergoes, i.e., the training is for making a right turn,
going straight or making a left turn at the intersection.

Figure 10. The flowchart of the DDPG and RDPG training processes.

4. Experimental Results and Discussion
4.1. Training Environment

The Town04 map of CARLA, as shown in Figure 11, is the environment adopted by us
for the training of autonomous driving. We select an intersection on this map to serve as
the training spot, which is a crossroad where two-way single-lane roads converge.

The map setup for the training spot is further detailed in Figure 12, which shows
specific points of interest relevant to the training exercises. The starting point for the
autonomous driving training is marked with a red dot on the map. This is the location
from which the autonomous vehicle begins its navigation training. The endpoints, which
are the goals the autonomous vehicle aims to reach during training, are marked with dots
in different colors corresponding to different driving maneuvers. The endpoint for a right
turn is indicated with a purple dot, the endpoint for continuing straight is marked with
a yellow dot and the endpoint for a left turn is shown with a green dot. Each of these
colored dots represents the final coordinates that the autonomous vehicle is trained to reach,
depending on the control training it undergoes, i.e., the training is for making a right turn,
going straight or making a left turn at the intersection.

Electronics 2024, 13, 484 14 of 20Electronics 2024, 13, x FOR PEER REVIEW 14 of 20

Figure 11. The top-down view of the Town04 map in CARLA.

Figure 12. The setup for the autonomous driving training at the intersection.

This paper enhances the reality of intersection simulations by using the CARLA sim-
ulator’s Traffic Manager to control reference vehicles. These vehicles operate autono-
mously, adhering to traffic rules, maintaining safe distances and observing speed limits.
Unlike the main autonomous vehicle being trained, they are programmed to disregard
traffic lights, as this study focuses on unsignalized intersection control. The reference ve-
hicles navigate randomly chosen paths on the intersection to simulate the continuous traf-
fic flow at the intersection, as the scenario shown in the Figure 13 below.

Figure 13. Random positioning and navigation of reference vehicles generated.

Figure 11. The top-down view of the Town04 map in CARLA.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 20

Figure 11. The top-down view of the Town04 map in CARLA.

Figure 12. The setup for the autonomous driving training at the intersection.

This paper enhances the reality of intersection simulations by using the CARLA sim-
ulator’s Traffic Manager to control reference vehicles. These vehicles operate autono-
mously, adhering to traffic rules, maintaining safe distances and observing speed limits.
Unlike the main autonomous vehicle being trained, they are programmed to disregard
traffic lights, as this study focuses on unsignalized intersection control. The reference ve-
hicles navigate randomly chosen paths on the intersection to simulate the continuous traf-
fic flow at the intersection, as the scenario shown in the Figure 13 below.

Figure 13. Random positioning and navigation of reference vehicles generated.

Figure 12. The setup for the autonomous driving training at the intersection.

This paper enhances the reality of intersection simulations by using the CARLA simu-
lator’s Traffic Manager to control reference vehicles. These vehicles operate autonomously,
adhering to traffic rules, maintaining safe distances and observing speed limits. Unlike the
main autonomous vehicle being trained, they are programmed to disregard traffic lights,
as this study focuses on unsignalized intersection control. The reference vehicles navigate
randomly chosen paths on the intersection to simulate the continuous traffic flow at the
intersection, as the scenario shown in the Figure 13 below.

Electronics 2024, 13, x FOR PEER REVIEW 14 of 20

Figure 11. The top-down view of the Town04 map in CARLA.

Figure 12. The setup for the autonomous driving training at the intersection.

This paper enhances the reality of intersection simulations by using the CARLA sim-
ulator’s Traffic Manager to control reference vehicles. These vehicles operate autono-
mously, adhering to traffic rules, maintaining safe distances and observing speed limits.
Unlike the main autonomous vehicle being trained, they are programmed to disregard
traffic lights, as this study focuses on unsignalized intersection control. The reference ve-
hicles navigate randomly chosen paths on the intersection to simulate the continuous traf-
fic flow at the intersection, as the scenario shown in the Figure 13 below.

Figure 13. Random positioning and navigation of reference vehicles generated. Figure 13. Random positioning and navigation of reference vehicles generated.

Electronics 2024, 13, 484 15 of 20

4.2. Hyperparameter Configuration

Adjusting hyperparameters is a crucial step in deep reinforcement learning, used to
optimize the performance and generalization ability of the model. Hyperparameter values
must be set manually before model training, as these parameters cannot be learned directly
from the training. Therefore, experiments must be conducted to find the best combination
of hyperparameters to improve model the effectiveness.

First, the configuration for the Experience Replay Buffer is shown in Table 1. Note
that due to the difference in the input state dimensions between DDPG and RDPG, the
capacity of the buffer set up for RDPG is smaller than that for DDPG. On the other hand,
in the experiments with DDPG and RDPG, an Epsilon decay strategy is employed so that
the proportion of the noise (OU Noise) added to the action can be adjusted over time. The
initial value of Epsilon is set to 1, and after the Replay Buffer stores 500 pieces of data,
the subsequent training process will decay Epsilon by 0.999 every 100 steps, until Epsilon
decays to 0.01. The hyperparameter configuration used in this paper is listed in Table 2:

Table 1. Experience Replay Buffer configuration.

The Parameter Name Value

DDPG Replay Buffer Size 16,000
DDPG Batch Size 150

DDPG Replay Buffer training threshold 500
RDPG Replay Buffer Size 6000

RDPG Batch Size 150
DDPG Replay Buffer training threshold 500

Table 2. Hyperparameter configuration.

The Parameter Name Value

Learning rate α Actor = 0.0001; Critic = 0.001
Discount factor γ 0.9

Tau (τ) 0.005
OU Noise: θ All = 0.35
OU Noise: σ Throttle = 0.1; Other = 0.2
OU Noise: µ Throttle = 0.2; Other = 0

Epsilon (ε) start 1
Epsilon (ε) decay 0.99
Epsilon (ε) min 0.01

4.3. Training Results

In this thesis, two different algorithms, DDPG and RDPG, are used to train the au-
tonomous driving control mechanism with the CARLA simulator. During the training
process, multiple reference vehicles are generated to simulate the dynamic scenarios of
real intersections. Moreover, the training car exploits the sensing modules to detect the
environmental changes and explores the appropriate driving strategies to complete the task
of crossing an unsignalized intersection. In particular, the focus of this research is to train
the self-driving car to complete the three basic driving maneuvers: turning right, turning
left and going straight through the intersection. In addition, by observing the convergence
rate and cumulative rewards of different training models, we can understand the efficiency
performance of the agents under the training of both models. The training results are
visualized clearly by showing the cumulative rewards of the three maneuvers in Figure 14,
as well as the convergence rate in Figure 15. Each chart corresponds to a distinct driving
behavior, where the cumulative reward and loss convergence of the DDPG algorithm is
shown in as orange line, while the results of the RDPG algorithm is shown as the blue line.

Electronics 2024, 13, 484 16 of 20

Electronics 2024, 13, x FOR PEER REVIEW 16 of 20

DDPG algorithm is shown in as orange line, while the results of the RDPG algorithm is
shown as the blue line.

(a)

(b)

(c)

Figure 14. The cumulative rewards: (a) turning right; (b) going straight; (c) turning left. Figure 14. The cumulative rewards: (a) turning right; (b) going straight; (c) turning left.

Electronics 2024, 13, 484 17 of 20
Electronics 2024, 13, x FOR PEER REVIEW 17 of 20

(a)

(b)

(c)

Figure 15. The loss convergence: (a) turning right; (b) going straight; (c) turning left. Figure 15. The loss convergence: (a) turning right; (b) going straight; (c) turning left.

Electronics 2024, 13, 484 18 of 20

4.4. Discussion

According to Figure 14, we can find that the cumulative rewards obtained from the
RDPG training for the three target actions are all superior to those from the DDPG training,
especially for straight movements and left turns. Specifically, after 200 episodes, the
rewards obtained from RDPG gradually increased, whereas DDPG still shows significant
fluctuations, and the final maximum reward value obtained is also lower than that of the
RDPG method. These differences in performance can be also reflected in the loss values
of the two models shown in Figure 15. Although the two algorithms consistently exhibit
good performance, it can be observed that the RDPG algorithm begins to converge for right
turns after about 1300 training episodes and for straight movements around 1700 episodes,
while the DDPG algorithm begins to converge for right turns and straight movements
during much later episodes, specifically at the 1400th and 1900th episodes, respectively.
This indicates that DDPG requires a larger number of episodes to stabilize, revealing slower
learning efficiency. Moreover, from the training results, we can see that the convergence
speed for learning a right turn is faster compared to the other two maneuvers. This is
primarily because interferences from other vehicles upon making a right turn are much
fewer than those encountered during the other two maneuvers. Finally, we can conclude
that since the RDPG algorithm is capable of processing time-series data, it exhibits better
performance compared to the DDPG algorithm.

5. Conclusions

In this paper, we introduced a hybrid architecture that combines the DDPG and RDPG
algorithms with the perception module of a modular pipeline to address the driving task
of traversing intersections without traffic signals. This includes driving maneuvers for
right turns, going straight and left turns. Additionally, to avoid collisions with other
dynamic vehicles and intrusions into prohibited pedestrian areas, a reward mechanism
is elaborately designed to enable the DRL models to generate appropriate action control
values for accurate and smooth autonomous driving.

Moreover, the experimental results show that the RDPG method outperforms the
DDPG one. Such a performance promotion is mainly attributed to the incorporation of
neural cell with the long-term memory capability, which significantly improves the model’s
ability to recognize environmental factors and then quickly formulate effective driving
strategies under dynamic traffic conditions. Finally, the use of semantic segmentation
technology combined with strategic reinforcement learning must have low-latency sensing
and high-accuracy recognition capabilities for application in real-world autonomous ve-
hicles. Future developments in this field are definitely expected to be able to meet these
requirements of substantial computational power so as to really accomplish the methods
presented in this study after fine tuning.

Author Contributions: Conceptualization, J.T. and Z.-Y.C.; methodology, J.T and Z.-Y.C.; software,
Z.-Y.C.; validation, J.T., Y.-T.C., Z.-Y.C. and Z.Y.; formal analysis, J.T., Y.-T.C., Z.-Y.C. and Z.Y.;
writing—original draft preparation, J.T. and Y.-T.C.; writing—review and editing, J.T. and Y.-T.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A survey of autonomous driving: Common practices and emerging technologies.

IEEE Access 2020, 8, 58 443–58 469. [CrossRef]
2. Road Traffic Safety Site. Available online: https://168.motc.gov.tw/ (accessed on 17 December 2023).
3. Bertozzi, M.; Broggi, A.; Cellario, M.; Fascioli, A.; Lombardi, P.; Porta, M. Artificial vision in road vehicles. Proc. IEEE 2002, 90,

1258–1271. [CrossRef]

https://doi.org/10.1109/ACCESS.2020.2983149
https://168.motc.gov.tw/
https://doi.org/10.1109/JPROC.2002.801444

Electronics 2024, 13, 484 19 of 20

4. Talebpour, A.; Mahmassani, H.S. Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transp.
Res. Part C Emerg. Technol. 2016, 71, 143–163. [CrossRef]

5. Paden, B.; Čáp, M.; Yong, S.Z.; Yershov, D.; Frazzoli, E. A survey of motion planning and control techniques for self-driving urban
vehicles. IEEE Trans. Intell. Veh. 2016, 1, 33–55. [CrossRef]

6. Schwarting, W.; Alonso-Mora, J.; Rus, D. Planning and decision-making for autonomous vehicles. Annu. Rev. Control Robot.
Auton. Syst. 2018, 1, 187–210. [CrossRef]

7. Claussmann, L.; Revilloud, M.; Gruyer, D.; Glaser, S. A review of motion planning for highway autonomous driving. IEEE Trans.
Intell. Transp. Syst. 2020, 21, 1826–1848. [CrossRef]

8. Iftikhar, S.; Zhang, Z.; Asim, M.; Muthanna, A. Deep learning-based pedestrian detection in autonomous vehicles: Substantial
issues and challenges. Electronics 2022, 11, 3551. [CrossRef]

9. Chen, C.; Seff, A.; Kornhauser, A.; Xiao, J. DeepDriving: Learning affordance for direct perception in autonomous driving. In
Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 2722–2730.

10. Iandola, F.; Moskewicz, M.; Karayev, S.; Girshick, R.; Darrell, T.; Keutzer, K. DenseNet: Implementing efficient ConvNet descriptor
pyramids. arXiv 2014, arXiv:1404.1869.

11. Espié, E. Torcs: The Open Racing Car Simulator. 2000. Available online: https://api.semanticscholar.org/CorpusID:16920486
(accessed on 25 May 2023).

12. Sauer, A.; Savinov, N.; Geiger, A. Conditional affordance learning for driving in urban environments. arXiv 2018, arXiv:1806.06498.
13. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper

with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 1–9.

14. Chang, C.-C.; Tsai, J.; Lin, J.-H.; Ooi, Y.-M. Autonomous driving control using the DDPG and RDPG algorithms. Appl. Sci. 2021,
11, 10659. [CrossRef]

15. Wolf, P.; Hubschneider, C.; Weber, M.; Bauer, A.; Härtl, J.; Dürr, F.; Zöllner, J.M. Learning how to drive in a real world
simulation with deep Q-Networks. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA,
11–14 June 2017; pp. 244–250.

16. Kendall, A.; Hawke, J.; Janz, D.; Mazur, P.; Reda, D.; Allen, J.M.; Lam, V.D.; Bewley, A.; Shah, A. Learning to drive in a day. In
Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019;
pp. 8248–8254.

17. Agarwal, T.; Arora, H.; Schneider, J. Learning urban driving policies using deep reinforcement learning. In Proceedings of the
2021 IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021;
pp. 607–614.

18. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An open urban driving simulator. In Proceedings of the
Conference on Robot Learning, California, MV, USA, 13–15 November 2017.

19. Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In Field
and Service Robotics: Results of the 11th International Conference; Springer: Berlin/Heidelberg, Germany, 2018; pp. 621–635.

20. AWS Deep Racer. Available online: https://aws.amazon.com/jp/deepracer/ (accessed on 17 December 2023).
21. Liu, S.; Jia, J.; Fidler, S.; Urtasun, R. SGN: Sequential grouping networks for instance segmentation. In Proceedings of the IEEE

International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 3496–3504.
22. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017

IEEE International Conference on Image Processing (ICIP), Beijing, China, 17 September 2017; pp. 3645–3649.
23. Redmon, J.; Farhadi, A. YOLO9000: Better faster stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.
24. Zhu, Z.; Liang, D.; Zhang, S.; Huang, X.; Li, B.; Hu, S. Traffic-sign detection and classification in the wild. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2110–2118.
25. Wiering, M.; Otterlo, M. Reinforcement Learning: State-of-the-Art; Springer: Berlin, Germany, 2012.
26. Watkins, C.J.; Dayan, P. Technical note: Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
27. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G. Human-level control through deep reinforcement

learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
28. Paternain, S.; Bazerque, J.A.; Small, A.; Ribeiro, A. Stochastic policy gradient ascent in reproducing kernel hilbert spaces. IEEE

Trans. Autom. Control 2021, 66, 3429–3444. [CrossRef]
29. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of

the 31st International Conference on Machine Learning (ICML-14), Beijing, China, 22–24 June 2014; pp. 387–395.
30. Bhatnagar, S.; Sutton, R.S.; Ghavamzadeh, M.; Lee, M. Natural actor critic algorithms. Automatica 2009, 45, 2471–2482. [CrossRef]
31. Jesus, J.C.; Bottega, J.A.; Bottega, J.A.; Cuadros, M.A.S.L.; Gamarra, D.F.T. Deep deterministic policy gradient for navigation

of mobile robots in simulated environments. In Proceedings of the 2019 19th International Conference on Advanced Robotics
(ICAR), Belo Horizonte, Brazil, 2–6 December 2019; pp. 362–367.

32. Li, X.; Liu, H.; Wang, X. Solve he inverted pendulum problem base on DQN algorithm. In Proceedings of the 2019 Chinese
Control and Decision Conference (CCDC), Nanchang, China, 3–5 June 2019; pp. 5115–5120.

33. Heess, N.; Hunt, J.; Lillicrap, T.; Silver, D. Memory-based control with recurrent neural networks. arXiv 2015, arXiv:1512.04455.

https://doi.org/10.1016/j.trc.2016.07.007
https://doi.org/10.1109/TIV.2016.2578706
https://doi.org/10.1146/annurev-control-060117-105157
https://doi.org/10.1109/TITS.2019.2913998
https://doi.org/10.3390/electronics11213551
https://api.semanticscholar.org/CorpusID:16920486
https://doi.org/10.3390/app112210659
https://aws.amazon.com/jp/deepracer/
https://doi.org/10.1007/BF00992698
https://doi.org/10.1038/nature14236
https://www.ncbi.nlm.nih.gov/pubmed/25719670
https://doi.org/10.1109/TAC.2020.3029317
https://doi.org/10.1016/j.automatica.2009.07.008

Electronics 2024, 13, 484 20 of 20

34. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
35. Tsai, J.; Chang, C.-C.; Li, T. Autonomous driving control based on the technique of semantic segmentation. Sensors 2023, 23, 895.

[CrossRef] [PubMed]
36. Tsai, J.; Chang, Y.-T.; Chuang, P.-H.; You, Z. An autonomous vehicle-following technique for self-driving cars based on the semantic

segmentation technique. In Proceedings of the 16th IEEE International Symposium on Robotic and Sensors Environments,
Yokohama, Japan, 16–19 November 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1162/neco.1997.9.8.1735
https://www.ncbi.nlm.nih.gov/pubmed/9377276
https://doi.org/10.3390/s23020895
https://www.ncbi.nlm.nih.gov/pubmed/36679688

	Introduction
	Preliminaries
	Modular Pipeline
	Reinforcement Learning
	Q Learning
	DQN
	Policy Gradient
	Actor–Critic
	DDPG
	RDPG
	CARLA Simulator
	Driving Scenes

	Our DRL Models
	The Reward Mechanism
	System Architecture
	Training Process

	Experimental Results and Discussion
	Training Environment
	Hyperparameter Configuration
	Training Results
	Discussion

	Conclusions
	References

