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Abstract: Deep-learning-based breast cancer image diagnosis is currently a prominent and growingly
popular area of research. Existing convolutional-neural-network-related methods mainly capture
breast cancer image features based on spatial domain characteristics for classification. However,
according to digital signal processing theory, texture images usually contain repeated patterns and
structures, which appear as intense energy at specific frequencies in the frequency domain. Motivated
by this, we make an attempt to explore a breast cancer histopathology classification application in
the frequency domain and further propose a novel multi-branch spectral channel attention network,
i.e., the MbsCANet. It expands the interaction of frequency domain attention mechanisms from a
multi-branch perspective via combining the lowest frequency features with selected high frequency
information from two-dimensional discrete cosine transform, thus preventing the loss of phase
information and gaining richer context information for classification. We thoroughly evaluate and
analyze the MbsCANet on the publicly accessible BreakHis breast cancer histopathology dataset.
It respectively achieves the optimal image-level and patient-level classification results of 99.01%
and 98.87%, averagely outperforming the spatial-domain-dominated models by a large margin,
and visualization results also demonstrate the effectiveness of the MbsCANet for this medical
image application.

Keywords: convolutional neural network; channel attention; frequency domain; breast cancer;
histopathology image classification

1. Introduction

Breast cancer is the leading cause of morbidity and mortality among female cancers.
In 2020, 19.29 million new cancer cases were reported worldwide, and 2.29 million of
them were breast cancer cases [1]. Meanwhile, breast cancer accounts for 15.5 percent
of the 4.4 million female cancer-related deaths. While early diagnosis and treatment are
particularly vital to improve the survival rate of cancer patients, biopsy analysis is the
gold standard in the diagnosis of breast cancer. However, manual biopsy analysis is
time-consuming, and the results are generally influenced by subjective factors. With the
increasing number of cancer patients, computer-assisted breast cancer biopsy analysis has
become more and more popular.

Recently, deep learning has made tremendous progress in a variety of computer vision
and medical image analysis tasks. Consequently, convolutional neural network (CNN)-related
models are attracting much attention in breast cancer histopathology image classification [2–4]
and display obvious superiority to previous methods with accuracy that is nearly simi-
lar to or better than human experts. These works above indicate that computer-assisted
technologies based on CNNs are helpful for diagnosing cancer and thus deserve further
exploration. Until now, the intention of various CNN-based models has been to extract
deep convolutional features, as CNNs pretrained on large-scale datasets [5,6] provide more
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general features despite not being trained on corresponding, specific breast cancer datasets
from scratch. However, naive feature extraction from CNNs without extra personalized
modeling usually omits useful, related responses from the regions of interest. The char-
acteristics of potential regions of interest, such as nuclei, mitotic cells, and glands, are
significantly critical for judging the degree of malignancy of tumors. Therefore, ignoring
these features (parts of the potential region of interest) may change the final diagnostic
results. This has motivated researchers to introduce attention mechanisms into computer
vision systems for improving their performance by highlighting vital features. In vision
systems, the attention mechanism can be thought of as a dynamic selection process that is
implemented by adaptively weighting features according to the importance of the input.
Hu et al. [7] first introduced the concept of channel attention and proposed the SENet built
upon CNN models. SENet utilizes a means to represent each channel via global average
pooling (GAP) and adaptively captures the potential key channel features according to
the importance among all channels using fully connected layers and a sigmoid activation
function. CBAM [8] and ECANet [9] are representative works of this kind of attention.
CBAM extends SENet by introducing extra global max pooling to the channel direction to
represent the associated channel. ECANet improves SENet from the view of efficiency, and
a one-dimensional convolution layer with negligible parameters is adopted to replace the
fully connected one to reduce the redundancy. The most recent works [10–14] employing a
vision transformer (ViT) [15] also follow the attention mechanism.

In the field of histopathology image classification, hematoxylin and eosin (H&E) is
a common staining method for biopsy images to detect the microstructure of the image
to grade and stage the tissue [16], but such images have the problems of low contrast
and highly variable appearance [17]. At the same time, the noise, brightness, and texture
changes in high-resolution images make the depth learning model face challenges in image
classification. Thus, frequency analysis, as a strong tool in the signal processing field, may
be an effective and potential solution to this task in practical applications. In addition, some
works exploring applications for frequency analysis in various tasks emerge as well. In [18],
the authors train CNNs by JPEG encoding and decompress a blockwise frequency represen-
tation to an expanded pixel representation. Ehrlich et al. [19] propose a model conversion
algorithm to convert the spatial-domain CNN models to the frequency domain and show
faster training and inference speed. In [20], the discrete cosine transform (DCT) domain (or
frequency domain) is incorporated into CNNs, which can reduce the communication band-
width and better preserve image information. Dziedzic et al. [21] constrain the frequency
spectra of CNN kernels to reduce memory consumption. Spectral diffusion [22] is also
proposed for image generation tasks, where spectrum dynamic denoising is performed
with the wavelet gating operation and thus enhances the frequency bands.

The studies above introduce frequency domain analysis into CNN-related models,
but the effects on different frequency domain components are not taken into account,
especially when combined with the effective channel attention mentioned above (e.g.,
SENet). Generally speaking, more valuable information will be more concentrated in the
low-frequency area. Previous work [23] points out that GAP is mostly utilized in the existing
channel attention methods, such as SENet and ECANet, to compactly compress channels
so that they can be merely equivalent to the lowest frequency components of discrete
cosine transform despite their motivations not being formulated from this view. Due to the
effectiveness and competitiveness of channel attention, in addition to the lowest frequency
components, components from other unexplored frequencies deserve further excavation
and attention. As the first work introducing frequency analysis into channel attention, the
frequency channel attention network (FcaNet) [23] represents channels using discrete cosine
transform (DCT) instead of the lowest frequency component, i.e., GAP. Given a feature map,
FcaNet splits it into many parts along channel dimension and mines multiple frequency
components of 2D DCT to represent channels in each part. Lai et al. [24] introduced a
novel mixed attention network (MAN) for hyperspectral image denoising. This approach
overcomes previous limitations by simultaneously addressing inter- and intra-spectral
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correlations and feature interactions. Utilizing a multi-head recurrent spectral attention
mechanism, progressive spectral channel attention, and an attentive skip connection, MAN
outperforms existing methods in both simulated and real noise conditions, with efficiency
in parameters and running time. Therefore, we advocate the channel attention mechanism
that guides the network to focus on different frequency domains of the images, rationally
distributing attention to low-frequency and high-frequency information. In this way, the
network will learn the underlying patterns and will focus its attention on the valuable
components in the frequency domain, thus obtaining rich context.

Further, we reexamine the existing frequency attention mechanism and propose a new
multi-branch frequency attention mechanism from the frequency perspective. Our work
designs a novel multi-branch spectral channel attention network, i.e., the MbsCANet, which
consists of stacked MbsCA blocks. Its overall pipeline is shown in Figure 1. The proposed
MbsCA block extends the original channel attention structure in SENet and FcaNet from
a single branch to multiple branches, whose structure is illustrated in Figure 2. In each
branch, we mine one frequency component of DCT and utilize it to represent all channels.
Then, the frequency component is passed through fully connected layers to predict the
weights of channels, and such weights are used to scale the corresponding channels. In
all branches, different frequency components are considered to represent channels and
predict channel weights for scaling. There are significant differences between ours and
SENet or FcaNet. SENet is a single-branch structure and only employs the lowest frequency
components (i.e., GAP) to represent channels. It is a special and simple case of ours. As for
FcaNet, it is a single-branch structure as well. It uniformly divides channels into groups
and each single grouped channel is represented by one frequency component. Differently,
ours does not need to group channels, and each channel is represented by the multiple
frequency components of DCT via a multi-branch structure. And the experiment’s results
demonstrate that our method achieves better performance against both of them.

Figure 1. The architecture of the proposed MbsCANet is shown in the upper part (a). MbsCANet
is built on ResNet and stacks lots of MbsCANet modules. Each MbsCANet module is comprised
of a basis block in ResNet and a multi-branch spectral channel attention (MbsCA), as shown in the
bottom part (b). See text for more details.
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Figure 2. Structure diagram of our multi-branch spectral channel attention module (MbsCA).

The paper makes the following contributions:

(1) We analyze the characteristics and attention mechanism of pathological tissue images
of breast cancer from the perspective of frequencies. Following this view, we design a
new channel attention network, the MbsCANet, in the frequency domain.

(2) We propose a multi-branch channel attention structure to fulfill MbsCANet, in which
three kinds of frequency components are mined to compress and represent channels.

(3) In comparison to existing well-known spectral-based channel attention techniques
(SENet and FcaNet), our model performs well and also achieves competitive or better
results against state-of-the-art methods on the breast cancer histopathology image
dataset.

The remainder of this paper is structured as follows: Section 2 describes the given
method, which includes the related background of DCT and spectral channel attention.
Experiments and comparisons are conducted in Section 3. The conclusions are presented in
Section 4.

2. Methodology

In this section, we first briefly review the formulation of DCT, and the related spectral-
channel-attention-based SENet and FcaNet are reviewed in Sections 2.1 and 2.2. Then, we
extend SENet and FcaNet and propose a multi-branch spectral channel attention network,
i.e., the MbsCANet, in Section 2.3.

2.1. Discrete Cosine Transform (DCT)

The compression of channels should be of a high data compression ratio with high
quality. In signal processing, e.g., digital images and videos, discrete cosine transform
(DCT), similar to the discrete Fourier transform, is a widely used data compression tech-
nology to compress JPEG, HEIF, MPEG, and H.26x. It can transform a signal or image
from the spatial domain to the frequency domain. As DCT possesses the good properties
of compaction and being differentiable, it naturally becomes a suitable choice for channel
attention to compress a channel to only a scalar that can be integrated into CNNs for
end-to-end learning.

The DCT [23,25] represents an image as a sum of the cosines of varying magnitudes
and frequencies. For a typical image, most of the visually significant information about the
image is concentrated in just a few coefficients of the DCT. The basis function of 2D DCT
can be written as:
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where H and W are the height and width of the two-dimensional image. Therefore, Bi,j
h,w is

a fixed value. For a given two-dimensional feature map X with a spatial size of H × W, its
2D DCT can be defined by multiplying and summing X and Bi,j

h,w, which is defined as:

Fh,w =
H−1

∑
i=0

W−1

∑
j=0

Xi,jB
i,j
h,w (2)

s.t. h ∈ {0, 1, . . . , H − 1}, w ∈ {0, 1, . . . , W − 1}

where Fh,w with the same spatial size of H × W is the frequency spectrum of 2D DCT, also
called the DCT coefficients of X. The DCT is an invertible transform; we can obtain the
expression of 2D DCT of X according to Equation (2) as follows:

Xh,w =
H−1

∑
h=0

W−1

∑
w=0

Fh,wBi,j
h,w (3)

s.t. i ∈ {0, 1, . . . , H − 1}, j ∈ {0, 1, . . . , W − 1}

Intuitively, via the inverse DCT, any input of size H × W can be written as a sum of HW
basis functions. The DCT coefficients Fh,w can be regarded as the weights applied to each
basis function. For simplicity, some constant normalizations are removed in Equations (2)
and (3).

In Equation (2), 2D DCT can be viewed as a weighted sum of inputs. Typically, global
average pooling (GAP) is a commonly used, simple but effective compression method
along the channel dimension in channel attention. Through the formulations above, when
both h and w are 0, we have:

F0,0 =
H−1

∑
i=0

W−1

∑
j=0

Xi,j cos
(

0
H

(
i +

1
2

))
cos

(
0

W

(
j +

1
2

))

=
H−1

∑
i=0

W−1

∑
j=0

Xi,j (4)

= HW × GAP(X)

For a certain feature map, HW is a fixed constant. It is not difficult to see from
Formula (4) that the lowest frequency component F0,0 in 2D DCT is proportional to the
GAP in SENet. Thus, we can say that GAP is actually a special case contained in 2D DCT.

2.2. Spectral-Channel-Attention-Based SENet and FcaNet

In the context of CNNs, channel attention [7–9,23,26–28] is widely used for various
tasks and the basic principle is to use a scalar to represent and evaluate the importance
of each channel. Since a single, whole channel is represented using a scalar only, the
necessary compression method is needed to compress the input feature map X with the
size of C × H × W into a C-dimensional vector to represent C channels in X. After the
compression (or squeeze) operation, the attention map (attm) is formulated by

attm = sigmoid( f c(compression(X))) (5)
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where f c are two fully connected layers for mapping. The sigmoid function is for trans-
forming entries in attm ∈ RC to numbers between 0 and 1, and each entry refers to the
importance of the corresponding channel.

Then, each channel of the input X is scaled by the corresponding attention value to
produce the attentive channel. It is achieved by

X̃i = attmiXi, s.t. i ∈ {0, 1, . . . , C − 1} (6)

where attmi and Xi denote the i-th entry in attm and i-th channel in X, respectively. X̃ is
the final attentive output of channel attention with same size of input X, which enables
such a channel attention module to be inserted into any layer in CNN models.

SENet [7] and FcaNet [23] are two well-known spectral-channel-attention-based net-
works which are closely related to ours. SENet is formulated as the squeeze (Fsq) and
excitation (Fsq) operations shown in Figure 3. The squeeze in SENet, generating global
description, is achieved by GAP; i.e., the compression function in Equation (5) is equal
to GAP. The excitation shares the similar calculation process in Equations (5) and (6). As
proved above, GAP is the component of the lowest frequency in 2D DCT. Naturally, SENet
explores the spectral correlation in channel attention. Going beyond SENet and following
the same design philosophy, FcaNet uniformly groups all channels, and channels in the
same group are compressed by the same frequency component of 2D DCT, and the channels
in other groups are compressed by different frequency components. Thus, FcaNet is a
multi-spectral channel attention network. Based on these works, a new channel atten-
tion network, the MbsCANet, is proposed, incorporating frequency components into the
multi-branch structure described next.

Figure 3. Structure of squeeze and excitation in SENet.

2.3. Multi-Branch Spectral Channel Attention Network (MbsCANet)

In this section, we first present the general structure of the proposed MbsCANet for
the histopathological image classification task for breast cancer. Then, the core module
of the multi-branch spectral channel attention (MbsCA) in the MbsCANet is illustrated
in detail.

2.3.1. General Structure

The overall structure of the MbsCANet is shown in Figure 1a, and its key component
MbsCANet module is illustrated in Figure 1b, in which a multi-branch structure of the
MbsCA is displayed in Figure 2. We utilize ResNet18 as the basic network to form our
MbsCANet, which can be efficiently trained for fast inference. Each MbsCANet module in
the MbsCANet consists of a basic block in ResNet18 and an MbsCA. The MbsCA is inserted
into the end of a basic block and does not change its topological structure. Such a design
enables us to reuse the weights of ResNet18, avoiding training a network from scratch
that is prohibitive due to insufficient breast cancer histopathological images. The network
is more inclined to the interaction with high- and low-frequency information. Using the
channel attention mechanism, the network can learn more meaningful information and
reduce the influence of worthless information. Because the main information of one image
is concentrated in the low-frequency region [7,20,22,23] and the texture image has a complex
distribution of high and low frequencies, we thus propose to use a multi-branch network to



Electronics 2024, 13, 459 7 of 17

selectively interact with the part of the low-frequency information with the channel features
of the input images. Our model can be trained end-to-end while slightly increasing a few
parameters and takes into account the advantages of the characteristics of the frequency
information and the rich context of simple operations. Notably, our MbsCANet structure is
very flexible and interchangeable. It is a plug-and-play attention module. Our attention
module can be inserted anywhere in the basic CNN network by simply setting the number
of output channels. The number of output channels is the same as the number of output
channels of the previous layer instead of being instantiated in ResNet18 and applied to
other medical image classification tasks.

2.3.2. Multi-Branch Spectral Channel Attention Module

SENet actually exploits only the lowest frequency information, while the information
of other frequencies is discarded completely. Although FcaNet explores the multiple
frequency components of 2D DCT, the individual frequency component is merely used to
represent part of channels in a feature map. Each single channel represented by multiple
frequency components is more reasonable and deserves further exploration, but that is not
modeled in FcaNet at all. Therefore, the multi-branch spectral channel attention module is
proposed to solve this limitation.

Figure 2 gives an overview of the multi-branch spectral channel attention module
(MbsCA). In the MbsCA, each branch attention focuses on highlighting important features
of the input from a different frequency perspective. More generally, such a branch can
be a channel attention, spatial attention, and other dimensions to achieve cross-latitude
interactive computation. Here, our purpose is to achieve spectral channel attention fol-
lowing the similar computation process in SENet. Each branch employs an individual
frequency component and any two branches capture different frequency components. In
accomplishing this, multiple frequency components are explored, solving the problem of
the incomplete utilization of the frequency information in the image, and the interaction
between multiple frequency components is realized through the multi-branch structure.

As shown in Figure 2, the MbsCA redesigns the input stream and weight struc-
ture. The input X ∈ RH×W×C is first copied K times to obtain K identical X, denoted as
{X0, . . . , XK−1}. In each branch, we assign a corresponding frequency component of 2D
DCT. First, the 2D DCT for the input Xk is expressed as

Freqk = 2DDCTΩk (Xk) =
H−1

∑
h=0

W−1

∑
w=0

XkBΩk
h,w (7)

s.t. k ∈ {0, 1, . . . , K − 1}

where Freqk ∈ RC is the spectral vector in the k-th branch, i.e., Freqk = compression(Xk) in
Equation (5). The 2DDCT represents the frequency component of the 2D DCT correspond-
ing to Xk. Ωk is the frequency component 2D indices.

Then, Freqk is used to predict the weights of all channels in Xk and scale them subse-
quently. It goes through FC layers for adaption, and a sigmoid function is adopted to map
entries to the range of 0 to 1. The scaled new features Xk in this single branch are obtained
by

attmk = sigmoid( f c(Freqk)) (8)

Xk = attmkXk (9)

Equations (8) and (9) are responsible for predicting weights attmk and scaling input Xk,
respectively.
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For all K branches in the MbsCA, we repeat Equations (7)–(9) above, obtaining channel
attentive features {X0, . . . , XK−1}. The attentive features obtained on the all branches are
averaged as the final output of our MbsCA module, which is computed as

Y = AVG
({

X0, X1, . . . , XK−1
})

(10)

where AVG is an average pooling to fuse Xk, allowing different frequency components on
each single channel to interact. The output Y has the same shape with input X, enabling
our MbsCA to be flexibly plugged into any layers of the basic network without changing
its topology that can share its pretrained weights. Regarding the selection of the frequency
components on the K branches (K = 3 in our experiments), we conduct ablation experi-
ments to evaluate the importance of several frequency components individually and then
select Top-K frequency components with the highest performance based on the results.

In contrast, although FcaNet also introduces different frequency components to enrich
features, only one frequency component is used in each part of the channel features. It
fails to represent a single channel via different frequency components and thus ignores the
interaction between frequency components, resulting in insufficient channel modeling. As
for SENet, it does not make use of multiple frequency components at all and is a special case
of ours. Among them, our MbsCANet exhibits better experimental results (see Section 3).

3. Experiments

In this section, we first elaborate on the relevant details of our experiments in
Section 3.1. Next, ablation experiments are carried out to demonstrate the effectiveness
of the proposed MbsCANet in Section 3.2. Then, comparisons with state-of-the-art meth-
ods are given in Section 3.3. Finally, visualization results and corresponding analysis are
provided in Section 3.4.

3.1. Implementation Details
3.1.1. Dataset

We utilize the BreakHis dataset to evaluate the proposed MbsCANet. It is one of the
first (2016) publicly available large-scale non-full-field breast cancer histopathology image
datasets (online at http://www.inf.ufpr.br/vri/databases/BreaKHis_v1.tar.gz (accessed on
15 October 2020)) and provides a good benchmark for this medical application. A total of
7909 medical imaging samples are contained, including 2480 benign tumors (fibroadenoma,
adenoma, tubular adenoma, and trichomes tumors) and 5429 malignant tumors (lobular
carcinoma, ductal carcinoma, papillary carcinoma, and mucinous carcinoma). Each sample
image is 700 × 460 pixels in size and is displayed directly on the pathological area of
the breast tumor in RGB color. Each sample is divided into four different magnification
factors: 40×, 100×, 200×, and 400×. Figure 4 shows a typical sample of breast cancer
histopathology images from the BreakHis dataset at different magnifications.

Figure 4. Typical histopathological images with four different magnifications.

http://www.inf.ufpr.br/vri/databases/BreaKHis_v1.tar.gz
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3.1.2. Evaluation Metrics and Setting

In this work, the commonly used metrics of the image-level recognition rate and
patient-level recognition rate are adopted to evaluate our method. In addition to both,
according to the recommendations of the study on processing binary balanced data [29],
the following performance criteria are also provided to measure the image-level diagnostic
performance of the benign and malignant categories: Accuracy, Precision, Recall, and
F1-Score.

For the hyperparameters of network training, the initial learning rate is set to 0.001,
and the decay of the learning rate reduces to half of the current learning rate for every five
iterations. We use random shuffling for the dataset to prevent the chance of learning from
the ordered training set data. The SGD optimizer with momentum set to 0.9 is employed,
which prevents the loss function from falling into a local optimum solution and thus
controls the loss function to a global minimum. All models are trained with cosine learning
rate decay and label smoothing within 100 epochs. All experiments are performed on a
server equipped with an NVIDIA RTX 3090 GPU using the Pytorch [30] deep learning
framework.

3.2. Ablation Study

In this section, we first provide an ablation study on the individual frequency compo-
nents in image-level recognition in Section 3.2.1. Other metrics of the MbsCANet under
Accuracy, Precision, Recall, and F1-Score are given in Section 3.2.2. We make comparisons
with our key counterparts in Section 3.2.3.

3.2.1. Ablation on Individual Frequency Components

In our MbsCANet, we need to select the appropriate frequency components on breast
cancer pathology images. Here, ablation experiments on these are performed on the
BreakHis dataset to select K (=3) such frequency components.

The basic network of ResNet18 used to instantiate our MbsCANet is pretrained on
ImageNet, where its last feature map is of spatial size of 7 × 7. Following FcaNet [23],
there are 49 experiments to individually evaluate one single frequency component, because
for a 7 × 7 matrix, it has 49 basis functions, meaning that the whole 2D DCT frequency
space is divided into 7 × 7 parts. As samples in the BreakHis dataset have four different
magnification factors, each such ablation experiment is conducted on four subdatasets of the
BreakHis dataset. Figure 5 illustrates the corresponding accuracies. In all four subdatasets,
the lowest frequency component (i.e., GAP in SENet) is the optimal component. It can be
concluded that the neural network is more inclined to low-frequency information, which
is consistent with previous works [7,20,22,23]. Further, other frequency components also
encode useful information to represent the channels, which cannot be ignored completely.
And the high-frequency component in the image spectrum is closely related to texture,
so a single channel compressed by different frequency components is more reasonable
and helpful for boosting performance. Based on the experimental results in Figure 5, we
first sort the components according to their importance in each subdataset. Then, the K
frequency components that perform well on the four subdatasets are selected to form the
final branch structure.

In order to verify that our three-branch multi-spectral combination is optimal for
breast cancer pathology images, we offer comparison results for different combinations
of quantitative components at 400× magnification, as shown in Figure 6. Among them,
Top-{2,4,8,16} are the combination of the relevant number of components used in FcaNet.
Top-1 in the horizontal axis refers to SENet, where only the lowest frequency component is
explored to compress channels. For the case of FcaNet, we try our best to tune it with the
official code for achieving better image-level performance. As the default setting, Top-16
in FcaNet gains the best performance in ImageNet classification, while in terms of breast
cancer pathology image classification, this setting may not be the best one. Instead of using
the default setting of Top-16, after our careful evaluation, Top-8 in FcaNet is the best setting
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(96.7%). In contrast to FcaNet, our three-branch structure MbsCANet (marked with an
orange star) represents each single channel with three components instead of one in both
FcaNet and SENet and achieves better results. As the main counterparts of our MbsCANet,
we will make individual comparisons with both in the next section.

Figure 5. Image-level experimental results for the four subdatasets of BreakHis using individual
frequency components.

Figure 6. Comparison of different quantitative component combinations at 400× magnification.
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3.2.2. Accuracy, Precision, Recall, and F1-Score Results

In order to further verify the robustness and generalization ability of the MbsCANet,
four other typical evaluation metrics (i.e., Accuracy, Precision, Recall, and F1-Score) are
utilized to evaluate it. The results are listed in Table 1.

Table 1. Precision, Recall, F1-Score, and Accuracy results (%) achieved by MbsCANet on BreakHis
dataset.

Magnification Accuray Precision Recall F1-Score

40× 97.66 97.79 94.65 96.19
100× 97.92 97.35 95.83 96.58
200× 99.01 99.40 97.08 98.22
400× 96.89 95.24 94.67 94.95

From Table 1, all four metrics of the MbsCANet are higher than 97% for the 200×
dataset, and Accuracy and Precision results even exceed 99%. What is more is that the
results under any metrics achieved by any magnification factors in the BreakHis dataset
reach over 94%, each of which is a high score. These satisfied performance under the
four metrics and can verify the powerful robustness and generalization capability of the
MbsCANet from different views.

3.2.3. Comparisons with Counterparts

As FcaNet and SENet are two main counterparts, we compare both in terms of
image-level recognition and patient-level recognition, respectively. Additionally, a baseline
method is also provided as a reference that the vanilla ResNet18 is directly used in recog-
nition without any channel attention. The comparison results for the four magnification
factors of the BreakHis dataset are shown in Tables 2 and 3, respectively.

Table 2. Experimental results (%) of each model at the image level.

Method 40× 100× 200× 400×
Baseline 96.16 95.84 97.35 93.77
SENet 97.50 97.92 98.84 95.79
FcaNet 97.49 97.12 98.18 96.70
MbsCANet 97.66 97.92 99.01 96.89

Table 2 reports image-level recognition. From it, we can see that the MbsCANet
achieves recognition rates of 97.49%, 97.12%, 98.18%, and 96.52% on 40×, 100×, 200× and
400× magnification, respectively. FcaNet is a multi-spectral channel attention model as
well, where each grouped channel is compressed of a frequency component of 2D DCT,
and channels from different groups are compressed by different frequency components.
Essentially, one single channel is compressed by a single frequency component. By contrast,
our MbsCANet represents a single channel with three components and outperforms FcaNet
in terms of all magnification factors. As a special spectral channel attention model, SENet
only focuses on the lowest frequency component, i.e., GAP. Unexpectedly, its performance
is lower than both FcaNet and MbsCANet. The baseline model, i.e., vanilla ResNet18,
draws the worst results. All three spectral channel attention models significantly surpass it
by a large margin. These comparisons conclude that spectral channel attention is effective
and can improve basic networks, and our multi-branch structure design of the MbsCANet
to explore multiple frequency components is more reasonable and reports the best results.
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Table 3. Experimental results (%) for each network at the patient level.

Method 40× 100× 200× 400×
Baseline 95.99 96.29 97.59 94.33
SENet 96.82 96.03 98.19 96.69
FcaNet 96.76 97.47 98.46 96.17
MbsCANet 97.17 97.98 98.87 97.06

Similarly, at the patient-level recognition shown in Table 3, our MbsCANet obtains
97.17%, 97.98%, 98.87%, and 97.06% recognition rates on the four subdatasets, respec-
tively. Compared with the baseline, performance improvements are 1.18%, 1.69%, 1.28%,
and 2.73% in Accuracy. In contrast to FcaNet and SENet, MbsCANet yields average im-
provements of 0.41% and 0.84%, respectively. These comparisons consistently prove the
conclusion above again and meet our claim.

3.3. Comparisons with State-of-the-Art Methods

To demonstrate the advanced performance of the MbsCANet for breast cancer pathol-
ogy image classification, we further compare it with several representative CNN-based
methods from the past five years. The comparison results are shown in Table 4.

In Table 4, all comparisons are also from image-level recognition and patient-level
recognition on four magnification factors in the BreakHis dataset. Among comparison
methods, Zhou et al. [31] report better performance at image-level recognition with 94.43%,
98.31%, 99.14%, and 93.35% on 40×, 200×, 200× and 400× magnification. However, it
exploits the complicated multi-scale dense network as the backbone, while ours only
employs the lightweight ResNet18 as the backbone. Even so, our MbsCANet still exceeds
it, especially for the 400× magnification, for which the gain is 3.54%. For patient-level
recognition, Zhou et al. [31] also show good results of 96.16%, 97.91%, 98.83%, and 92.64%
for the four magnification factors. Similarly, MbsCANet is superior to it as well and the
gain is over 4% for the 400× magnification. Additionally, in contrast to other previous
methods, the improvements are much larger in terms of both image-level recognition and
patient-level recognition. The extensive comparisons in Table 4 demonstrate the superiority
of our MbsCANet and show great potential for employing frequency characteristics in
deep models for breast cancer pathological image classification scenarios.

AMin et al.’s [32] paper achieved good results at 40× magnification, but MbsCANet
outperformed their method at other magnifications, especially at 100× magnification,
where the image-level and patient-level gains were 8.28% and 8.72%, respectively. Overall,
the MbsCANet outperforms their method.

At the same time, in order to show that the MbsCANet model has good results in
breast cancer pathology image classification tasks, we also conducted experiments on the
BACH dataset (ICIAR2018_BACH_Challenge) and compared it with the basic model. From
the experimental results, we can see that the MbsCANet model has a good effect on breast
cancer pathology. Image classification accuracy has been significantly improved. Table 5
shows the experimental results.
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Table 4. Comparisons of image-level and patient-level recognition rates (%) on the BreakHis dataset with representative CNN-based approaches.

Reference Year Method
Images Level Patient Level

40× 100× 200× 400× 40× 100× 200× 400×
Benhammou et al. [33] 2018 InceptionV3 90.20 85.60 86.10 82.50 91.50 85.10 86.80 82.90
Alom et al. [34] 2019 IRRCNN 97.16 96.84 96.61 95.78 96.69 96.37 96.27 96.37
Sudharshan et al. [35] 2019 PFTAS + NPMIL 87.8 ± 5.6 85.6 ± 4.3 80.8 ± 2.8 82.9 ± 4.1 92.1 ± 5.9 89.1 ± 5.2 87.2 ± 4.3 82.7 ± 4.0
Lichtblau et al. [36] 2019 DE ensemble 85.60 87.40 89.80 87.00 83.90 86.00 89.10 86.60
Zhang et al. [37] 2020 VGG-VD16 95.03 90.41 88.48 85.00 95.50 91.57 89.20 89.20
Hou [38] 2020 22 layers CNN 90.89 90.99 91.00 90.97 91.00 91.00 91.00 91.00
Man et al. [39] 2020 DenseNet121-AnoGAN 99.13 ± 0.2 96.39 ± 0.7 86.38 ± 1.2 85.20 ± 2.1 96.32 ± 1.3 95.89 ± 0.9 86.91 ± 2.0 85.16 ± 1.3
Gour et al. [40] 2020 IDSNet 87.4 ± 3.0 87.2 ± 3.5 91.1 ± 2.3 86.2 ± 2.1 87.4 ± 3.3 88.1 ± 2.9 92.5 ± 2.8 87.7 ± 2.4
Togacar et al. [41] 2020 BreastNet 97.99 97.84 98.51 95.88 n/a n/a n/a n/a
Wang et al. [42] 2021 FE-BkCapsNet 92.71 ± 0.16 94.52 ± 0.11 94.03 ± 0.25 93.54 ± 0.24 n/a n/a n/a n/a
Ibraheem et al. [43] 2021 3PC NNB-N et 92.27 93.07 97.04 92.09 n/a n/a n/a n/a

Li et al. [44] 2021 Sliding + Class Balance
Random 87.85 ± 2.69 86.68 ± 2.28 87.75 ± 2.37 85.30 ± 4.41 87.93 ± 3.91 87.41 ± 3.26 88.76 ± 2.50 85.55 ± 4.03

Hao et al. [45] 2021 APVEC 92.10 90.20 95.00 92.80 n/a n/a n/a n/a
Zhou et al. [31] 2022 RANet+ADSVM 94.43 ± 0.8 98.31 ± 0.3 99.14 ± 0.2 93.35 ± 0.9 96.16 ± 0.9 97.91 ± 0.4 98.83 ± 0.3 92.64 ± 0.9
Chattopadhyay et al. [46] 2022 DRDA-Net7 95.72 94.41 97.43 96.84 n/a n/a n/a n/a
Djouima et al. [47] 2022 DCGAN 96.00 95.00 88.00 92.00 n/a n/a n/a n/a
AMin et al. [32] 2023 FabNet 99.03 89.68 98.51 97.10 99.01 89.26 98.38 96.96

MbsCANet (ours) - Mutiple Spectral Channel
Attention 97.66 97.92 99.01 96.89 97.17 97.98 98.87 97.06

n/a means that results are unavailable.
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Table 5. Experimental results on BACH dataset.

Method Accuracy

Baseline 75%
MbsCANet 86%

3.4. Visualization Results

We give visualization results to further demonstrate the effect of our network, as shown
in Figure 7. In Figure 7, we randomly choose images with four magnification factors in
the BreakHis dataset that are misclassified by the backbone network ResNet18 but can be
correctly classified by the proposed MbsCANet. Heat maps visualize the areas of interest for
different networks for a given category in the same image. By analyzing the feature details
in this section, we discuss the reasons for the misclassification of the backbone model.

It can be seen that from the breast cancer pathology images, the texture of breast
cancer pathology tissue sections is more complex. Therefore, the backbone network is
affected in feature extraction when images have insufficient features and there is a bias in
the region of interest of the features, leading to misclassification. Differently, the proposed
network takes advantage of the information of the multiple frequency components for the
features and achieves interaction between them simultaneously. Its feature extraction and
modeling capability are significantly enhanced to focus on the key feature regions that
are not highlighted by the backbone network. Thus, our model has stronger classification
ability than the vanilla backbone and the other simple channel attention models of SENet
and FcaNet.

Figure 7. The first row and the second row are the thermal distribution of the area of concern for the
feature in the classification of the backbone network and MbsCANet model, respectively.

We also randomly choose a pathological image of breast cancer, and the DCT spectrum
distribution at 40×, 100×, 200×, and 400× magnification is shown in Figure 8. These
graphs visualize the frequency components of the images, where the ‘Z’ axis represents
the amplitude of the DCT coefficients, and the ‘H’ and ‘W’ axes correspond to the two-
dimensional spatial frequency components. It can be seen that in the pathological images
of breast cancer, although the models are mainly concentrated in the low-frequency region,
the high-frequency region still contains some characteristic information. Among the four
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magnification factors, 40×, 100×, and 200× images contain more information in the high-
frequency region than the 400× images. To this end, the reasonable use of both low- and
high-frequency components is necessary and should be considered deeply and in line with
practical applications. This analysis also demonstrates the underlying reason why the
MbsCANet attains better results using multiple frequency components for breast cancer
pathological image classification.

Figure 8. DCT spectrum of the same tissue section at four magnifications.

4. Conclusions

In this paper, we emphasize the importance of frequency domain analysis in breast
cancer histopathology image classification, introducing our advanced MbsCANet model. This
model innovatively processes different frequency components of 2D DCT in a multi-branch
framework, enabling a more nuanced understanding of the frequency characteristics inherent
in histopathology images. The multi-branch approach allows the MbsCANet to effectively
capture and integrate a wide range of frequency information, from low-frequency components
that represent the general patterns and shapes in the images to high-frequency components
that capture finer details and textures. This comprehensive frequency analysis ensures a
robust and detailed interpretation of histopathology images, contributing to the model’s high
accuracy in classification. The MbsCANet model is more suitable for images with high image
contrast and clear edges. Low-resolution images with blurred edges are not well recognized.
Our results for the BreaKHis dataset, with image- and patient-level recognition accuracies of
97.87% and 97.77%, respectively, demonstrate the potential of frequency domain analysis in
enhancing the accuracy and efficiency of medical image classification, paving the way for its
application in clinical settings for rapid and precise cancer diagnosis.

In future work, we plan to further optimize the MbsCANet by combining feature
distribution and frequency components and introducing a spatial attention mechanism
to improve model performance. In addition, we will explore the potential of MbsCANet
in other medical image application fields and expand its application scope in the field of
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medical imaging and diagnosis. This will not only test the versatility of MbsCANet but
also make an important contribution to the field of medical image analysis.
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