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Abstract: Spatio-temporal action detection (STAD) is a task receiving widespread attention and has
numerous application scenarios, such as video surveillance and smart education. Current studies
follow a localization-based two-stage detection paradigm, which exploits a person detector for action
localization and a feature processing model with a classifier for action classification. However, many
issues occur due to the imbalance between task settings and model complexity in STAD. Firstly, the
model complexity of heavy offline person detectors adds to the inference overhead. Secondly, the
frame-level actor proposals are incompatible with the video-level feature aggregation and Region-of-
Interest feature pooling in action classification, which limits the detection performance under diverse
action motions and results in low detection accuracy. In this paper, we propose a tracking-based
two-stage spatio-temporal action detection framework called TrAD. The key idea of TrAD is to
build video-level consistency and reduce model complexity in our STAD framework by generating
action track proposals among multiple video frames instead of actor proposals in a single frame.
In particular, we utilize tailored tracking to simulate the behavior of human cognitive actions and
used the captured motion trajectories as video-level proposals. We then integrate a proposal scaling
method and a feature aggregation module into action classification to enhance feature pooling for
detected tracks. Evaluations in the AVA dataset demonstrate that TrAD achieves SOTA performance
with 29.7 mAP, while also facilitating a 58% reduction in overall computation compared to SlowFast.

Keywords: artificial intelligence; computer vision; action detection; object tracking

1. Introduction

Nowadays, Artificial Intelligence (AI) plays an important role in almost every aspect
of life. Various AI technologies are used in video, audio, and text data mining applications.
In particular, video understanding, as a crucial branch of AI technology, is meeting a
growing demand in various fields such as autonomous driving, security surveillance,
and transportation. Video understanding has become a popular research area due to
its increasing significance in these domains. Spatio-temporal action detection (STAD)
is essential in video understanding as it detects multiple person actions spatially and
temporally. Sets of bounding boxes are arranged along the temporal sequence to form
the detection result, named “action tube” [1]. It can be applied to various fields such as
sports analysis [2], video surveillance [3], smart education [4], etc. Current methods for
spatio-temporal action detection mainly follow a two-stage consecutive framework. The
framework involves action localization and action classification, mostly applying Fast
R-CNN [5] architecture. As illustrated in Figure 1a, the localization-based STAD paradigm
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takes video frames as input and outputs action tubes. The first part is action localization,
which uses an offline person detector to locate actors in the keyframe. The second is action
classification, where a model extracts feature from video frames and classifies actions based
on actor proposals and extracted features. The actor proposals with predicted action classes
are finally linked to constructing an action tube.
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Figure 1. Motivation of TrAD. (a) In the localization-based STAD, action localization employs a
heavy offline person detector to provide frame-level actor proposals, while action classification is
conducted at video level. (b) Our proposed tracking-based STAD replaces the heavy detector with
an efficient tracker to give video-level track proposals and design a track-aware feature aggregation
module to support action classification. We use three colors to indicate components that have the
same function in both paradigms.

However, when employing the localization-based paradigm in STAD, the mismatch
between task settings and the complexity of the model leads to various issues, hindering
its performance.

Issue 1: the offline person detectors increase the computational burden of the
detection process. The model complexity of the employed person detectors, such as
Faster R-CNN [6] and Deformable DETR [7], is enormous, thus leading to significant
inference overhead. For example, SlowOnly [8] employs an offline person detector that has
approximately nine times more computing cost than the classifier network (from 406.5 to
41.8 GFLOPs).

Issue 2: the frame-level actor proposals cause incompatibilities between action
localization and action classification on feature processing. The actor proposals are
inferred by a person detector on single frames but lack spatial and temporal consistency.
The same actor may not remain in the same position or may appear only in a few frames.
Most models for classification aggregate and pool features based on the RoIs built by
merely duplicating proposals around keyframes [9], which cannot fully capture motion or
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contextual information. Consequently, the detection performance is limited under diverse
action motions and the detection accuracy is reduced.

Drawing inspiration from the intuition that humans focus on an individual in action
and then distinguish the action, we propose a similar STAD framework. We name our
framework TrAD, which is illustrated in Figure 1b. At the heart of TrAD is a principle
that not only emphasizes video-level consistency and computational efficiency but also
captures the essence of human action perception in an intuitive manner. The framework
consists of action tracking and action classification. We extended action localization to
action tracking, achieved through a meticulously designed tracking algorithm combined
with an efficient detector. The action tracking generates video-level action track proposals
spanning multiple video frames, rather than just actor proposals within a solitary keyframe.
Furthermore, by employing action tracking, we restructured the tube construction part
within the action classification of the localization-based paradigm. This restructure ensures
more coherent and efficient task settings within the two-stage framework. Subsequently,
the action classification is fine-tuned to better resonate with the tracking-based STAD.
We introduce a track-aware feature aggregation module that incorporates a proposal
scaling method, a Track-of-Interest Align technique, and a feature aggregation module.
This module accentuates feature processing for detected tracks, leading to an enhanced
STAD performance.

The contributions of our work are as follows:

• We propose a tracking-based two-stage spatio-temporal action detection framework
aimed at achieving better action detection.

• We extend action localization to action tracking by utilizing a simple and robust tracker
and propose a track-aware feature aggregation module with an algorithm.

• Experiments on AVA demonstrate that the performance of TrAD excels compared to
localization-based state of the art while reducing overall computation significantly.

2. Related Work

We introduce works related to our research, including spatio-temporal action detection,
object detection, and multi-object tracking.

2.1. Spatio-Temporal Action Detection

Differing from action recognition [10–12], spatio-temporal action detection provides
spatial and temporal localization of multiple action instances in the input video clip.
Recently, STAD is drawing more attention. Many related works are proposed, and large
datasets such as UCF101-24 [13], AVA [14], and JHMDB [15] are introduced. Most existing
works conduct STAD in a two-stage manner while a few works design a unified one-stage
STAD model.

Two-stage STAD methods follow the localization-based paradigm of combining ac-
tion localization and action classification in the Fast R-CNN [5] architecture. The action
localization employs a pretrained object detector to locate actors. The next step receives the
actor proposals and performs feature processing to further classify the action. However,
localization-based methods are trapped in a dilemma of poor detection performance due to
the imbalance between task settings and model complexity. Many modules are proposed to
perform better STAD such as relation networks [16–19] and feature bank modules [16,20].
We do not consider these as our idea focuses on improving the localization-based paradigm
while reducing overall model complexity.

One-stage STAD methods perform action localization and classification in a unified
model. YOWO [21] builds one-stage architecture through a unified pipeline with two
backbones. Taking a step further, WOO [22] proposes a one-stage end-to-end frame-
work for both action localization and action classification with one union backbone. SE-
STAD [23] proposes a simple and efficient pipeline to build an end-to-end detector and
a semi-supervised learning strategy. These studies inspire our work to redesign the
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localization-based paradigm from the perspective of task settings, making it balanced
and reasonable.

2.2. Object Detection

Proposal generation in STAD is very important as it represents where the action
instance takes place. The localization-based paradigm usually employs a fine-tuned heavy
object detector to locate actors in video frames. Object detection methods mainly fall into
three categories: two-stage, one-stage, and transformer-based detection [24].

Two-stage detectors focus on accuracy while one-stage detectors focus on efficiency.
Similar to STAD, two-stage detectors [5,6,25] consist of a region proposal network and a
model to extract features on RoI and classify them. In contrast, one-stage methods employ
the anchor-free strategy and complete detection through one unified model. As one of the
best known one-stage detectors, the YOLO detector series is known for its simplicity, speed,
and accuracy. YOLOv7 [26] is one of the most recent YOLO detectors, and outperforms
most of the one-stage and two-stage object detectors by proposing optimized architectures
and employing several trainable bag-of-freebies methods. Recently, transformer-based
end-to-end object detection methods are proposed as a novel paradigm for object detec-
tion. DEtection TRansformer (DETR) [27] treats object detection as a direct set prediction
problem and exploits a transformer encoder–decoder architecture. However, transformer-
based detection stills suffer from model complexity and training cost due to the nature of
transformer networks. In this paper, we select YOLOv7 as our person detector in TrAD.

2.3. Multi-Object Tracking

The goal of multiple object tracking (MOT) is to detect and track diverse objects in
videos [28]. Current MOT methods mostly adopt the standard tracking by detection. This
paradigm obtains detection results through object detection in video frames, then builds
tracks by associating and assigning the bounding boxes. The tracking process can also
guide object detection to achieve better results by utilizing techniques such as the Kalman
filter [29]. To associate tracks and detection results, several similarity metrics, such as
Intersection over Union (IoU) and ReID features, are leveraged. DeepSORT [30] enhances
tracking by incorporating a CNN model for feature extraction and further conducting a
ReID task based on the appearance features. ByteTrack [31] tracks objects by associating
every detection box rather than the boxes with high detection scores only. Therefore, the
performance of ByteTrack partly depends on the detector. However, ByteTrack does not
add additional ReID models, thus restraining overall model complexity.

The idea of tracking appears in STAD as the tube construction which has a much
simpler implementation [3,9,32,33]. We aim to extract this process and merge it with action
localization to build the tracking-based paradigm and improve the performance of STAD.

3. Methods

In the following sections, we will explain the design and mechanism behind our action
tracking, covering both the design of the tracker and the specifics of our tracking algorithm.
Subsequently, we will dive into the refined action classification, discussing the principles of
the Flexible Actor Proposal Scaling and detailing the feature processing strategies for tracks.

3.1. Overview

In this section, we first give an overview of our proposed framework. The framework
involves action tracking and action classification as Figure 2 illustrates. TrAD starts with
input video frames being fed to the feature extractor and tracker. The tracker produces actor
track proposals and sends track proposals to track-aware action classification. Meanwhile,
the overall features are extracted from the backbone network and sent to action classification.
Then, actor track proposals are processed by Flexible Actor Proposal Scaling and combined
with the overall feature for feature pooling. The ToI Align is exploited to pool per-track
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features. Finally, the pooled track features are aggregated to generate final vectors and
classified into certain action classes.
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Figure 2. Overview of TrAD. TrAD conducts two-stage STAD with action tracking and track-aware
action classification. 1. Action tracking employs a YOLO tracker to process input frames and generates
actor track proposals. 2. Track-aware action classification includes Flexible Actor Proposal Scaling,
ToI Align pooling method, and temporal feature aggregation.

In detail, we employ SlowFast Network [8] as our backbone network implementation.
We extend the action localization to action tracking by utilizing a tracker to perform action
localization and proposal linking simultaneously. This allows TrAD to generate video-
level track proposals. We optimize the detector in the tracker by implementing YOLOv7
detection and integrating a simple and robust tracking algorithm. The proposed action
tracking enables TrAD to better handle various movements of actors and also focus on
detecting precise tracks instead of potential false positive actor proposals. Moreover, the
generated tracks can better cope with the video-level action classification task.

Then, the track-aware feature aggregation module is proposed to fit action tracking.
The module consists of Flexible Actor Proposal Scaling, ToI Align, and temporal feature
aggregation. Firstly, we apply an algorithm to adjust actor bounding boxes in the generated
tracks. The scaled regions can lead to better feature pooling. Secondly, instead of utilizing
RoIs, we propose Tracks of Interest (ToIs) to pool actor track features. Thirdly, we propose
a temporal feature aggregation strategy geared toward processing track features.

Inspired by related works [34–38], we expect our framework to be applied in spatio-
temporal action detection and security surveillance.

3.2. Action Tracking

The proposed action tracking is illustrated in the blue frame in Figure 2. TrAD extends
action localization to efficient and robust action tracking. Prior methods for action localiza-
tion often use pretrained object detectors, mostly Faster-RCNN with a ResNeXt-101 [39]
backbone. However, this approach leads to high computational overheads, and misalign-
ment between the frame-level proposals and video-level detection adds an unnecessary
tube construction process to action classification. To address these issues, TrAD combines
the ideas behind action localization and tube construction to propose video-level action
tracking based on multi-object tracking (MOT).
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For STAD, we tailor the tracker to focus on tracking humans while being able to handle
occlusion and blur due to action motion changes and camera movements during track
generation. We follow the tracking-by-detection paradigm and select ByteTrack [31] as
our tracking method for its simplicity. A few modifications are made to our ByteTrack to
fit STAD. In our action tracking, which primarily focuses on humans, the subject of all
actions, we employ a class-specific YOLOv7 as our tracker’s detector to harness its efficient
detection capabilities and consequently reduce the architecture’s computational overhead.

In our ByteTrack, given a video sequence V and our detector YoloDET, the tracker
outputs video-level actor track Ttrack in which the actor proposal in each frame is arranged
temporally. For each frame in V, the YoloDET is employed to bring up actor proposals
with detection scores. The proposals are diverted to two sets, Dh and Dl , based on two
preset thresholds, τ1 and τ2. Proposals with detection score higher than τ1 are split into
Dh while those with detection score lower than τ2 are eliminated; the remainder are sent
to Dl . Then, we apply the Kalman filter for each track in Ttrack to predict the bounding
box in the current frame. The ByteTrack performs two associations to link proposals to
tracks. Instead of using IoU or ReID feature, we utilize the IoU sums of actor proposals
with predicted boxes and the last proposal of the track as a matching similarity metric.
In the first association, proposals in Dh and tracks in Ttrack are matched based on IoU
sums through the Hungarian [40] Algorithm [41]. Unmatched proposals are assigned to
Dremain to build new tracks while unmatched tracks are assigned to Tremain to perform the
second association with Dl following the same similarity calculation. We delete unmatched
proposals in Dl and reserve unmatched tracks with their predicted boxes to Tlost for the
next 30 frames to continue matching. The proposals in Dremain are added to T to initialize
new tracks. As shown in Figure 2, the blue line indicates a track through 3 frames. Despite
the actor’s occlusion in the middle frame, our tracker maintains the track and completes
the tracking in the next frame.

Our YOLO tracker can make full use of detected actor proposals and handle occlusion
and blur situations. After tracking, video-level track proposals are provided for track-aware
action classification. This also helps filter some false positive high detection score actor
proposals. The action tracking extends the action localization in the localization-based
paradigm and explores the potential of actor proposals with low detection scores.

3.3. Track-Aware Action Classification

As in the red frame shown in Figure 2, the procedure of the proposed track-aware
action classification can be described as follows: (1) tracks are preprocessed by the tracker;
(2) track features are obtained by applying ToI Align on the overall feature with scaled
tracks; (3) features are aggregated in temporal dimensions to form one-dimension vectors;
(4) vectors are sent to the classifier for final action prediction. This subsection focuses on
the algorithm and feature processing methods.

Flexible Actor Proposal Scaling (FAPS): We propose a simple algorithm called
Flexible Actor Proposal Scaling (FAPS) to transform detected tracks for feature pooling,
rather than utilizing the tracks directly. We contend that, due to the distinct motions of
various actions, there will be differing aspect ratios for actor proposals. By adjusting the
aspect ratio, we can obtain improved regions which leads to better feature pooling. To
accomplish this, we conduct K-Means cluster analysis over annotations of three major
STAD datasets, AVA [14] ( https://research.google.com/ava/ accessed on 23 March 2022),
UCF101-24 [13] (https://www.crcv.ucf.edu/data/UCF101.php accessed on 12 April 2022),
and MultiSports [2] (https://deeperaction.github.io/datasets/multisports.html accessed
on 15 April 2022), to discover the pattern of aspect ratios of ground-truth actor bounding
boxes and obtain cluster centers {c1 = 0.46, c2 = 0.73, c3 = 1.19, c4 = 2.64} for four clusters
C1, C2, C3, C4 that represent the predominant aspect ratios of actor bounding boxes, and
compute three boundary points {β1 = 0.60, β2 = 0.96, β3 = 1.92} in between these clusters.

https://research.google.com/ava/
https://www.crcv.ucf.edu/data/UCF101.php
https://deeperaction.github.io/datasets/multisports.html
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We give the pseudo-algorithm of FAPS in Algorithm 1. FAPS takes the input of
detected tracks T and outputs scaled tracks T∗. For each actor proposal α in T, we first
compute its aspect ratio γ by Equation (1), where θ1 and θ2 are set to 1.

γ =
width× θ1

height× θ2
(1)

Algorithm 1 Flexible Actor Proposal Scaling (FAPS)

Require: Detected track T
Ensure: Scaled track T∗

1: Initialize T∗ ← ∅
2: for each actor proposal α ∈ D do
3: γ← Equ1(α, θ1 = 1, θ2 = 1)
4: if min(distance of γ to boundary) < dismin then
5: α ∈ β // Assign the proposal to the corresponding boundary point.
6: else
7: distance(γ, C). // Calculate distance of γ to each cluster.
8: Cmin ← min(distance) // Find the nearest cluster.
9: α ∈ Cmin // Assign the proposal to the nearest cluster.

10: end if
11: θ1, θ2 ← Value // Assign values to θ1, θ2.
12: calculate new height and width
13: scale α
14: T∗ ← T∗ ∪ α∗

15: end for
16: return T∗

Next, we compare the aspect ratio γ to the boundary points by calculating the Eu-
clidean distance. If the minimum distance is less than dismin, we assign the actor proposal
to that corresponding boundary point. The dismin is set to 0.2 by default. Otherwise, we
calculate the Euclidean distance between γ and the four cluster centers to assign the actor
proposal to the nearest cluster. Then, the values of θ1 and θ2 are set according to the
assignment. Specifically, if γ is assigned to boundary points or cluster C1, C2, we set θ1
and θ2 to 1.3 and 1, respectively. If γ is assigned to cluster C3, C4, we set θ1 and θ2 to 1 and
0.6, respectively. Then, we compute new height and width according to the changing of θ1
and θ2 in Equation (1), and scale the proposal. Note that, while scaling, the center of the
actor proposal is kept unchanged, and the proposal is restricted to remain within the video
frame. The scaled actor proposal α∗ is added to the new track T∗ to build our FAPS output.

Track-of-Interest Align (ToI Align): We propose Track-of-Interest Align to fit feature
pooling for track-aware action classification. In TrAD, the backbone processes the input
video clip and obtains an overall feature map with a shape of T × H ×W. In TrAD,
the backbone processes the input video clip, resulting in a feature map with a shape of
T× H ×W, where T denotes the temporal length of the video clip, H signifies the height
and W stands for the width. Then, we pool features upon the overall feature for the scaled
track whose shape is Dn × T× 4. Here, Dn represents the number of detection proposals in
the track and the value 4 corresponds to the spatial coordinates of each proposal. Action
classification in localization-based STAD simply extends the area around keyframes to pool
features as the blue cuboid illustrates in Figure 3a.

The cuboid covers actor proposals in the first frame but misses more than half the
region of the actor proposal in the last frame. Therefore, we propose ToI Align [33] to
pool features for each actor proposal in the track as illustrated in Figure 3. Then, the
pooled features are arranged along the temporal axis to form track features. However,
the temporal length of the track and the overall feature may not be equal which further
causes misalignment. To mitigate such misalignment, we propose repeating the first and
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last proposals of the track forward and backward to align the track and the overall feature
temporally. After ToI Align, we can get track features with the shape of Dn × T × S.

Figure 3. Illustration of RoI Align and ToI Align for STAD. The red frames and masks are used to
identify the detected actor. (a) In the localization-based STAD, the actor proposal in the keyframe
is duplicated to form the feature pooling region as the blue cuboid shows. (b) In TrAD, each actor
proposal in detected tracks is pooled. The pooled features are then stacked as the red lines show.

Temporal Feature Aggregation: The track features pooled by ToI Align require
aggregation to refine information and fit the action classifier. First, we aggregate track
features spatially by applying average pooling. After spatial aggregation, we apply a layer
of temporal convolution for temporal feature aggregation. This procedure helps capture
the action’s temporal dynamics and provides representations of the overall actor tracks.
Specifically, the temporal convolution allows TrAD to extract temporal features that capture
the motion and evolution of the action over time, making the representation more robust
and informative for action classification.

4. Results

Before showing details of the experiment settings and the analysis of results, we will
raise some research questions.

• RQ1. Compared to two-stage methods, does our method achieve better detection with
less computation?

• RQ2. Does tracking improve spatio-temporal action detection?
• RQ3. Does the FAPS algorithm affect the spatio-temporal action detection?

First, we will explain our experimental setup, including the datasets we used and how
we measured results. Next, we will compare our approach to other two-stage and one-stage
methods. We will then look at how action tracking and different proposal methods affect
results. Finally, we will wrap up by showing some of our findings.

4.1. Experimental Setup
4.1.1. Datasets

Due to restrictions on the devices we can access, we conduct all STAD experiments
only on AVA v2.1 [14]. We select the AVA dataset as it is one of the most commonly used
benchmark datasets in STAD research and it is closer to real-life scenarios. There are 215k
training, 57k validation, and 120k test segments that are spread over 437 15-min. video
clips. The dataset densely annotates 80 atomic visual actions over each clip at 1 Hz. The
frame-level detections are linked to form action tubes and can have multiple action labels.
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4.1.2. Metrics

We evaluate our TrAD’s performance at the frame level in the AVA val set. We choose
mean Average Precision (mAP) and giga floating point operations per second (GFLOPs)
as evaluation metrics. We consider a detection as true when its IoU with a ground-truth
bounding box or tube exceeds the predefined threshold of 0.5 and the detection label
matches the ground-truth action label. The Average Precision (AP) for each action class is
computed and we further calculate the mean among all classes to obtain the mean Average
Precision (mAP). We use mAP for detection evaluation and tracking performance evalu-
ation. The GFLOPs are used to measure the computation of action localization/tracking
models and action classification models.

4.1.3. Implementation Details

We employ the YOLOv7 detector that uses YOLOv7-L as the backbone and a pre-
trained model on the MS-COCO dataset as initial weights to cooperate with our BYTE.
We follow [31] to implement our tracker. The default detection thresholds τ1 and τ2 are
set to 0.6 and 0.1, respectively. Following recent STAD methods [23,32], we employ the
commonly used SlowFast network [8] as our backbone which allows us to better compare
the performance among the TrAD and SOTA methods. The inputs are video clips with 64
frames. We use pretrained SlowFast ResNet50 8× 8 as initial weights to build our TrAD.
The SGD is employed for optimization while the learning rate and batch size are set to
0.01 and 32, respectively. We train the TrAD for 10 epochs, where the first epoch is the
warm-up epoch and the rest of the epochs follow the cosine learning rate schedule [42].
We implement our TrAD on a platform with an NVIDIA Tesla V100 NVlink GPU, an Intel
Xeon Gold 6248 CPU, and 384 GB memory.

4.2. Comparisons with State-of-the-Art Methods

We compare our proposed detector TrAD with other state-of-the-art methods in the
AVA dataset in Table 1. The selected two-stage methods are the baseline in AVA [14], Actor-
Centric Relation Network [17], Long-term Feature Bank [20], Context-aware RCNN [32],
SlowOnly, SlowFast [8], and Actor–Relation–Actor Relation Network [16]. We implement
the two most popular methods, SlowOnly and SlowFast, with different sizes of ResNet
backbones.

From the results, we observe that TrAD outperforms the other two-stage methods,
achieving 29.7 mAP. TrAD ranks second among the methods using the SlowFast ResNet50
as the backbone network when comparing the mAP and only trails 0.3 mAP compared
to ACAR which uses an additional relation network. TrAD also exceeds SlowOnly and
SlowFast with a larger backbone of ResNet101 in terms of mAP. When we replace the action
classification from track-aware to frame-level in TrAD, the mAP drops approximately
5%, indicating the significance of correlation across actor tracks in feature extraction and
action prediction.

In terms of computational overhead, the action tracking and action classification
consume 99.7 and 109.7 GFLOPs, respectively, showing the task–model balance of our
framework design. The overall model complexity reduces by 58% compared to SlowFast
with ResNet50 backbone (from 209.4 to 504 GFLOPs). We also consider some recent one-
stage methods such as YOWO and WOO for comparison. The TrAD raises mAP by 73%
and 18% while only adding 70.1 and 67.8 more GFLOPs compared to YOWO and WOO,
respectively.

Table 1 shows the comparable performance of our framework. Our method performs
better compared to other SOTA two-stage and one-stage methods while using the same
backbone. TrAD even achieves comparable performance with two-stage methods that use
a larger backbone.
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Table 1. Comparison of STAD performance on AVA dataset. The T× τ represents the frame sampling
strategy where T is the frame number and τ is the sample rate. We report GFLOPs of both models for
action localization/tracking and action classification. ‘CA-RCNN’ is short for Context-aware RCNN.
‘w.o. TAC’ means track-aware action classification is replaced by frame-level action classification. The
performance and overhead of TrAD are bolded.

Method Backbone T×τ mAP GFLOPs

AVA Baseline [14] I3D-VGG 32× 2 14.5 N/A
ACRN [17] S3D-G - 17.4 81.4 + 406.5
LFB [20] R50-I3D-NL 4× 16 25.8 N/A
CA-RCNN [32] SFR50-NL 32× 2 28.0 N/A
SlowOnly [8] R50 8× 8 19.7 42.8 + 406.5
SlowFast [8] R50 8× 8 25.2 97.5 + 406.5
ACAR [16] SFR101 8× 8 30.0 137.5 + 406.5
TrAD SFR50 8× 8 29.7 99.7 + 109.7
TrAD w.o. TAC SFR50 8× 8 28.1 97.5 + 109.7
SlowOnly [8] R101 8× 8 24.8 117.1 + 406.5
SlowFast [8] R101 8× 8 29.3 147.3 + 406.5
YOWO [21] SFR50 8× 8 17.1 139.3
WOO [22] SFR50 8× 8 25.2 141.6

4.3. Impact of the Action Tracking

We boost STAD performance by replacing action localization with action tracking.
Our tracker focuses on tracking efficiency and robust track generation which further leads
to better action detection, unlike tracking in [3,43]. To evaluate the effectiveness of our
approach, we compared the mAP and GFLOPs of SlowFast ResNet50 and TrAD, as shown in
Table 2. For the SlowFast model, we used the Faster-RCNN ResNeXt-101 to perform action
localization and two trackers (YOLOv5-based DeepSort and YOLOv7-based Bytetrack)
for action tracking. YOLOv7-based Bytetrack is used as the default for TrAD. As seen in
Table 2, action tracking improves SlowFast by 12% and 17% in mAP by using DeepSort
and Bytetrack, respectively. This performance improvement is obtained by our proposed
action tracking process. Moreover, our TrAD tracker is approximately four times smaller
compared to the heavy person detector (from 109.7 to 406.5 GFLOPs), which demonstrates
the simplicity and effectiveness of action tracking.

We also conducted an experiment using only the proposed TrAD without action
tracking and used YOLOv7 as the person detector, resulting in an approximately 11%
decline in performance. The result validates our idea of task-setting alignment and the
design of action tracking, which can provide high-quality actor tracks and help improve
detection performance.

Table 2. Impact of proposed action tracking. We obtain mAP of STAD methods on AVA. ‘w.’ means
using action tracking to provide actor proposal instead of action localization. ‘w.o. AT’ means using
action localization to provide actor proposal without tracking.

Method mAP GFLOPs

SlowFast 25.2 97.5 + 406.5
SlowFast w. DeepSort 27.3 97.5 + 90.7
SlowFast w. Bytetrack 28.7 97.5 + 109.7
TrAD 29.7 99.5 + 109.7
TrAD w.o. AT 26.3 99.5 + 106.4

4.4. Impact of Different Proposal Strategies

In this section, we compare the impact of different proposal strategies on STAD. We
conduct experiments on SlowOnly and TrAD both using ResNet50 8× 8 as the backbone
with and without different θ settings. The results are shown in Table 3.
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Table 3. Comparison of different proposal strategies used in STAD methods. We try different
strategies in SlowOnly R50 8× 8 backbone [8]. ✓ and ✗ are used to clarify whether the FAPS is
employed or not respectively. ’Fixed’ means assigning default values to θ1 and θ2. ’Random’ means
the θ1 and θ2 are randomly assigned from 0.6 to 1.3.

Method FAPS θ1 θ2 mAP

SlowOnly ✓ Fixed Fixed 20.4
✗ - - 19.7

TrAD
✓ Fixed Fixed 29.7
✓ Random Random 27.1
✗ - - 28.4

We can see that the introduction of FAPS with fixed θ improves STAD performance
by 3.5% and 5% on SlowOnly and TrAD, respectively. The impact of different θ settings
on STAD is further investigated. We define the value setting in Algorithm 1 as the ’Fixed’
assignment and the strategy of randomly assigning values from 0.6 to 1.3 to θ1 and θ2 as
the ’Random’ assignment. From the table, we can see that, compared to fixed values where
θ1 and θ2 are set to 1.25 and 0.75, random value assignment even cut off around 3% on
mAP. We believe this is caused by the unstable region transformation that leads to the
intervention of irrelevant or missing information.

4.5. Qualitative Results

Lastly, we qualitatively give several examples of predictions in the AVA dataset in
Figure 4. We put the keyframes in the middle with their surrounding two frames. The
predicted results and ground-truth boxes are shown in yellow and red frames, respectively.
We use blue frames to present tracking boxes in the surrounding frames. From Figure 4, we
can see that the action instances in AVA mostly include the actors’ body parts and objects
in interaction, while the rapid or large shift of actors appear less as AVA is built on movie
clips where actors do not need to move in many scenes. In general, our method delivers
excellent action detection results as most predictions fit the ground truth.

Figure 4. Qualitative visualization example in the AVA dataset. Here we visualize a few examples of
predictions made by TrAD. The keyframe is put in the middle together with the surrounding two
frames. We demonstrate ground-truth boxes (red) and predicted results (yellow) in the keyframe and
show the tracking boxes (blue) in the surrounding frames.

5. Conclusions

In this paper, we explore the potential of the two-stage spatio-temporal action detection
paradigm. Our method balances the two tasks in the original paradigm and builds a
promising paradigm for action detection. We replace action localization with action tracking
to bring up track proposals instead of independent frame-level actor proposals. We further



Electronics 2024, 13, 479 12 of 14

refine the action classification by building track-level feature extraction and aggregation
to adapt action tracking. By using these advantages, the proposed framework provides a
new paradigm for spatio-temporal action detection. Experiments on spatio-temporal action
detection in the AVA dataset show the outstanding performance of TrAD and its competitive
results compared to state-of-the-art methods. We also conduct ablation experiments to
investigate the effectiveness of the proposed modules which prove to be effective. We
hope our upgraded two-stage paradigm can inspire more studies on the action detection
problem. In the future, we plan to study how to build relations among tracks and across
frames to further improve the performance of spatio-temporal action detection.
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Notation Meaning
V Video sequence
YoloDET The YOLO object detector
T Actor tracks sets
D Actor proposals
τ1,2 Thresholds for track diverting
C1,2,3,4 Bounding box ratio clusters
c1,2,3,4 Center values of the bounding box ratio clusters
β1,2,3 Boundary points
γ Bounding box ratio
T Temporal length of a video clip
H Height of a feature map
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