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Abstract: Cross -project defect prediction (CPDP) is a promising technical means to solve the problem
of insufficient training data in software defect prediction. As a special case of CPDP, heterogeneous
defect prediction (HDP) has received increasing attention in recent years due to its ability to cope
with different metric sets in projects. Existing studies have proven that using mixed-project data
is a potential way to improve HDP performance, but there remain several challenges, including
the negative impact of noise modules and the insufficient utilization of unlabeled modules. To
this end, we propose a landmark-based domain adaptation and selective pseudo-labeling (LDASP)
approach for mixed-project HDP. Specifically, we propose a novel landmark-based domain adaptation
algorithm considering marginal and conditional distribution alignment and a class-wise locality
structure to reduce the heterogeneity between both projects while reweighting modules to alleviate
the negative impact brought by noise ones. Moreover, we design a progressive pseudo-label selection
strategy exploring the underlying discriminative information of unlabeled target data to further
improve the prediction effect. Extensive experiments are conducted based on 530 heterogeneous
prediction combinations that are built from 27 projects using four datasets. The experimental results
show that (1) our approach improves the F1-score and AUC over the baselines by 9.8–20.2% and
4.8–14.4%, respectively and (2) each component of LDASP (i.e., the landmark weights and selective
pseudo-labeling strategy) can promote the HDP performance effectively.

Keywords: heterogeneous defect prediction; mixed project; domain adaptation; pseudo-label

1. Introduction

Software defect prediction technology can identify which modules (e.g., files, classes,
and functions) are more likely to be defective in software projects, thereby helping develop-
ers/maintainers allocate testing resources reasonably [1,2]. However, this process often
suffers from the lack of training data [3]. In order to overcome this, researchers came up
with the idea of introducing external and well-labeled projects as the training data, that
is, cross-project defect prediction (CPDP) [4–6]. Over the past decade, CPDP has brought
about widespread attention in the field of software engineering and has made remarkable
progress in alleviating the distribution difference between source and target projects’ data.
Conventional CPDP always holds the assumption that source and target projects have the
same metrics. Therefore, if the assumption is invalid (i.e., both projects have different met-
rics), existing CPDP methods cannot be directly applied to defect prediction. In response
to this special case of CPDP, researchers have proposed heterogeneous defect prediction
(HDP) [7,8] and designed corresponding solutions to deal with the different metrics and
distributions of both projects.

HDP focuses on defect prediction across those projects in which metrics are partially
or completely different and thus is often viewed as a special case of CPDP. Its greatest
challenge is how to overcome the obstacle brought by different metrics while reducing the
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distribution discrepancy between source and target data. The current related work also
focuses on solving the subproblems (e.g., class imbalance and linear inseparability) derived
from HDP to further improve the prediction effect without considering the labeled data in
the target project.

Actually, in the early stage of software development, a small amount of labeled data
(i.e., training target data) and a large amount of unlabeled data (i.e., test target data) of-
ten coexist in the target project [9]. Moreover, Turhan et al. proved the effectiveness of
the combination of “within” and “cross-project” data (i.e., mixed-project data) for defect
prediction [6]. Inspired by this, several mixed-project HDP methods [10–12] have been
proposed to fully utilize labeled target data and show the potential to improve predictive
performance. However, research on the HDP with mixed-project data is still in the initial
stage, and a series of issues (e.g., negative impact of noise modules and insufficient uti-
lization of unlabeled data) have not been fully considered and resolved. In this paper, we
further explore and address issues relevant to HDP with mixed-project data for improving
the prediction performance.

1.1. Motivation
1.1.1. Negative Impact of Noise Modules

The original intention of cross-project defect prediction is to improve the predictive
effect of the target project by introducing external projects with sufficient historical data,
but this is not the case in reality. Recent research [13] has pointed out that treating all
project modules equally in the CPDP process may lead to data redundancy. In other words,
equally treated modules commonly play different roles in cross-project defect prediction.
Some of them (i.e., noise modules) may even inhibit learning and then weaken prediction
performance. As a special case of CPDP, a similar issue also exists in HDP. The left part of
Figure 1 displays an ideal distribution of the source and target data where modules can
be well separated by category. Noise modules make it hard to decide the classification
boundary for source and target data, as shown in the right part of Figure 1.

Non-defective source module
Defective source module
Non-defective target module
Defective target module

Non-defective source module
Defective source module
Non-defective target module
Defective target module

Noise modules

Figure 1. Illustration of the negative impact of noise modules.

Table 1 provides statistics on prediction combinations under different situations to
illustrate the negative impact of noise modules (for detailed experimental settings, refer
to Section 4.3). The WPDP method only uses labeled target data to build the classifier
for predicting the remaining unlabeled ones. CLSUP is a mixed-project HDP method
that trains the predictor with source data and labeled target data. As shown in this table,
there are 21.5% and 20.2% prediction combinations in which WPDP performs better than
CLSUP regarding the F1-score and AUC, respectively. This means that the source data
are not helpful for prediction across projects in this situation (i.e., an invalid cross-project
prediction combination). Therefore, we believe that noise modules must exist with negative
impacts on predictions in the source project. To the best of our knowledge, current mix-
project HDP methods usually consider all the modules of source and target projects equally
important, which is not conducive to highlighting the effect of the relevant modules while
eliminating the negative impact of the noise versions. Therefore, it is meaningful to tackle
the above problem to investigate how to focus on the relevant modules while ignoring the
noise versions.



Electronics 2024, 13, 456 3 of 22

Table 1. Statistics for the comparison between WPDP and CLSUP.

Situation
Number of Prediction Combinations

F1-Score AUC

WPDP performs better than CLSUP 114 107

WPDP performs worse than CLSUP 416 423

% of invalid cross-project prediction combinations 21.5% 20.2%

1.1.2. Insufficient Utilization of Unlabeled Modules

In the existing HDP research, the unlabeled modules of the target project are commonly
used to match the data distributions of both projects. It can alleviate the heterogeneity
between the source and target projects so that the prediction model can be better adapted
to the target data. However, this utilization of unlabeled target data does not fully explore
the latent discriminant information within it, which makes it difficult to improve the
classification ability of prediction models significantly. Guided by a small number of labels,
semi-supervised learning can utilize a large number of unlabeled samples to improve
learning performance and avoid wasting data resources. It solves the problems of the
weak generalization ability of supervised learning methods when there are few labeled
samples and the inaccuracy of unsupervised learning methods when there is a lack of
labeled samples [14]. As an effective semi-supervised method, pseudo-label learning [15]
is beneficial for determining the classification boundary in low-density regions, thereby
improving the model’s performance. Considering this, we further investigate how to utilize
the pseudo-labels of unlabeled data from the target project to enhance the prediction effect.

1.2. Contribution

In this paper, we propose a landmark-based domain adaptation and selective pseudo-
labeling (LDASP) approach for improving HDP with mixed-project data. The detailed
contributions are summarized below:

• The proposal of a novel landmark-based domain adaptation algorithm that considers
marginal and conditional distribution alignment and a class-wise locality structure to
reduce the heterogeneity between both projects, reweighting modules to alleviate the
negative impact brought about by the noise modules.

• The proposal of a progressive pseudo-label selection strategy exploring the underlying
discriminative information of unlabeled target data to further improve the predic-
tion effect.

• Extensive experiments are conducted on 27 projects from four datasets to demonstrate
that our approach provides significantly better performance when compared to state-
of-the-art methods, verifying the effectiveness of each component of it.

2. Related Work

In this section, we introduce the developments of heterogeneous defect prediction and
domain adaptation that are relevant to this work. We first review the current HDP studies.
Then, we summarize the concept of domain adaptation and detail the landmark-based
domain adaptation methods.

2.1. Heterogeneous Defect Prediction

Based on the learning process of predictors, we roughly divide the existing HDP
methods into two categories, i.e., conventional and mixed-project HDP methods, which
correspond to different application scenarios.

2.1.1. Conventional HDP Methods

Conventional HDP methods are suitable for the scenario where the source project
is well labeled and the target project is unlabeled. They train the defect predictor with
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labeled source data and unlabeled target data. To date, most of the existing related work
belongs to this category. Jing et al. [8] were among the first to identify the HDP problem
and propose an improved canonical correlation analysis (CCA) method for alleviating the
heterogeneity between source and target projects. Meanwhile, Nam and Kim [16] proposed
a metric selection and matching method for HDP that can remove redundant metrics for
the source project and then match up the metrics of both projects (one-to-one) based on
metric similarity. Based on these two methods, a series of related works [11,17–19] has
emerged, and considerable progress has been made.

In order to deal with the class imbalance and linear inseparability issues, Li et al.
successively proposed an ensemble multiple kernel correlation alignment (EMKCA)
method [17] and a cost-sensitive transfer kernel canonical correlation analysis (CTKCCA)
method [18]. Later, they also extended EMKCA to a two-stage ensemble learning frame-
work by combining multiple predictors [20]. Similar to the idea of [16], Yu et al. [21]
proposed a novel feature matching and transfer (FMT) method to select one-to-one feature
pairs for heterogeneous source and target projects based on the “distance” between dis-
tribution curves. Tong et al. [19] designed a kernel spectral embedding transfer ensemble
(KSETE) method to improve the prediction effect. This method first alleviates the class im-
balance problem by performing the synthetic minority over-sampling technique (SMOTE)
on the source project. Then, it combines kernel spectral embedding and transfer learning to
find a latent common metric space for source and target data. Eventually, the prediction
results are decided by ensemble learning. In addition, multi-view learning [22,23], multi-
source transfer learning [24], and deep generation network [25] are introduced to improve
the performance of the conventional HDP method.

In summary, the above HDP methods utilize the labeled source data and unlabeled
target data in the learning process to reduce the heterogeneity between both projects
effectively, showing considerable performance. However, they are not designed for a
situation with a small number of labeled target data, and thus, the supervised (label)
information within it cannot be utilized reasonably in predictions. In this paper, we design
a novel approach that can use labeled target data to improve the discriminative ability of
predictors while eliminating the heterogeneity between source and target projects.

2.1.2. Mixed-Project HDP Methods

Mixed-project HDP methods focus on the scenario of the labeled source project and
the target project with a small number of labeled modules. They combine heterogeneous
source data and a small number of labeled target data (i.e., training target data) to build the
defect predictor. Among the current research on HDP, only a few studies provide solutions
for using mixed-project data to improve prediction performance. Li et al. [11] first proposed
a cost-sensitive label and structure-consistent unilateral projection (CLSUP) method. This
method combines domain adaptation and cost-sensitive learning techniques to learn the
projection matrix from source to target data while introducing the misclassification cost
to alleviate the impact of class imbalance. In order to enhance the quality of training data,
Li et al. [10] proposed a multi-source selection-based manifold discriminant alignment
method. Its core component is an improved manifold discriminant alignment (MDA)
algorithm that learns transformation matrices for source and target data to make their
distributions closer and have a favorable classification ability. The recent work [12] by
Niu et al. was an extension of MDA that first applies a sampling technique to handle
the class imbalance problem and then uses the kernel manifold discriminant alignment
algorithm to overcome the linear inseparability issue. Extensive experiments on 13 projects
from three public datasets demonstrate its state-of-the-art prediction performance.

Overall, the current mixed-project HDP methods focus primarily on using limited
labeled target data reasonably in the learning process while considering common issues,
such as class imbalance and linear inseparability. Although showing promising results,
they ignore the negative impact of noise modules on prediction across projects, and the
underlying discriminative information in unlabeled target data is not fully excavated. In
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this paper, we propose a novel landmark-based domain adaptation and selective pseudo-
labeling approach for mixed-project HDP to address these limitations.

2.2. Domain Adaptation

Domain adaptation has been an important research direction of transfer learning and
gained a lot of success in a wide range of tasks, such as computer vision and natural
language processing [26]. The core idea of domain adaptation is to learn a feature extractor
that makes the data distributions of both domains aligned so that the knowledge learned
from the source domain can be applied to the target one. To this end, researchers attempt
to introduce different methods (e.g., marginal, conditional, and joint distributions) to
measure and optimize the discrepancy between different domains [27–29]. Unfortunately,
the effectiveness of transfer learning is not always guaranteed due to the unsatisfying basic
assumptions, which causes negative transfer, meaning the source knowledge decreases the
learning performance in the target domain [30].

In order to deal with the negative transfer issue, several sample reweighting
methods [28,31,32] are proposed to bring the source distribution closer to the target one;
hence, this may help eliminate the impact of the negative transfer on learning performance
in the target domain. These methods select the most relevant samples (i.e., landmarks) to
match the data distributions by reweighting the samples from the source or both domains.
Aljundi et al. [31] designed a novel unsupervised domain adaptation approach based on
the subspace alignment and selection of landmarks similarly distributed between both
domains. For the heterogeneous domain adaptation with the semi-supervised setting,
Tsai et al. [32] proposed a cross-domain landmark selection method to project the source
data into the feature subspace of the target domain. Specifically, this method considers
reducing the marginal and conditional distribution discrepancies simultaneously while
selecting landmarks from both domains through the learning weights for the samples.
Inspired by this, we introduce the idea of landmark-based domain adaptation to alleviate
the negative impact of noise modules in this work.

Unlike the landmark-based domain adaptation methods mentioned above, we con-
sider more comprehensive factors, including marginal and conditional distribution align-
ment, and class-wise locality structure preservation to further improve the effect of domain
adaptation. Furthermore, we also design a progressive selection strategy to raise the quality
of used pseudo-labels instead of the direct utilization of all pseudo-labels.

3. Approach

In this section, we first introduce the setting of HDP with mixed-project data; the
notations used in this paper are provided in Section 3.1. Sections 3.2 and 3.3 provide
detailed descriptions of our improved landmark-based domain adaptation method and the
proposed progressive pseudo-label selection strategy, respectively.

3.1. Problem Statement

The only difference from the conventional setting (i.e., labeled source and unla-
beled target projects with different metric sets) is the existence of a small number of
labeled target modules in the mixed-project data setting. Specifically, the labeled source
project can be defined as S = {xi

s, yi
s}ns

i=1 = {XS, YS}, in which xi
s refers to the ith

module of the source project, and yi
s is the corresponding label (i.e., defective or non-

defective). Similarly, the unlabeled and labeled parts of the target project can be defined as
TU = {xi

u, yi
u}nu

i=1 = {XU , YU} and TL = {xi
l , yi

l}
nl
i=1 = {XL, YL} separately. In this task, the

source project data (S) and training target data (TL) will be combined to build the predictor
and further identify the labels (YU) of the test target data (TU).

3.2. Landmark-Based Domain Adaptation

In this section, we first present the basic structure of the objective function that is
used to match the distributions between the source and target data. Then, we introduce
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the modified objective function by considering landmark weights to alleviate the negative
impact of the noise modules.

3.2.1. Matching the Distributions of Source and Target Data

Generally, there is a significant difference between the data distributions of heteroge-
neous source and target projects. This will make the predictor trained using source data
not be able to adjust to the target data well. To this end, we learn the transformation matrix,
A ∈ Rds×m, for the source data to project it into the metric subspace of the target data with
m dimensions. Specifically, a principal component analysis (PCA) is first used to project
target data into the metric subspace of the target data with m dimensions. The maximum
mean discrepancy is an effective method to measure the marginal distribution difference
between two domains, which does not assume any parametric form for the distributions.
Hence, we employ it to calculate the distance between the distributions of both projects
and define the term of marginal distribution alignment, EM(A, S, TL, TU), as follows:

EM(A, S, TL, TU) =

∥∥∥∥∥ 1
ns

ns

∑
i=1

ATxi
s −

1
nl + nu

(
nl

∑
j=1

x̂j
l +

nu

∑
j=1

x̂j
u)

∥∥∥∥∥
2

, (1)

where x̂u and x̂l refer to the unlabeled and labeled target modules processed via PCA.
Ref. [28] proposed a transfer learning algorithm that jointly optimizes marginal and

conditional distributions, and the authors verified its effectiveness in reducing the distribu-
tion discrepancy through extensive experiments. As the labeled modules in both projects
can be used to measure the conditional distribution discrepancy, we also define the term of
conditional distribution alignment EC(A, S, TL) as shown below:

EC(A, S, TL) =
C

∑
c=1

∥∥∥∥∥ 1
ns

ns

∑
i=1

ATxi,c
s − 1

nl

nl

∑
j=1

x̂j,c
l

∥∥∥∥∥
2

+
1

nc
snc

l

nc
s

∑
i=1

nc
l

∑
j=1

∥∥∥ATxi,c
s − x̂j,c

l

∥∥∥2
, (2)

where the former is designed to match the conditional distributions between the source and
target data approximately, and the latter further aggregates the source and target modules
with the same category in the target metric subspace.

In order to preserve the structure of the transformed source data, we impose an
additional class-wise locality constraint [29] on the projected source data and define the
class-wise locality-preserving term ES(A, S) as shown below:

ES(A, S) =
ns

∑
i=1

ns

∑
j=1

wij

∥∥∥ATxi
s − ATxj

s

∥∥∥2
, (3)

where wij is defined as follows:

wij =

{
exp(−

∥∥∥xi
s − xj

s

∥∥∥2
/δ2) i f {xi

s, xj
s} ∈ Xc

S

0 otherwise
(4)

In summary, the final objective function can be integrated based on Equations (1)–(3)
as follows:

min
A

EM(A, S, TL, TU) + EC(A, S, TL) + ES(A, S) + λ∥A∥2, (5)

where ∥A∥2 is the regularization term that controls the complexity of A to avoid over-fitting.
λ is the parameter of the regularization term. Here, the transformation matrix A can be
optimized by minimizing Equation (5).
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3.2.2. Matching the Distributions of Source and Target Data Based on Landmarks

Although the objective function in Equation (5) considers reducing the discrepancy
between both projects from different aspects, it still believes that all modules are equally
important and thus ignores the negative impact brought about by noise modules. As
discussed in Section 1.1.1, this may inhibit the learning process of the transformation
matrix and lead to poor performance. In order to solve this problem, we weight the
modules of the source and target projects and view the modules with nonzero weights as
landmarks. Based on this thought, the objective function in Equation (5) can be redefined as
shown below:

min
A,α,β

EM(A, S, TL, TU , α, β) + EC(A, S, TL, TU , α, β)

+ ES(A, S, α) + λ∥A∥2,

s.t. αc
i , βc

i ∈ [0, 1],
αcT1
nc

S
=

βcT1
nc

T
= θ,

(6)

where α = [α1; . . . ; αc; . . . αC] ∈ Rns represents the weights of the source modules. Specifically,
αc represents the module weights belonging to the category c in the source project. Because a
small number of labeled target modules can provide discriminative information, all of them
in TL are considered landmarks, and their weights are fixed to 1, whereas the unlabeled ones
in the target project are weighted using β. Similarly, β = [β1; . . . ; βc; . . . βC] ∈ Rnu represents
the weights of the unlabeled modules in the target project, where βc specifically refers to
the weights of the target modules that are predicted as category c (pseudo-label). θ ∈ [0, 1]
controls the ratio of the source data and target test data used for distribution adaptation.

Based on the module weights α and β defined above, the extended marginal distribu-
tion alignment term EM(A, S, TL, TU , α, β) can be computed as follows:

EM(A, S, TL, TU , α, β) =

∥∥∥∥∥ 1
θns

ns

∑
i=1

αiATxi
s −

1
nl + θnu

(
nl

∑
j=1

x̂j
l +

nu

∑
j=1

β j x̂
j
u)

∥∥∥∥∥
2

. (7)

In order to match the conditional distribution of the source and target data, we use
labeled project data (S and TL) to train the classification model and make predictions of the
unlabeled module x̂i

u to generate its corresponding pseudo-label ỹi
u. With the assistance of

the obtained pseudo-labels, the unlabeled module TU can be assigned specific categories.
Therefore, the extended conditional distribution alignment term EC(A, S, TL, TU , α, β) can
be defined as follows:

EC(A, S, TL, TU , α, β) =
C

∑
c=1

Ec
cond +

1
ec Ec

embed, (8)

where ec = θnc
snc

l + θnc
l nc

u + θ2nc
unc

s. Ec
cond and Ec

embed are separately defined below:

Ec
cond =

∥∥∥∥∥∥ 1
θnc

s

nc
s

∑
i=1

αiATxi,c
s − 1

nc
l + θnc

u
(

nc
l

∑
j=1

x̂j,c
l +

nc
u

∑
j=1

β j x̂
j,c
u )

∥∥∥∥∥∥
2

, (9)

Ec
embed =

nc
s

∑
i=1

nc
l

∑
j=1

∥∥∥αiATxi,c
s − x̂j,c

l

∥∥∥2
+

nc
l

∑
i=1

nc
u

∑
j=1

∥∥∥x̂i,c
l − β j x̂

j,c
u

∥∥∥2

+
nc

u

∑
i=1

nc
s

∑
j=1

∥∥∥βi x̂i,c
u − αjATxj,c

s

∥∥∥2
.

(10)

It can be seen that Equation (8) is essentially extended by imposing the unlabeled data
TU and its corresponding pseudo-labels {ỹi

u}nu
i=1 to Equation (2). With the module weight
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α in the source project, the class-wise locality-preserving term ES(A, S, α) can be defined
as follows:

ES(A, S, α) =
1

θ2n2
s

ns

∑
i=1

ns

∑
j=1

wij

∥∥∥αiATxi
s − αjATxj

s

∥∥∥2
, (11)

where wij can be referred to in Equation (4).

3.2.3. Solution

Because the objective function in Equation (6) is a non-convex joint optimization
problem with respect to A, α, and β, we employed the iterative optimization method
described in Ref. [32] to learn the transformation matrix, A, and landmark weights, α and
β, alternately.

(1) Optimizing A

In order to learn the transformation matrix A, we first consider the landmark weights
α and β as the constant term. Then, we compute the first-order derivative of Equation (6)
with respect to A and let it be equal to zero. Finally, the closed-form solution of A can be
obtained as follows:

A = (λIds + XSHSX−1
S )−1(Xs(HLX̂

T
L + HUX̂

T
U)), (12)

where Ids is the identity matrix with ds dimensions. XS ∈ Rds×ns , X̂L ∈ Rm×nl , and
X̂U ∈ Rm×nu represent the source data, training target data, and test target data, respectively.
The element (HS)i,j in HS ∈ Rns×ns refers to the derivative coefficient associated with xi

s
Txj

s.
A similar explanation can be applied to HL ∈ Rns×nl and HU ∈ Rns×nu .

(2) Optimizing α and β

Given the transformation matrix A, Equation (6) can be rewritten as:

min
α,β

1
2

αTKS,Sα +
1
2

βTKU,U β − αTKS,U β

+ kT
S,Lα + kT

U,Lβ

s.t. αc
i , βc

i ∈ [0, 1],
αcT1
nc

S
=

βcT1
nc

T
= θ,

(13)

where the element (KS,S)i,j in KS,S ∈ Rns×ns denotes the correlation coefficient associ-

ated with (ATxi
s)

TATxj
s. A similar explanation can be applied to the element (KU,U)i,j

in KU,U ∈ Rnu×nu and the element (KS,U)i,j in KS,U ∈ Rns×nu . The element (kS,L)i in
kS,L ∈ Rns denotes the sum of coefficients of (ATxi

s)x̂1
l , (ATxi

s)x̂2
l , . . . , (ATxi

s)x̂nl
l . A similar

explanation can be applied to the element (kU,L)i in kU,L ∈ Rnu . Based on the above
formulations, the solution of Equation (13) is transformed into the following quadratic
programming problem that can be resolved by using existing tools (i.e., the quadprog
function in MATLAB R2023b).

min
zi∈[0,1],ZTV=W

1
2

ZTBZ + bTZ, (14)

where Z = [α; β], B = [KS,S,−KS,U ;−KT
S,U , KU,U ], b = [−kS,L; kU,L],

W ∈ R1×2C with (W)c =

{
θnc

S i f c ≤ C
θnc−C

S i f c > C
,

V =

[
VS 0ns×C

0nu×C VU

]
∈ R(ns+nu)×2C with
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(VS)ij =

{
1 i f xi

s ∈ class j
0 otherwise

,

(VU)ij =

{
1 i f xi

u is predicted as class j
0 otherwise

.

After obtaining the transformation matrix, A, and landmark weights, α and β, we
can utilize the transformed source data and training target data by combining them with
landmark weights to train the classification model, which is used to predict the pseudo-
labels {ỹi

u}nu
i=1 of the test target data {x̂i

u}nu
i=1.

3.3. Progressive Pseudo-Label Selection

In the initial stage of learning, the transformation matrix A, and the landmark weights
α and β, cannot be fully optimized, which may degrade the performance of the classification
model and further lead to low-quality pseudo-labels. For this reason, we designed a
progressive strategy for pseudo-label selection that selects the corresponding pseudo-label
subset in each iteration for the optimization of the objective function. First, we define
{(x̂i

u, ỹi
u, p(ỹi

u|x̂i
u))}nu

i=1, where p(ỹi
u|x̂i

u) denotes the probability of predicting the label of
x̂i

u as ỹi
u. In the kth iteration, we then select the top nuk/T high-probability modules to

optimize A, α, and β. T is the total number of iterations. In order to avoid the situation that
selective pseudo-labels belong to the same category, we separately select the top nc

uk/T
high-probability modules for each category, c, where nc

u denotes the number of modules
predicted as category c in the test target data.

Algorithm 1 describes the detailed process of our approach. Before iteration, we first
preprocess the source and target data (lines 3–4). Then, we project the target data to the
metric subspace with m dimensions by using principal component analysis (line 5). The
projection matrix A and the pseudo-labels of the test target data {ỹi

u}nu
i=1 are initialized

(lines 6–7). For each iteration, we first select the pseudo-labels and their corresponding
modules and then use these to update the transformation matrix A and landmark weights
α and β sequentially (lines 9–11). Next, given the A, α, and β, the pseudo-labels of the
test target modules can be updated (line 12). When the iteration is over, we regard the
pseudo-labels of the test target modules as the final prediction results.

Algorithm 1 Pseudo code of LDASP

1: Input: source data S = {xi
s, yi

s}ns
i=1, training target data TL = {xi

l , yi
l}

nl
i=1, test target

dataTU = {xi
u}nu

i=1; dimension of metric subspace m; θ; iteration number T.
2: Output: predicted labels {yi

u}nu
i=1 of test target data {xi

u}nu
i=1.

3: Remove the duplicated modules and the modules with missing metric values for S and
{TL, TU};

4: Use z-score normalization to scale the data from S and {TL, TU};
5: Project target data {xi

l}
nl
i=1 and {xi

u}nu
i=1 into the metric subspace with m dimensions;

6: Initialize the transformation matrix A via Equation (5);
7: According to Section 3.3, initialize the pseudo-labels of test target data {ỹi

u}nu
i=1;

8: for k = 1 to T do
9: For each category c, select nc

uk/T pseudo-labels with the highest probability from
{ỹi

u}nu
i=1 and their corresponding modules;

10: Update the transformation matrix A according to Equation (12);
11: Update landmark weights α and β according to Equation (14);
12: Update the pseudo-labels of test target data {ỹi

u}nu
i=1 based on the description of

Section 3.3;
13: end for
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4. Experiment Setup

In this work, experiments will be conducted based on the following research questions
to verify the effectiveness of our approach.

• RQ1: How effective is LDASP in HDP with mixed-project data?
• RQ2: What is the effect of each component of LDASP on improving HDP performance?

4.1. Dataset and Evaluation Indicator

For a comprehensive evaluation, we selected 27 projects from four widely used public
datasets, including NASA [33], AEEEM [34], PROMISE [35], and JIRA [36]. Table 2 displays
the dataset details, where the last column lists what object a module specifically refers to in
the corresponding project. It can be seen that the four datasets contain different numbers of
metrics, which accords with the HDP setting.

Table 2. Details of datasets.

Dataset Project # of
Metrics

# of Total
Modules

# of
Defective

Modules (%)

Prediction
Granularity

NASA

CM1 37 327 42 (12.84%)

Function
MW1 37 253 27 (10.67%)
PC1 37 705 61 (8.65%)
PC3 37 1077 134 (12.44%)
PC4 37 1287 177 (13.75%)

AEEEM

EQ 61 324 129 (39.81%)

Class
JDT 61 997 206 (20.66%)
LC 61 691 64 (9.26%)
ML 61 1862 245 (13.16%)
PDE 61 1497 209 (13.96%)

PROMISE

ant-1.7 20 745 166 (22.28%)

Class

camel-1.4 20 872 145 (16.6%)
ivy-2.0 20 352 40 (11.36%)
jedit-4.0 20 306 75 (24.51%)
log4j-1.0 20 135 34 (25.19%)
poi-2.0 20 314 37 (11.78%)
tomcat-6.0 20 858 77 (8.97%)
velocity-1.6 20 229 78 (34.06%)
xalan-2.4 20 723 110 (15.21%)
xerces-1.3 20 453 69 (15.23%)

JIRA

activemq-5.0.0 65 1884 293 (15.55%)

File

derby-10.5.1.1 65 2705 383 (14.16%)
groovy-1.6.0.beta1 65 821 70 (8.53%)
hbase-0.94.0 65 1059 218 (20.59%)
hive-0.9.0 65 1416 283 (19.99%)
jruby-1.1 65 731 87 (11.9%)
wicket-1.3.0.beta2 65 1763 130 (7.37%)

In order to evaluate the overall performance of the competing methods, we employed
the frequently used indicators, including the F1-score and AUC. The F1-score [8] is denoted
as the harmonic means of recall (probability of detection) and precision. According to the
confusion matrix in Table 3, the F1-score can be calculated as 2× recall×precision

recall + precision , where recall
is defined as tp/(tp + fn), and precision is defined as tp/(tp + fp). The AUC is the area under
the receiver operating characteristic curve, which is plotted in a two-dimensional space with
pf as the x-coordinate and pd as the y-coordinate. The AUC is a well-known indicator for
the comparison of different models [5,16,37–40] because it is unaffected by class imbalance
and is independent of the prediction threshold. The higher the AUC is, the better the
performance of the prediction model. When the AUC is 0.5, this means the performance of



Electronics 2024, 13, 456 11 of 22

a random predictor [41]. Moreover, Lessmann et al. [38] and Ghotra et al. [37] suggested
using the AUC for better cross-dataset comparability. Hence, we select the AUC as one of
the indicators.

Table 3. Four kinds of defect prediction results.

Actual Defective Actual Non-Defective

Predict defective tp fp
Predict non-defective fn tn

4.2. Experimental Design

This section provides the detailed experimental design for each research question.

4.2.1. RQ1: How Effective Is LDASP in HDP with Mixed-Project Data?

For RQ1, we compared LDASP for three types of related methods (as shown below) to
evaluate its performance.

WPDP method: This method uses labeled data to build the prediction model that is
then employed to determine whether the remaining unlabeled modules are defective or
non-defective. Because the training and test data come from the same project, considerable
prediction results can be generally obtained when the labeled modules are sufficient.

Unsupervised method: Chen et al. [42] found that the mainstream unsupervised
prediction methods perform better than HDP ones for traditional and effort-aware indica-
tors through extensive experiments. Therefore, we also chose the unsupervised methods
SC [5] and ManualDown [43], which show considerable performance, as baselines. SC is a
spectral clustering-based unsupervised method and achieves a better prediction effect over
supervised models. ManualDown is a simple and effective unsupervised method based on
the number of code lines, and it performs better than most current CPDP methods through
extensive experiments. Note that the threshold of ManualDown was set as 50%, according
to the suggestion of the original paper [43].

HDP method: Three mixed-project HDP methods, i.e., CLSUP [11], sMDA [10], and
DSKMDA [12], were selected to compare with our approach. CLSUP not only utilizes the
labeled data within source and target projects during the metric transformation but also im-
poses the costs of misclassification for the class imbalance problem. sMDA and DSKMDA
are different extension versions of the manifold discriminant alignment algorithm [44]. In
addition, we also selected a conventional HDP method, i.e., an ensemble method based on
aligned metric representation (EAMR) [23], to verify the effectiveness of our approach.

In order to evaluate the statistical significance of the performance difference between
both methods, we employed the nonparametric Wilcoxon signed-rank test [45] at the
confidence level of 95%, and we report the results of the Win/Tie/Lose of LDASP vs. each
baseline from the previous studies [6,46–48]. Moreover, we used the nonparametric effect
size to test Cliff’s delta (δ with values in [−1, 1]) [49] and measure the level of difference
between the performance of the competitors. Table 4 presents the mappings of the δ values
to the corresponding effectiveness levels.

Table 4. Mapping Cliff’s delta values to the effectiveness levels.

Cliff’s Delta (δ) Effectiveness Levels

δ < 0.147 Negligible (N)
0.147 ≤ δ < 0.33 Small (S)
0.33 ≤ δ < 0.474 Medium (M)
0.474 ≤ δ Large (L)
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4.2.2. RQ2: What Is the Effect of Each Component of LDASP on Improving
HDP Performance?

In order to investigate RQ2, we constructed a series of variants based on the proposed
LDASP, as shown in Table 5. This table lists the compared methods and their corresponding
explanations. For example, LDASPnoMarginal denotes the variant of our approach without
the term of the marginal distribution alignment in the objective function, i.e., Equation (6);
DASP refers to the variant of our approach without considering the landmark weights for
the source and target modules, which is equivalent to the setting of α = 1 and β = 1. In
the experiments related to RQ2, we compared LDASP with four variants for all evaluation
indicators. Furthermore, the nonparametric Wilcoxon signed-rank test [45] at a confidence
level of 95% and the nonparametric effect size test of Cliff’s delta were conducted between
LDASP and each variant.

Table 5. Competing methods in RQ2.

Method Description

LDASPnoMarginal Removing the term of marginal distribution alignment

LDASPnoConditional Removing the term of conditional distribution alignment

LDASPnoLocality Removing the term of class-wise locality preserving

DASP Without considering the landmark weights, i.e., α = 1 and β = 1

LDAP Using all pseudo-labels without selection

4.3. Evaluation Protocol

In the experiments, we constructed heterogeneous prediction combinations based
on all the projects and used the predictor trained using the source data to predict the
target project. For each prediction combination (i.e., source⇒target), we chose one project
from the 27 total projects as the target. Another project from the datasets that did not
contain the target project was selected as the source. Supposing that the target project is
selected from AEEEM, the source project should come from NASA, PROMISE, or JIRA. In
this way, 530 prediction combinations can be constructed based on these 27 projects from
four datasets. Considering that there exists a small amount of labeled data in the target
project, we randomly split 10% of the target modules for the training target data, and the
remaining 90% were regarded as the test target data, as in Refs. [10,11]. Each prediction
combination was executed 20 times, and we ultimately report the average indicator results
of the competing methods on each target project.

4.4. Parameter Setting

For the parameters of LDASP, we set the metric subspace dimension m, the number of
iterations T, and θ as ⌊min(ds, dt)/2⌋, 5, and 0.5, respectively. For each competing method,
we used the logistic regression (LR) classifier to conduct the predictions. This is mainly
because LR has been applied in extensive SDP research and has exhibited better classifi-
cation ability than other classifiers. The LR classifier is implemented by LIBLINEAR [50]
and adopts the parameter setting “−s 0” (i.e., logistical regression) and “−b 1” (i.e., no bias
term added) suggested in Ref. [51].

5. Experimental Result

This section reports and analyzes the experimental results for each research question
and further summarizes the corresponding conclusions.

5.1. Results for RQ1

Tables 6 and 7 report the mean results of the competing methods for all the target
projects, in which the best result for each project is marked in bold. The “Average” presents
the overall mean results across the 27 target projects.
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• Our approach obtains the best results for the F1-score and AUC for more than half
(i.e., 15 out of 27 and 14 out of 27) of the target projects. Moreover, it also achieves the
best overall performance for each indicator in terms of the “Average” results.

• When compared with the mixed-project HDP methods (i.e., CLSUP, sMDA, and
DSKMDA), our approach separately improves the F1-score and AUC by 9.8–20.2%
and 5.3–11.3% in terms of the overall mean results. This is mainly because the
learned landmark weights eliminate the negative impact brought about by the noise
modules to some extent; meanwhile, selective pseudo-labeling further promotes
prediction performance.

• When compared with the conventional HDP method (i.e., EAMR), our approach
makes improvements of 15.8% and 4.8% on the F1-score and AUC, respectively. As
a conventional HDP method without using training target data, EAMR even shows
better performance than the mixed-project HDP baselines (i.e., CLSUP, sMDA, and
DSKMDA). However, an over-reliance on the label information of the source data also
prevents its performance for further promotion.

• When compared with the unsupervised methods (i.e., SC and ManualDown), our
approach improves the average F1-score and AUC by at least 10.6% and 11.6%, respec-
tively. The possible reason is that the lack of labeled modules results in unsupervised
methods being unable to obtain reliable discriminative information and, thus, inhibit
the improvement in prediction performance.

• When compared with the WPDP method, our approach separately improves the aver-
age F1-score and AUC by 18.7% and 14.4%, which means that the effective utilization
of labeled source data can increase the prediction effect on the target project.

Table 6. Comparison results for F1-score.

Target WPDP SC Manual
Down EAMR CLSUP sMDA DSKMDA Ours

CM1 0.249 0.335 0.282 0.279 0.274 0.299 0.281 0.326
MW1 0.206 0.303 0.247 0.272 0.248 0.271 0.253 0.301
PC1 0.217 0.245 0.236 0.252 0.228 0.250 0.222 0.268
PC3 0.288 0.345 0.316 0.332 0.348 0.364 0.296 0.380
PC4 0.410 0.329 0.328 0.401 0.361 0.367 0.271 0.380
EQ 0.548 0.557 0.619 0.594 0.558 0.539 0.448 0.581
JDT 0.544 0.591 0.466 0.553 0.562 0.566 0.532 0.590
LC 0.273 0.337 0.217 0.288 0.314 0.321 0.243 0.355
ML 0.333 0.318 0.311 0.344 0.364 0.344 0.347 0.392
PDE 0.325 0.369 0.333 0.372 0.366 0.374 0.358 0.385
ant-1.7 0.606 0.620 0.431 0.532 0.613 0.617 0.583 0.701
camel-1.4 0.439 0.481 0.342 0.343 0.484 0.487 0.348 0.522
ivy-2.0 0.337 0.367 0.281 0.381 0.339 0.377 0.445 0.423
jedit-4.0 0.544 0.508 0.457 0.518 0.550 0.551 0.545 0.628
log4j-1.0 0.624 0.577 0.574 0.580 0.667 0.625 0.536 0.712
poi-2.0 0.673 0.753 0.573 0.299 0.693 0.721 0.278 0.751
tomcat 0.318 0.384 0.199 0.326 0.361 0.356 0.383 0.420
velocity-1.6 0.487 0.529 0.532 0.498 0.508 0.537 0.504 0.549
xalan-2.4 0.318 0.364 0.349 0.402 0.350 0.346 0.461 0.386
xerces-1.3 0.264 0.331 0.317 0.406 0.302 0.334 0.367 0.366
activemq-5.0.0 0.441 0.518 0.471 0.497 0.495 0.495 0.593 0.550
derby-10.5.1.1 0.482 0.553 0.506 0.434 0.501 0.502 0.182 0.596
groovy-1.6.0.beta1 0.260 0.113 0.249 0.306 0.301 0.308 0.301 0.338
hbase-0.94.0 0.269 0.303 0.271 0.513 0.303 0.322 0.406 0.337
hive-0.9.0 0.517 0.509 0.550 0.509 0.505 0.508 0.419 0.556
jruby-1.1 0.339 0.380 0.416 0.462 0.389 0.390 0.596 0.420
wicket-1.3.0.beta2 0.368 0.453 0.404 0.278 0.393 0.384 0.352 0.468

Average 0.396 0.425 0.381 0.406 0.421 0.428 0.391 0.470

Win/Tie/Lose 26/0/1 23/3/1 24/2/1 22/2/3 27/0/0 27/0/0 22/1/4 -

N/S/M/L (δ > 0) 0/0/0/26 0/0/1/22 0/2/0/24 2/5/3/14 0/0/0/27 0/0/3/24 0/0/0/22 -
N/S/M/L (δ < 0) 0/0/0/1 3/0/1/0 0/0/0/1 0/3/0/0 0/0/0/0 0/0/0/0 1/0/0/4 -

The best results for each project and “Average” are marked in bold.
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Table 7. Comparison results for AUC.

Target WPDP SC Manual
Down EAMR CLSUP sMDA DSKMDA Ours

CM1 0.590 0.642 0.688 0.601 0.620 0.655 0.624 0.687
MW1 0.579 0.679 0.729 0.656 0.638 0.682 0.609 0.731
PC1 0.651 0.634 0.761 0.705 0.672 0.735 0.657 0.763
PC3 0.642 0.672 0.726 0.702 0.733 0.762 0.700 0.782
PC4 0.801 0.635 0.706 0.757 0.721 0.750 0.632 0.776
EQ 0.626 0.630 0.680 0.764 0.722 0.689 0.644 0.743
JDT 0.778 0.761 0.780 0.789 0.803 0.806 0.761 0.821
LC 0.656 0.716 0.634 0.718 0.771 0.764 0.640 0.801
ML 0.671 0.627 0.690 0.687 0.737 0.698 0.695 0.761
PDE 0.645 0.671 0.722 0.726 0.725 0.737 0.713 0.746
ant-1.7 0.810 0.746 0.596 0.783 0.828 0.828 0.820 0.891
camel-1.4 0.689 0.689 0.580 0.653 0.746 0.748 0.664 0.768
ivy-2.0 0.694 0.678 0.648 0.790 0.736 0.765 0.795 0.821
jedit-4.0 0.726 0.630 0.623 0.744 0.740 0.744 0.739 0.802
log4j-1.0 0.679 0.618 0.568 0.809 0.769 0.739 0.751 0.804
poi-2.0 0.846 0.823 0.780 0.655 0.847 0.873 0.620 0.890
tomcat 0.692 0.706 0.482 0.786 0.778 0.770 0.789 0.837
velocity-1.6 0.725 0.713 0.822 0.683 0.753 0.792 0.649 0.797
xalan-2.4 0.596 0.613 0.645 0.740 0.640 0.635 0.788 0.668
xerces-1.3 0.632 0.701 0.812 0.731 0.701 0.760 0.646 0.792
activemq-5.0.0 0.662 0.679 0.757 0.820 0.729 0.726 0.814 0.771
derby-10.5.1.1 0.706 0.708 0.777 0.783 0.724 0.719 0.663 0.809
groovy-1.6.0.beta1 0.588 0.356 0.653 0.760 0.690 0.711 0.600 0.744
hbase-0.94.0 0.688 0.715 0.797 0.792 0.745 0.782 0.635 0.791
hive-0.9.0 0.662 0.577 0.649 0.776 0.637 0.633 0.604 0.706
jruby-1.1 0.652 0.668 0.793 0.857 0.719 0.733 0.849 0.759
wicket-1.3.0.beta2 0.639 0.695 0.689 0.798 0.683 0.687 0.743 0.723

Average 0.679 0.666 0.696 0.743 0.726 0.738 0.698 0.777

Win/Tie/Lose 26/0/1 27/0/0 20/3/4 17/7/3 27/0/0 26/1/0 23/2/2 -

N/S/M/L (δ > 0) 0/0/1/25 0/0/0/27 3/0/0/20 3/3/1/12 0/0/0/27 1/1/4/21 0/1/1/22 -
N/S/M/L (δ < 0) 0/0/0/1 0/0/0/0 0/1/0/3 4/0/2/2 0/0/0/0 0/0/0/0 0/1/0/2 -

The best results for each project and “Average” are marked in bold.

“Win/Tie/Lose” and “N/S/M/L” in Tables 6 and 7 exhibit the results of the nonpara-
metric Wilcoxon signed-rank test and the nonparametric effect size test, respectively. From
these tables, we can obtain the following observations:

• In terms of “Win/Tie/Lose”, our approach obtains significant performance improve-
ments for most projects when compared to the competing methods. This is especially
true for EAMR, which had the best performance among the baselines; our approach
wins the comparisons against the other approaches, with significant advantages in
22 out of 27 and 17 out of 27 projects, respectively, according to the F1-score and AUC.

• In terms of “N/S/M/L” (δ > 0), our approach achieves non-negligible performance
improvements for more than 20 projects when compared to the competing methods,
except for the best baseline EAMR. Even compared to EAMR, our approach could
still obtain non-negligible performance improvements for more than half of the cases
(i.e., 22 out of 27 and 16 out of 27 projects).

Answer to RQ1: Our approach shows the best overall performance among all the
competitors in terms of the F1-score and AUC. Moreover, its performance improvements
are statistically significant in general.

5.2. Results for RQ2

Figure 2 displays the prediction results of each method for the F1-score and AUC,
in which the horizontal line and diamond in a box denote the median and mean results,
respectively. This figure shows that our approach generally obtains the best median and
mean results on both indicators, whereas the degree of improvement varies, which indicates
the positive effect of each component of LDASP on defect prediction. As shown in this
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figure, the improvements in our approach compared to LDASPnoMargin, LDASPnoCondition,
and DASP are visible, but the improvements over LDASPnoLocal and LDAP are slight.

Figure 2. Comparison results of F1-score and AUC.

To further illustrate the performance difference, Table 8 provides the statistical sig-
nificance test and effect size test results of LDASP versus other competitors. Based on the
observation of Table 8, we can conclude the following:

• When compared with LDASPnoMargin, our approach wins the comparisons of both
indicators in almost all projects (i.e., 21 out of 27 and 25 out of 27 projects). In
other words, LDASPnoMargin shows significant performance degradation without the
marginal distribution alignment term. Moreover, in terms of N/S/M/L (δ > 0),
our approach obtains non-negligible performance improvements in the F1-score and
AUC on 22 out of 27 projects, respectively. This is because the marginal distribution
alignment can reduce the discrepancy between the source and target data. Therefore,
a failure to consider marginal distribution alignment may result in the insufficient
reduction in the data distribution difference between both projects, which causes the
inadaptation of the predictor to target data.

• When compared with LDASPnoCondition, our approach maintains consistent perfor-
mance improvements in general. In terms of Win/Tie/Lose, our approach wins the
comparisons in all projects on the F1-score and AUC. Furthermore, the N/S/M/L
(δ > 0) rows show that our approach obtains large performance improvements in
both indicators on almost all projects, except for the medium improvement in the
AUC on one project. Thus, removing the conditional distribution alignment term
weakens the prediction effect significantly. The possible reason is that conditional
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distribution alignment can alleviate the distribution difference in the modules from
the same category in different projects, thereby enhancing the classification ability of
predictors in target data.

• When compared with LDASPnoLocal , our approach wins the comparisons of both indi-
cators in 14 out of 27 and 19 out of 27 projects, respectively. Furthermore, regarding
N/S/M/L (δ > 0), our approach achieves the non-negligible performance improve-
ments in the F1-score and AUC in more than half of the projects. This illustrates that
although preserving the class-wise locality brings about limited improvements, it still
shows a significantly positive effect on defect predictions in general.

• When compared with DASP, our approach improves both indicators significantly in
most projects in terms of Win/Tie/Lose and N/S/M/L (δ > 0). Especially for the
AUC, our approach wins the competition against DASP and achieves non-negligible
performance improvements in all projects. Based on the above observation, we
can learn that the learned landmark weights are conducive to the improvement in
predictions by highlighting the relevant modules and mitigating the negative transfer
of noise modules.

• When compared with LDAP, our approach wins the comparisons while achieving non-
negligible performance improvements for more than half of the cases, which demon-
strates that the proposed progressive pseudo-labeling strategy effectively reduces the
introduction of unreliable pseudo-labels that may hinder the learning process.

Table 8. Comparison results against LDASP.

Test Indicator LDASPnoMargin LDASPnoCondion LDASPnoLocal DASP LDAP

Win/Tie/Lose
F1-score 22/1/4 27/0/0 14/6/7 20/6/1 19/6/2

AUC 22/2/3 27/0/0 19/5/3 27/0/0 21/6/0

N/S/M/L (δ > 0)
F1-score 0/0/0/22 0/0/0/27 3/5/3/6 4/10/6/4 4/14/3/2

AUC 0/1/0/22 0/0/1/26 4/10/2/6 0/3/8/16 7/19/0/0

Answer to RQ2: According to the comparison results for the F1-score and AUC, each
component of our approach can promote HDP performance effectively.

6. Discussion

In this section, we further discuss the performance of LDASP. Specifically, Section 6.1
explains its effectiveness. Section 6.2 investigates the impact of different percentages of
the training target data on the prediction effect. Section 6.3 analyzes the sensitivity of the
parameters, and Section 6.4 provides the threats to the validity of LDASP.

6.1. Effectiveness of LDASP

In order to illustrate the effectiveness of the proposed approach further, we visualized
the data distributions processed by LDASP. The t-SNE (t-distributed stochastic neigh-
bor embedding) [52] was employed to reduce the dimensions of the source and target
data in the metric subspace for easy display. By taking ant-1.7⇒jurby-1.1 as an example,
Figures 3 and 4 show the visualization results when the iteration time equals 1 and 5. In
Figure 3, LDASP initializes the transformation matrix A without considering landmark
weights and pseudo-labels. It can be seen that defective modules do not gather together
very well, which leads to poor separability in the metric space. After multiple iterations,
the modules of different categories have good separability, as shown in Figure 4. We can
observe that defective and non-defective modules gather in the upper and lower parts
of the coordinate system, respectively, and are easy to separate linearly. In summary,
our proposed approach can match the data distributions of the source and target projects
effectively while enhancing the classification ability of the transformed data.
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Figure 3. Distributions of source and target data processed by LDASP when the iteration number
equals 1.

Figure 4. Distributions of source and target data processed by LDASP when the iteration number
equals 5.

Similar to Table 1, we also provide Table 9 to illustrate whether LDASP could reduce
the negative impact of noise modules effectively. Given a source project and a target
project, when the WPDP method performs better than the mixed-project HDP method, we
think this is an invalid cross-project prediction combination because the source data play
the role of degrading prediction performance. Therefore, the fewer invalid cross-project
prediction combinations there are, the more effective the competing method is in dealing
with the negative impact of the noise modules. From this table, we can find that among the
competing mixed-project HDP methods, our approach has the fewest invalid cross-project
prediction combinations on both indicators. The percentages of the invalid cross-project
prediction combinations of our approach (i.e., 4.5% and 4.3%) are far below those of the
other three methods, which demonstrates that LDASP improves the ability to eliminate the
negative impact of noise modules effectively.

Table 9. Statistics for the comparison between WPDP and mixed-project HDP method.

Situation
Number of Prediction Combinations

(% of Invalid Cross-Project Prediction Combinations)

F1-Score AUC

WPDP performs better than CLSUP 114 (21.5%) 107 (20.2%)

WPDP performs better than sMDA 104 (19.6%) 85 (16.0%)

WPDP performs better than DSKMDA 228 (43.0%) 201 (37.9%)

WPDP performs better than ours 24 (4.5%) 23 (4.3%)
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6.2. Effect of Different Percentages of Training Target Data

In our experiments, the percentage of training target data is fixed at 10%, as in
Refs. [10,11]. In order to understand the performance of LDASP comprehensively, we
explore its prediction effect under different percentages of training target data in this sec-
tion. The proportion ranges from 10% to 90%, with a step size of 10%. We selected WPDP as
the baseline that trains the predictor with training target data and used it to predict the test
target data directly. Figure 5 presents the average indicator results of both methods under
different percentages. We can see that with the growing percentage, the results of WPDP
increase gradually, whereas those of LDASP remain basically stable. On the one hand, the
prediction performance of WPDP improves with the increase in the training target data.
On the other hand, the change in proportion has a limited impact on the performance of
LDASP because the progressively selected pseudo-labels have provided relatively reliable
and supervised information for it. Overall, LDASP performs better than WPDP for both
indicators under most of the percentages. When the percentage is greater than about 60%,
WPDP achieves a comparable prediction performance to LDASP. Hence, using WPDP
directly can also obtain considerable prediction results as long as the training data within
the target project are sufficient.

Figure 5. Comparison results between LDASP and WPDP under different percentages of training
target data.

6.3. Sensitivity of Parameters

In order to assess the parameter sensitivity of LDASP, we investigate the impact of
different hyperparameters, T and θ, on prediction performance. Figures 6 and 7 exhibit the
average indicator results of LDASP under different values of T and θ, respectively.

(1) T is the iteration time that affects the convergence degree of the objective function.
Normally, the more iterations there are, the easier it is for the objective function to
converge. As shown in Figure 6, the prediction performance of LDASP generally
keeps rising with the increase in T. When T is greater than 7, its indicator results tend
to be stable. Moreover, the change in prediction performance is actually slight in terms
of the difference between the indicator results of various T. Based on this, we can
believe that the objective function has been fully optimized, although the setting of
T = 5 is not optimal.

(2) θ is used to restrict the proportion of landmarks that participate in distribution adapta-
tion. LDASPθ=1 treats all modules as having the same weight and corresponds to the
optimization problem in Equation (5). As shown in Figure 7, LDASPθ=0 and LDASPθ=1
perform worse than LDASP with other θ values for both indicators. Furthermore, when
θ is greater than 0, there is a significant improvement in the performance of LDASP.
This indicates the positive impact of introducing unlabeled modules and their pseudo-
labels on improving performance. In summary, our parameter setting of θ = 0.5 is
reasonable, although it cannot help LDASP reach the best prediction performance.
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Figure 6. Results of LDASP for the F1-scores and AUC under different iteration numbers, T.

Figure 7. Results of LDASP for the F1-scores and AUC under different θ.

6.4. Threats to Validity

Construct validity relates to the evaluation methods used in this work. In order
to simulate the case where there is a small number of labeled data in the target project,
we randomly split 10% of the target modules to make the training target data, and the
remaining 90% were regarded as the test target data. This operation has been adopted from
Refs. [10,11] to evaluate the performance of HDP with mixed-project data, but the changing
percentages may lead to different prediction results. Moreover, we chose the F1-score
and AUC, which are widely applied in HDP studies, to measure the overall prediction
performance of competing methods. Other indicators (e.g., G-measure, MCC, and Popt) will
be considered in our future work to improve the evaluation from different aspects.

The potential threat to internal validity may come from the replication of baselines.
We have carefully implemented the compared method, which is not open-source, according
to the description of the original paper. However, differences between our implementation
and the original code may still exist, thus leading to biases in the prediction results.

External validity refers to the generalizability of our experimental results. In the
experiments, we chose 27 projects from four datasets to validate the effectiveness of the
proposed approach. A total of 530 one-to-one prediction combinations were constructed to
be tested. Therefore, the conclusions of this work may not be generalized to other datasets.

7. Conclusions

Combining “within” and “cross-project” data (i.e., mixed-project data) is an effective
way of improving prediction performance when there are limited historical data in the
target project. In this paper, we propose a novel approach based on landmark-based
domain adaptation and selective pseudo-labeling for HDP using mixed-project data. We
first construct the objective function that considers marginal and conditional distribution
matching and class-wise locality constraints (for projected source data) simultaneously to
alleviate the heterogeneity between both projects. In order to reduce the negative impact of
noise modules, we introduce the landmark weights to be learned for labeled source and
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unlabeled target modules. Furthermore, we also design a pseudo-label selection strategy
to progressively select the pseudo-labels with high confidence and the corresponding
modules for the learning process. Extensive comparisons are conducted for 27 projects
from four datasets, including NASA, AEEEM, PROMISE, and JIRA. Two widely used
indicators (i.e., the F1-score and AUC) are employed to evaluate the overall performance of
each method. The experimental results indicate that LDASP outperforms the compared
methods, and this verifies the effectiveness of each component of it.

In future work, we plan to collect more experimental data from open-source projects
to test our approach. Moreover, we will extend our approach to the context of effort-aware
evaluation, which considers both the prediction performance and the amount of work
required to check modules.
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