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Abstract: Multi-person pose tracking is a challenging task. It requires identifying the human poses in
each frame and matching them across time. This task still faces two main challenges. Firstly, sudden
camera zooming and drastic pose changes between adjacent frames may result in mismatched
poses between them. Secondly, the time relationships modeled by most existing methods provide
insufficient information in scenarios with long-term occlusion. In this paper, to address the first
challenge, we propagate the bounding boxes of the current frame to the previous frame for pose
estimation, and match the estimated results with the previous ones, which we call the Backward
Temporal Pose-Matching (BTPM) module. To solve the second challenge, we design an Association
Across Multiple Frames (AAMF) module that utilizes long-term temporal relationships to supplement
tracking information lost in the previous frames as a Re-identification (Re-id) technique. Specifically,
we select keyframes with a fixed step size in the videos and label other frames as general frames.
In the keyframes, we use the BTPM module and the AAMF module to perform tracking. In the
general frames, we propagate poses in the previous frame to the current frame for pose estimation
and association, which we call the Forward Temporal Pose-Matching (FTPM) module. If the pose
association fails, the current frame will be set as a keyframe, and tracking will be re-performed. In
the PoseTrack 2018 benchmark tests, our method shows significant improvements over the baseline
methods, with improvements of 2.1 and 1.1 in mean Average Precision (mAP) and Multi-Object
Tracking Accuracy (MOTA), respectively.

Keywords: multi-person pose estimation; pose tracking; temporal association; pose matching

1. Introduction

Multi-person pose tracking is a fundamental challenge in computer vision. It can be
understood as connecting the poses estimated by a pose estimator in a coherent sequence in
time and assigning a unique ID to the same person. The correct association of human pose
trajectories is of great help for human action recognition, human interaction understanding,
motion capture, animation design, etc. In addition, online multi-person pose tracking is
also applied to real-time scenarios, such as autonomous driving and virtual interaction.

Currently, most multi-person pose-tracking methods follow a two-step approach of
detection and tracking. They typically perform human detection on the current frame,
extract information about the position and keypoints of each detected human object, and
then match the human objects in the current frame with the human objects in previous
frames based on this information, thereby achieving multi-person tracking. With the
development of Convolutional Neural Networks (CNNs) [1–4] and the release of large-
scale datasets such as MPII [5], LSP [6] and COCO [7], the ability of multi-person pose
estimation (MPPE) [1,8–10] has been improved significantly. Some previous multi-person
pose-tracking methods benefit from the accuracy advantage brought by MPPE and obtain
better tracking results. However, some other multi-person pose-tracking methods [11–14]
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do not rely on the selection of MPPE methods but try to improve the accuracy through
tracking means.

With the introduction of video datasets such as PoseTrack 2017 [15] and PoseTrack
2018 [16], multi-person pose tracking receives more and more attention. Two-step methods
are still prone to losing the identity of individuals who disappear for several frames and
reappear in the current frame, especially when heavy occlusion occurs [17–19]. This is
not surprising; some of these methods associate individuals only based on the pose or
bounding box information of the previous and current frames, and then connect the results
to the identity trajectories. Reappearing individuals are always assigned with new IDs.
Some other methods attempt to compensate for this deficiency with Re-id modules, but
they still heavily rely on temporal information close to the current frame. When individuals
disappear for a relatively long period, these methods inevitably lead to the failure of
tracking these individuals.

In this paper, we propose an online top–down tracker that aims to improve the
performance of multi-person pose estimation and tracking by utilizing long temporal
relationships to supplement missing information in middle frames due to occlusion and
other factors. Our method follows the tracking by detection scheme, first locating the
human body based on the detector, then estimating the keypoints of the human body, and
finally tracking these keypoints by assigning a unique ID. Differently, in addition to the
pose information from the pose estimator, we incorporate the pose information propagated
over time.

Given a video sequence, we divide the video frames into general frames and keyframes.
In keyframes, we back-propagate the bounding box of the current frame to the previous
frame and perform pose estimation to obtain a new pose, which is then matched with the
pose results of the previous frame. We call it the BTPM module. This method avoids the
problem of two poses not matching due to large movements of the same person between the
previous and current frames. For some people in the video, they may reappear only after
many frames due to the camera movement or person occlusion; we add an AAMF module
that can trace back the tracking results of the previous frames to achieve personal Re-id.
In general frames, we estimate the pose of the current frame based on the bounding box
propagated from the previous frame and match it with the pose of the previous frame. We
call it the FTPM module. This strategy does not consider detection clues, thereby reducing
dependence on the detection results. When there is a pose that cannot be matched in the
general frame, we set that frame as a keyframe and use the detection results to perform pose
estimation and tracking again. We combine the two different tracking methods on general
frames and keyframes, as well as the Re-id module, to achieve multi-person pose tracking.
Compared with some existing methods, better mAP and MOTA results are obtained with
our method. A qualitative example is shown in Figure 1. The top row is the tracking
result from the baseline method; the bottom row is the tracking result from our method.
And t represents the number of frames. It can be observed that our method, utilizing the
Re-id module based on temporal relationships, accurately assigns IDs to human objects
experiencing long-term occlusion and recurrence.

Our contributions are three-fold:

• We propose a Bidirectional Temporal Pose-Matching module as a new online pose-
tracking framework, applicable to top–down human pose estimation methods. The
novelty of this module lies in the reverse propagation of information. Unlike tradi-
tional forward propagation of temporal information, we introduce backward propaga-
tion of current frame pose information. This places the comparison of pose similarity
in the previous frame, overcoming the challenge of drastic pose changes between
adjacent frames.

• We propose a novel identity Re-id method called the AAMF module. Differing from
the previous difficulty in reidentifying poses occluded for an extended period by
relying solely on matching poses between consecutive frames, this module utilizes the
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temporal relationships provided by frames with a larger span to supplement the lost
pose information. This is the novelty of the AAMF Module.

• We demonstrate the effectiveness of our approach through extensive experiments. Our
approach outperforms the baseline method by 2.1 mAP and 1.1 MOTA on the widely
used PoseTrack 2018 [16] benchmark dataset.

(a) t = 48 (b) t = 54 (c) t = 61

Figure 1. A qualitative example.

2. Related Work
2.1. Multi-Person Pose Estimation

Recently, due to significant advancements in deep learning methods [20,21], there has
been substantial improvement in the results of MPPE methods. MPPE is more difficult and
challenging because it needs to figure out the number of people and their positions, and
how to group keypoints for different people [22]. There are two main types of methods for
MPPE based on their operation mode: top–down and bottom–up.

The top–down methods [23–29] first use a human detector [30–32] to obtain the
candidate bounding boxes of each person from an image, and then apply a human pose
estimator to obtain the keypoints of the human body. The bottom–up methods [33–38] first
detect the human joints in the image, and then assemble the body joints into the human
pose. Bottom–up methods can detect joints in complex scenes (person occlusion, camera
high-speed motion, motion blur, etc.) and classify them into different human bodies, giving
them an advantage in speed. However, their corresponding pose estimation performance
is not ideal compared to top–down methods. On the contrary, top–down methods divide
the process into two tasks: detecting bounding boxes in the image, and then estimating the
pose based on reliable detection results to obtain more accurate results. Top–down methods
do not require any joint grouping and provide additional bounding box information for
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tracking, which bottom–up methods do not have. Therefore, we choose the top–down pose
detection method and use our tracking method to complete pose tracking.

2.2. Multi-Person Pose Tracking

Expanding MPPE to videos raises the problem of multi-person pose tracking, which
mainly addresses the issues of per-frame pose estimation and pose association between frames.

Bottom–up methods construct a spatiotemporal graph among detected keypoints
without relying on bounding boxes. For example, Raaj et al. [18] extend the Part Affinity
Field (PAF) [39] design for single image pose estimation to SpatioTemporal Affinity Fields
(STAFs) in videos. Jin et al. [40] propose Spatial–Temporal Embed (ST-Embed) to learn the
Spatial–Temporal Embedding of joints based on the idea of Associative Embedding [41].

Top–down methods utilize temporal context information to achieve identity associ-
ation between poses or bounding boxes. The simple baseline method [17] first performs
human pose estimation on single frames, and then matches them by calculating the similar-
ity of poses using optical flow. Detect-and-Track (DAT) [42] extends Mask-RCNN [43] to
3D to form the same person’s pipeline, and then associates the pipeline according to the
position of the bounding boxes to realize tracking. KeyTrack [14] merges keypoint refine-
ment techniques into pose estimation and evaluates similarity from different perspectives
to achieve temporal pose association.

Additionally, pose tracking can be categorized into two working modes: online and
offline. Online pose tracking refers to the real-time processing and tracking of continuous
video streams or live inputs. Offline pose tracking involves the subsequent processing and
tracking of recorded videos or image sequences, without the need to consider real-time
constraints during the processing. Therefore, compared to offline pose tracking, online
pose tracking imposes higher demands on algorithms and models.

2.3. Association of Identities

Many top–down pose-tracking methods often rely on specific pose estimators. This
dependence can have an impact on the robustness and generalization of the model. In
contrast, there are also methods that do not rely on the selection of the pose estimator
but attempt to recover the accuracy loss caused by detection and pose estimation through
different tracking methods. Alphapose [11] uses the Pose-Guided Attention (PGA) mech-
anism to enhance human identity features and integrates human proposal information
based on bounding boxes and poses to achieve identity matching. Buizza et al. [12] use
data assimilation to predict the results of the next frame and realize pose tracking. Al-
gabri et al. [44] combine multiple features into a single joint feature and utilize an online
enhancement method to continuously update features in each frame for the identification
of target individuals. We utilize Bidirectional Temporal Pose Matching and Re-id methods
to attain improved tracking performance.

3. Method
3.1. Overview of Our Approach

Our overall framework is shown in Figure 2. The upper part displays the tracking
operations implemented on keyframes, and the lower part shows the tracking operations
implemented on general frames. In the keyframes, the pose of the current frame and the
pose of the previous frame are input into the BTPM module, which outputs a maximum
matching value. If the matching value is less than a certain threshold, the pose of the
current frame is compared with poses that are earlier in the timing in the AAMF module to
output the final result. In the general frames, the pose results of the current and previous
frames are input into the FTPM module. If there is a match, the tracking result is output.
Otherwise, the frame is converted into a keyframe, and tracking is re-performed.
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Figure 2. Overview of our method.

Specifically, for a video, we first filter out keyframes based on a fixed step size, and then
set the other frames as general frames. If the t-th frame Ft is a keyframe, it will be input into
the pose estimator to obtain the bounding boxes Bt =

{
Bi

t
}m

i=1 and the poses Pt =
{

Pi
t
}m

i=1.
Here, m represents the number of poses in Ft. These results are obtained by locating a
bounding box around each person through a human detector and then performing pose
estimation within each bounding box. Our goal is to assign a temporally continuous ID
to each pose. To find optimal matching for the i-th person, we input its bounding box Bi

t
and its pose Pi

t to the BTPM module together with the bounding boxes Bt−1 and poses
Pt−1 from Ft−1. BTPM outputs a maximum matching score. If the score is greater than
the threshold, it indicates that the corresponding previous pose Pj

t−1 is the best match for

Pi
t , and therefore the corresponding id of Pj

t−1 is assigned to Pi
t . Conversely, it suggests

that the target may be lost due to occlusion or large-scale movement, and needs to be

retrieved from a few frames further back. To this end, we input the pose Pi
t and

{
Pt− f

}n

f=2
to the AAMF module. In practice, in order to extract more balanced temporal information,
we set f to several evenly spaced numbers. The AAMF module first forms pose pairs by

pairing Pi
t with each pose in

{
Pt− f

}n

f=2
. Subsequently, it calculates the distance between

the center points of each pose pair and outputs the minimum value. If this value is less
than a threshold, it means that the corresponding pose Pj

t− f from Ft− f is the best match for

Pi
t , and the id of Pj

t− f is assigned to Pi
t . Otherwise, the AAMF module inputs all pose pairs

into the Siamese graph convolutional network (SGCN) [13,45] to obtain the pose similarity
difference values and outputs the minimum value. Similar to the center point matching, if
this value is smaller than a certain threshold, it signifies that Pi

t has obtained the optimal
match. Otherwise, it indicates that the pose may be a new pose in the current frame, and a
new id is assigned to it.

If the current frame Ft is a general frame, it will be fed into the FTPM module together
with the tracked results Bt−1 and Pt−1 of the previous frame Ft−1. The FTPM module
compares the pose estimation results between the current frame and the previous frame,
and outputs the matching value between the poses. If this value is greater than a threshold,
the id of the corresponding pose Pj

t−1 is assigned to the current pose. Otherwise, the target
tracking is lost in the general frame, and Ft is set as a keyframe, and the tracking is restarted.
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3.2. Bidirectional Temporal Pose Matching

Our overall framework is shown in Figure 3. We design two distinct tracking methods
for different frames. Specifically, for general frames, we want the tracking speed to be fast,
so we use the forward temporal contrast of poses between adjacent frames as a tracking
method, referred to as the FTPM module. In the FTPM module, we propagate the bounding
box of the previous frame to the current frame and estimate the pose of the current frame.
Then, we combine the new estimated pose with the pose of the previous frame to form a
pose pair. The OKS result obtained from the calculation of the pose is used as the matching
criteria. In contrast, for keyframes, we pay more attention to tracking accuracy, and at
the same time, we need to consider some potential difficult issues between two frames,
such as the large motion amplitude. In such a case, where the similarity between poses
is low, simple pose comparison between the two frames may lead to tracking failure. To
solve this problem, we propose a Backward Temporal Pose-Matching method, namely the
BTPM module. In the BTPM module, we propagate the bounding box of the current frame
to the previous frame and estimate the pose of the previous frame. Then, we combine
the new estimated pose with the original poses of the previous frame to form pose pairs.
Finally, in the pose-matching stage, the BTPM module relies on spatial consistency. The
BTPM module utilizes the IoU and OKS results obtained from the calculation of each
pair’s pose as the matching criteria. Since in most cases, the pose position changes of the
same person from the current and previous frames are not very large, when the optimal
Intersection over Union (IoU) of two bounding boxes and the optimal Object Keypoint
Similarity (OKS) [7,46] between two poses from the current frame and the previous frame
exceed certain thresholds, we consider them to belong to the same person. Below is a
detailed description of two modules proposed for different frames.

Figure 3. BTPM and FTPM.

3.2.1. BTPM Module

In the BTPM module, we first propagate the i-th detected box Bi
t in the current frame

Ft backward to the previous frame Ft−1 to obtain a bounding box B
′i
t−1. Then, we perform

pose estimation in B
′i
t−1 and obtain the pose P

′i
t−1. The combination of P

′i
t−1 and each pose

in Pt−1 forms the pose pairs. For each pose pair
(

P
′i
t−1, Pj

t−1

)
, j ∈ {1, 2, . . . , |Pt−1|}, we

compute their IoU value to remove pose pairs that are far apart in space. And then, we
compare the remaining pose pairs based on their OKS to obtain a set of matching scores
M = {Mk}K

k=1, where 1 ≤ K ≤ |Pt−1|. We select the maximum value m∗ = max(M) from
this set of scores as the optimal matching score. If the maximum value m∗ is greater than
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a threshold, we assign the tracking id∗ corresponding to the maximum value to pose Pi
t .

Otherwise, we execute the AAMF module. The calculation formula for OKS is as follows:

OKS =
∑ie

−
d2

i
2s2k2

i µ(vi > 0)
∑iµ(vi > 0)

, (1)

where di represents the Euclidean distance between the i-th keypoints, ki is a constant
indicating the influence of the keypoint on the overall score, and vi represents the visibility
of the keypoint. In addition, µ is a Dirac delta function, whose definition is as follows:

µ =

{
1, if vi > 0,
0, else ,

(2)

and s denotes the average of the bounding box areas of the two compared poses.

3.2.2. FTPM Module

In the general frame, the FTPM module determines the Region of Interest (RoI) [47]
based on the j-th pose Pj

t−1 estimated in the previous frame Ft−1. Based on the constraints

of the pose on the bounding box, we infer a bounding box B
′ j
t−1 for this RoI and expand

it by 20%. Compared to directly using the box detected in the current frame Ft or the
previous frame Ft−1, our method increases the information transmitted over time and

minimizes losses caused by inaccurate detection. Then, we estimate the pose P
′ j
t based on

the coordinate position of B
′ j
t−1 in the current frame. If the similarity s between P

′ j
t and Pj

t−1
exceeds the threshold, the tracking is considered successful, and the id corresponding to
Pj

t−1 from the previous frame is assigned to the pose Pj
t in the current frame. Conversely, if

the similarity is less than or equal to the threshold, the tracking is considered failed.
Possible reasons for identity loss are as follows:

• Pi
t and Pj

t−1 belong to the same person, but due to the large motion magnitude or
sudden heavy occlusion during the short time period between the two frames, the
difference between the two poses is too large.

• Due to the camera movement or sudden image zooming, the position offset of the
same target in the two frames is too large to match the poses.

• The target person disappears in the current frame.

When a target-tracking loss occurs in the current frame, we set the current frame as a
keyframe and reperform tracking. We combine BTPM modules and FTPM modules across
different frames for pose tracking. This way, we can minimize the time spent on tracking
while reducing the failure rate of target tracking and improving the tracking performance
by transforming general frames into keyframes.

3.3. Association Across Multiple Frames

Although the BTPM module can solve the problem of mismatching two poses with
a large difference in motion amplitude for the same person in the previous and current
frames, it does not work when a person disappears, due to occlusion or camera movement,
for a relatively long period and reappears in the current frame. As the BTPM module can
only associate identities based on the temporal relationship between two adjacent frames,
we add a Re-id module behind the BTPM module, called AAMF. This module not only
uses the temporal relationship closer to the current frame to enhance the BTPM module but
also exploits the temporal relationship further away from the current frame to compensate
for the lost tracking of the BTPM module. Our AAMF module follows the overall flow as
shown in Figure 4. The upper part is the center point matching module, and the lower part
is the pose feature matching module. The distances between the center points of the current
pose and each pose of the previous few frames are used as the criteria to assign identities.
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If the best-matching result is still larger than the threshold, pose feature matching will
be initiated. The feature matching module first inputs the current pose and the previous
few frames’ poses into the SGCN module to output the feature vectors of the poses. Then,
the difference between the feature vectors is calculated, and the result with the smallest
difference is selected as the matching result.

Figure 4. The AAMF module.

In the first part, to find a matching pose for the i-th pose Pi
t , we compute the center

point for Pi
t from the t-th frame and poses

{
Pt− f

}n

f=2
from the previous frames based on

their corresponding keypoint coordinates. The method for calculating the center point is
to take the average of the keypoint positions with scores greater than a certain confidence

threshold. After obtaining the center points
{

Ct− f

}n

f=2
of the previous frames and the

center point Ci
t of Pi

t , we use a matrix D to record the distance between them. Here, Db
a

represents the distance between the center point Cb
a of Pb

a and the center point Ci
t. The

number of poses in each frame is not the same, so we take the maximum number of poses
as the number of columns in the matrix D and fill the missing positions with infinite values.
Then, we select the pose Pb∗

a∗ corresponding to the smallest value in the matrix that is less
than a certain threshold as the pose that best matches the current pose, and assign the id∗

of Pb∗
a∗ to the current pose. Formally,

Db
a =

∥∥∥Cb
a − Ci

t

∥∥∥
2

, (3)

(a∗, b∗) = argmin
{

Db
a

}
. (4)

While using distance comparison can handle scenarios where individuals suddenly
disappear and reappear, it is still challenging to address the problem of severe position
changes in images caused by camera movement and image zooming. To tackle this issue,
we introduce a second part of the Re-id module based on pose features. The second part of
the module supplements the Re-id of the first part. In addition, even if the human pose
changes due to the camera movement and image zooming, the variation in their pose is
not significant over a short period of a few frames, and the spatial consistency of the pose
remains as reliable information. When the minimum distance obtained by the center point

module is still greater than the threshold, we input the pose Pi
t and poses

{
Pt− f

}n

f=2
from

the previous frames into the SGCN module. Given that the poses change little over a short
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period of time, we choose a relatively small value for n to select the previous frames for
comparison so that they are closer to the current frame.

The SGCN module outputs 128-d feature vectors Vi
t and V j

t− f for the corresponding
poses. The feature vectors intrinsically encode the spatial relationships between human
joints. Subsequently, similar to the center point module, we calculate the difference between
the features of Pi

t and the poses of the previous frames, and record the differences in a
matrix Ds. We select the pose Pb∗

a∗ corresponding to the minimum value in matrix Ds that is
smaller than a certain threshold as the pose that best matches the current pose and assign
the id∗ of Pb∗

a∗ to Pi
t . a∗ and b∗ can be obtained as follows:

Dsb
a =

∥∥∥Vb
a − Vi

t

∥∥∥
2

, (5)

(a∗, b∗) = argmin
{

Dsb
a

}
. (6)

4. Experiments
4.1. Datasets

We mainly conduct experiments on the Posetrack 2017 [15] and Posetrack 2018 [16]
datasets, which are two large-scale datasets for human pose estimation and tracking. They
include challenging video sequences with various human actions in real-world scenarios,
such as collisions, occlusion, and background clutter. The Posetrack 2017 dataset contains
250 video sequences for training and 50 video sequences for validation. Posetrack 2018
adds more videos, with 593 video sequences for training and 74 video sequences for
validation. In each video sequence, each pose is annotated with 15 keypoints, each of which
is associated with a unique ID for that pose. The training videos have dense annotations for
the middle 30 frames of each video, while the validation videos have annotations for every
4th frame in addition to the middle frames. We use the combined training set of PoseTrack
2017 and COCO [7] for training, and evaluate on the validation set of Posetrack 2018.

4.2. Evaluation Metrics

We evaluate our method in terms of both human pose estimation and tracking. For
human pose estimation, we use mAP [46,48] as the evaluation metric, while for tracking,
we use MOTA [16,49]. MOTA considers three issues: false negatives (FNs), false positives
(FPs), and the identity switch (IDSW) rate. The following is the formula for calculating
MOTA for each body joint i, where t represents the current time step and GT stands for the
Ground Truth:

MOTAi = 1 − ∑t(FNi
t + FPi

t + IDSWi
t )

∑tGTi
t

. (7)

We independently calculate these two evaluation metrics for each body joint, and
then obtain the final results by averaging the results for each joint. Since the evaluation of
MOTA requires the filtering of joints with a certain threshold, the performance of human
pose tracking is evaluated based on the filtered joints. We evaluate the performance of
human pose estimation using the evaluation results of all joints and filtered joints. These
performance results provide both the overall results of the human pose estimation and
the balanced results between the pose estimation and pose tracking. Additionally, since
the tracking process only affects the IDSW metric in MOTA, where smaller IDSW values
indicate fewer identity switches during tracking and better MOTA results, we also evaluate
the performance of our method and other methods in terms of IDSW, calculated as follows:

IDSWi =
∑t IDSWi

t

∑tGTi
t

. (8)



Electronics 2024, 13, 442 10 of 18

4.3. Implementation Details

We train the pose estimation network with a batch size of 24 for 260 epochs on the
merged dataset of PoseTrack 2017 and COCO [7]. The initial learning rate is set to 0.0005,
and the learning rate is halved every 60 epochs. We then fine-tune the network for 40 epochs
on PoseTrack 2017 to increase the accuracy of the head and neck keypoint regression, which
is different from the COCO dataset. We use FPN [50] as the human bounding box detector
and use MSRA152 [17] as the pose estimator.

4.4. Comparison with Other Methods of Identity Association
4.4.1. Quantitative Results

In this section, we compare our method with other methods that associate the pose
estimation results to achieve real-time tracking. The comparison between our method
and other methods in terms of human pose estimation and pose tracking on the Posetrack
2018 validation set is shown in Tables 1 and 2. Table 3 illustrates the comparison between
our method and other approaches in terms of IDSW. A smaller IDSW value indicates
fewer identity switches during the tracking process. Note that APT represents the result
of the human pose estimation (with filtering), where the threshold is used for filtering
low-confidence joints for pose tracking. In Table 1, compared to our baseline method
LightTrack [13], our method improves the mAP of all keypoints by 1.8, and APT by 2.1.
This is because our module reduces the situation where the pose estimation results are not
ideal. In terms of the MOTA evaluation metric shown in Table 2, our method has a similar
inference time to the baseline method but achieves a higher MOTA by 1.1, and is better than
most other tracking methods. Furthermore, Alphapose [11] exhibits a shorter inference
time, possibly attributed to the utilization of lower-resolution images, thereby reducing
computational demands. Compared to the other methods in the table, our approach
exhibits slight differences in mAP and MOTA. However, our method outperforms them in
terms of both IDSW and APT , indicating its ability to better maintain individual identities
during the tracking process. There are also some methods, such as [51], that achieve good
results on the Posetrack 2018 dataset. However, they have some enhancement methods
in the estimation module, and our comparison is mainly focused on the performance
improvement brought by the tracking methods, so our method is not directly compared
with them.

Table 1. Comparison of mAP results on the Posetrack 2018 validation set.

mAP APT

Method Wri. Ank. Total Total

STAF [18] 64.7 62.0 - 70.4
Alphapose-UNI [11] - - - 74.0

Keytrack [14] 79.2 76.5 81.6 74.3
MDPN [52] 74.1 69.9 75.0 71.7

Baseline [13] 73.3 70.9 77.2 72.4
ours 75.3 71.7 79.0 74.5

Table 2. Comparison of MOTA results on the Posetrack 2018 validation set.

Method Wri. Ank. Total fps

STAF [18] - - 60.9 3
Alphapose-UNI [11] - - 64.4 10.9

Keytrack [14] - - 66.6 1.0
MDPN [52] 49.0 45.1 50.6 -

Baseline [13] - - 64.6 0.7
Ours 59.2 58.3 65.7 0.5
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Table 3. Comparison of IDSW results on the Posetrack 2018 validation set.

Method Wri. Ank. Total

Keytrack [14] 0.8 0.8 0.8
Optical Flow [17] 1.1 1.1 1.1

Ours 0.6 0.7 0.7

4.4.2. Qualitative Results

Our qualitative results on the PoseTrack 2018 dataset are visualized in Figures 5 and 6.
Figure 5 shows the comparison between our method and LightTrack [13] on the pose
estimation results, where (a) represents the pose estimation result of the t − 1 frame, (b) is
the pose estimation result of LightTrack in the t frame, and (c) is the result of our method
in the t frame. From Figure 5, it can be observed that in certain occluded scenarios, our
method achieves improved pose estimation results through the use of tracking. This is
because in general frames, the bounding box is propagated from the previous frame, and
when encountering occluded scenes, it is prone to suboptimal pose estimation results,
making it difficult to match with the pose from the previous frame. After transitioning to
keyframes, utilizing the detected bounding boxes allows for better pose results. Figure 6
shows the visualization of our tracking results. The bounding boxes, poses, and identity
IDs are color-coded according to the predicted trajectory IDs by our model. Bounding
boxes of different depths of color represent different identities. From the figures, we can see
that our method can perform well in the task of multi-person pose estimation and tracking.

(a) t − 1 frame (b) LightTrack in t frame (c) our method in t frame

Figure 5. The results of comparing our method with LightTrack.

4.5. Ablation Study
4.5.1. Performance of Different Pose Estimators

In this section, we experiment with the adaptability of our tracking method to different
pose estimators. Except for MSRA152 [17], we also try training CPN101 [53] and HRNet [23]
as human pose estimators. CPN101 adopts the same training method as MSRA152. When
training the HRNet model, we first train the HRNet model with 300 epochs on the COCO
dataset, then we fine-tune it for 40 epochs on the PoseTrack 2018 training set with the
learning rate reduced to 1 × 10−5 and 1 × 10−6 at the 15th and 30th epochs, respectively.
Although CPN101 and HRNet also perform well as a human pose estimator, their adaptabil-
ity is not as good as MSRA152 for our tracking method, so our experimental comparisons
are conducted using MSRA152 as the pose estimator. Our estimator experimental compari-
son results are shown in Table 4.
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Figure 6. The visualizations of our method’s results.

Table 4. Ablation study of different pose estimators in pose estimation.

Estimation (APT ) Tracking (MOTA)

Pose
Estimator Wri. Ank. Total Wri. Ank. Total

CPN101 67.6 65.3 71.8 56.7 53.3 62.2
HRNet 72.4 66.1 74.7 59.2 54.7 64.4

MSRA152 68.9 67.3 74.5 59.2 58.3 65.7

4.5.2. Performance of Different Modules

Here, we evaluate different components of our method and quantify the impact
of different components on the overall performance through ablation experiments on
the PoseTrack 2018 validation set. The results in Table 5 show that the BTPM module
significantly improves the MOTA results. This improvement is attributed to the capability
of BTPM to increase pose matching compared to Spatial Consistency (SC) and overcome
the issue of large pose variations for the same individual between consecutive frames.
Furthermore, the complete model with the AAMF module (CPM + SGCN) can further
improve the performance of MOTA, with a total improvement of 1.4 in MOTA. Among them,
CPM denotes the Center Point Matching module. The improvement is more significant for
the CPM method, which increases by 1.1. This is because the center point matching on the
long temporal sequence overcomes the problem of identity loss caused by occlusion. SC is
compared using IoU in our experiment.

Table 5. Ablation study on the MOTA results of different modules in the PoseTrack 2018
validation set.

Method Wri. Ank. Total

SC 23.2 22.5 26.8
SC + BTPM 58.2 56.6 64.3

SC + BTPM + CPM 59.2 57.7 65.4
SC + BTPM + CPM + SGCN 59.2 58.3 65.7

4.5.3. Performance of Different Step Sizes between Keyframes

In this section, we evaluate the impact of the step size between keyframes on the
results. In our experiments, we first select keyframes based on a fixed step size, and then
set the other frames as general frames. We set the step size between two keyframes as a
variable x and conduct experiments with different x values. The experimental results on
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APT and MOTA evaluation metrics are shown in Figures 7 and 8. From Figure 7, we can see
that the mAP with filtering has a slight improvement when the step size increases from 2 to
3. We speculate that this is because there are more general frames, and the FTPM module
based on the generated bounding boxes from keypoints can perform better. As the step size
continues to increase, there are more general frames, and the positional offset of the same
pose between two adjacent frames will gradually increase. This will lead to a decrease
in the accuracy of the generated bounding boxes from the previous frame’s pose, which
ultimately leads to a decrease in APT . From the results of the keypoint tracking in Figure 8,
as the step size of the frame increases, the result of MOTA gradually decreases; therefore,
frequent keyframes can help improve the performance of MOTA. Finally, to better evaluate
our tracking model, we prefer to achieve better tracking results and set the value of x to 2.

Figure 7. Results of different step sizes x in joint detection (with filtering).

Figure 8. Results of different step sizes x in joint tracking.

4.5.4. The Setting of Threshold and Coefficient Values

In this chapter, we evaluate the setting of different thresholds and coefficients in
various modules. Figure 9 illustrates the threshold settings for BTPM module, FTPM
module, and center point matching in the AAMF module. Here, the blue dashed line
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represents the results of using different thresholds for pose matching with OKS in the
FTPM module. The red and green dashed line respectively depict the results of using
different thresholds for OKS and IoU in the BTPM module. The yellow dashed line
represents the parameter setting for center point matching in the AAMF module.

Figure 9. Results of different threshold or coefficient values. ∗ represents OKS in FTPM.

From Figure 9, we can observe that in the BTPM module, the accuracy of the tracking
gradually increases with the increase in the threshold when using IoU for pose matching
and eventually stabilizes. This is because when the threshold is too low, obtaining a
matching result solely based on IoU is possible without the involvement of other modules,
resulting in relatively low accuracy. As there is an optional range for the highest value, in
our experiments, we chose the median, setting it to 0.8. Contrary to the IoU line, when
the threshold for OKS in the BTPM module is high, the tracking accuracy decreases. This
is because the same person in consecutive frames may have a considerable displacement,
even if the optimal matching value is not necessarily greater than the threshold, resulting
in a missed optimal match and a decrease in accuracy. Therefore, we set the threshold
for OKS in the BTPM module to 0.4. From the blue line chart, we can observe that in the
FTPM module, when the OKS threshold is low, the tracking accuracy is correspondingly
low. With the increase in the threshold, the accuracy also increases, but it becomes constant
after 0.3. This is because when the threshold is low, even some incorrect matching results
are considered successful by the model, increasing the number of incorrect matches and
consequently reducing the tracking accuracy. Therefore, in our experiments, the OKS
threshold in the FTPM module is set to 0.3. In the first step of the AAMF module, the
threshold setting of the center point-matching module follows the following formula:

τ = λ × min (w, h). (9)

Here , τ represents the threshold, w and h denote the width and height of the bounding
box of a specific pose to be matched, and λ represents the coefficient. Its value is related
to the model’s results as indicated by the yellow curve in Figure 9. From the graph, it
can be observed that as the coefficient λ increases, the tracking accuracy also increases,
reaching a maximum at 0.75. Similar to OKS, when the coefficient is small, there might be
erroneous matching results, and when it is large, there might be missed correct matching
results. Therefore, in our experiments, we set the coefficient λ to 0.75.

In the AAMF module, different values of the number of frames n to be traced back
are used for different calculation modules. For the center point module, when n is too
small, it may not cover the frame before the person disappears, while when n is too
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large, the temporal information becomes redundant. Therefore, we set n according to
the following formula:

n = max(2 + γd), (10)

where γ = [0, 1, 2, 3], and the values of d are illustrated in Figure 10. The red line represents
the relationship between the tracking results and the values of d in the center point module,
while the blue line represents the pose feature module. Figure 10 indicates that in the center
point module, as the value of d increases, the MOTA value also increases, benefiting from
the inclusion of long-term temporal information for tracking. However, as d continues to
increase, the MOTA value decreases. This is because, at larger distances, poses may not
provide reliable temporal information. On the contrary, it might lead to some erroneous
matches. Therefore, we set d to 3, with the corresponding n being 11. As shown in the blue
line chart, in the pose feature module, as the number of frames increases, the magnitude of
the pose variations also increases, leading to a decrease in the performance of pose feature
matching. Consequently, the MOTA value decreases with the increase in d. Therefore, we
set d to 1, with the corresponding n being 5. As shown by the yellow curve, we conducted
a comparative experiment on the number of γ, and the results indicate that as γ increases,
MOTA gradually increases and reaches its maximum when γ is greater than or equal to 4,
remaining constant thereafter. This is because when γ is too small, the center point module
cannot provide sufficient long-term information. Therefore, in our experiments, we set the
quantity of γ to 4.

Figure 10. Results of different values for d, the quantity of γ. ∗ represents d in the pose feature
module.

5. Conclusions

In this paper, we propose a new top–down approach for human pose tracking in videos.
In our method, through propagating pose information bidirectionally and matching, we
conduct temporal association. Additionally, we utilize a Re-id module that takes advantage
of the long temporal relationship to supplement missing tracking information in previous
frames due to occlusions, thus improving the results of multi-person pose estimation
and tracking. Our method has good generalizability because it does not depend on the
choice of the pose estimator. We outperform most tracking methods in terms of keypoint
estimation and tracking. Finally, we demonstrate the accuracy of our method by presenting
the visualization results on the PoseTrack 2018 dataset.

Our method still exhibits certain limitations in terms of real-time performance. Due
to certain computational complexities or design flaws in the model, our approach may
demonstrate a relatively slow response when dealing with real-time data streams, rendering
the model inadequate for applications with stringent real-time requirements. Therefore,
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in future work, we aim to further optimize our tracking model, reduce computational
complexities, and design a pose estimator more suitable for the current tracking task to
enhance both the real-time performance and tracking accuracy.
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