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Abstract: The coastal environment represents a resource from both a natural and economic point
of view, but it is subject to continuous transformations due to climate change, human activities,
and natural risks. Remote sensing techniques have enormous potential in monitoring coastal areas.
However, one of the main tasks is accurately identifying the boundary between waterbodies such
as oceans, seas, lakes or rivers, and the land surface. The aim of this research is to evaluate the
accuracy of coastline extraction using different datasets. The images used come from UAV-RGB and
the Landsat-9 and Sentinel-2 satellites. The method applied for extracting the coast feature involves a
first phase of application of the Normalized Difference Water Index (NDWI), only for satellite data,
and consequent application of the maximum likelihood classification, with automatic vectorization.
To carry out a direct comparison with the extracted data, a coastline obtained through a field survey
using a Global Navigation Satellite System (GNSS) device was used. The results are very satisfactory
as they meet the minimum requirements specified by the International Hydrographic Organization
(IHO) S-44. Both the UAV and the Sentinel-2 reach the maximum order, called the Exclusive order
(Total Horizontal Uncertainty (THU) of 5 m with a confidence level of 95%), while the Landsat-9 falls
into the Special order (THU of 10 m with a confidence level of 95%).

Keywords: coastline extraction; UAV; Landsat-9; Sentinel-2; GNSS

1. Introduction

It is estimated that the total extension of the world coastline is approximately
504,000 km [1] and its malleability affects a large part of the human population and also
the marine and terrestrial flora and fauna. Therefore, the detection and monitoring of
this important resource has both an economic and social impact, also due to the effects of
ongoing climate change.

The coastline is often defined as the physical transition between land and water [2,3].
Due to its very dynamic nature, it can be defined in several ways. The choice of the position
of the coastline must be given on adequate spatial and temporal scales.

The most used definitions of coastline based on the time scale are instantaneous
coastline, short-term coastline, and long-term coastline [4]. The instantaneous coastline
is defined as the position of the land/sea separation line in an instant of time [5]. The
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short-term coastline requires multiple locations of the line under consideration at the rate
of several samples at a time, for a limited period [6]. Finally, the long-term coastline may
require averaging the position of the line over a 10/20-year period of time [7]. Another
possible approach would be to take the instantaneous coastline and correct it for tidal
effects and seawater conditions [8]. However, most coastline survey methods focus on
instantaneous coastline detection, which forms the basis for all coastlines analyses.

In recent years, several approaches were used to monitor coastline change due to
uncontrolled erosion or accretion [9–11]. The methods to determine the position of the
coastline can be divided into field survey methods or remote sensing data [12].

Field survey approaches are among the most widespread and involve the use of tradi-
tional topographic surveys, such as the acquisition of points with the Global Navigation
Satellite System (GNSS) [13]. It allows us to acquire high-precision measurements of points
along the line of interest. It is a low-cost approach, thanks also to modern technologies, and
is independent of cloud cover and weather conditions, with rapid data processing methods.
In addition, the accuracy of this survey also depends on the type of method used. Various
GNSS methods applicable to coastline extraction exist and the most commonly used are
relative kinematic (RK), real-time kinematic (RTK), and precise point positioning (PPP)
methods [14]. However, when the area to be investigated is large, it requires a very long
acquisition time so that there are an adequate number of points that allow the coastline
to be generated. In any case, topographic surveys from the point of view of positional
accuracy are currently the best; an example is the study conducted for coastal monitoring
by Goncalves and Awange [14]. Using GNSS receivers applying different methods, they
compared the three most commonly used approaches for GNSS-based shoreline monitoring
(RK, RTK and PPP). The area investigated was the integrated coastal zone management of
the state of Pernambuco in Brazil, and the findings highlight the issues and considerations
in choosing a cost-effective GNSS method for mapping coastal changes. The results achieve
a high accuracy for the best of the three (RTK) with a planimetric accuracy of approximately
0.01 m, while for the worst (PPP), it is 0.22 m.

As for remote sensing data for coastline extraction, it includes a large portion of
methods that can be further divided into aerophotogrammetric/UAV surveys, radar or
optical satellite imagery, and airborne Lidar. However, these approaches are increasingly
widespread as they allow the coastline of a very large area to be determined in a short time.
While on the one hand, methods that use remote sensing data allow the limitations of the
classic topographic approach to be overcome, on the other hand, some of them may be
expensive or may not achieve the precision of the previous ones.

In the literature we have several cases that analyze the results of methods with remote
sensing data, and the accuracies are different. In the work conducted by Zanutta et al. [15],
UAV photogrammetric techniques and GNSS techniques to obtain coastal changes due
to natural and anthropogenic influences are compared. Multitemporal UAV surveys, of
the coastal area of the Upper Adriatic, in Ravenna (Italy), were performed using UAVs
supported by Ground Control Points (GCP) and Post Processed Kinematic (PPK). The
results produced by the difference between the coordinates of the GCPs and those measured
on the digital photogrammetric terrain models (DTMs) produced an RMSE of 0.10 m at
worst and 0.02 m at best. These values are comparable with the accuracies of data acquired
with topographic surveys.

By changing the acquisition tool, i.e., SAR (Synthetic Aperture Radar) rather than UAV,
the situation is completely reversed as in the case of the studies by Zollini et al. [16] in which
they also proposed a semi-automatic methodology to extract coastlines from the Sentinel-1
SAR image. This experimental algorithm, called J-Net Dynamic, was tested at two pilot
sites. The statistical parameters are obtained from the distances between the Sentinel-1
coasts and the GNSS reference points, and the accuracy achieved is approximately 30 m for
all images, with a minimum of 29.9 m and a maximum value of 35.9 m. Remaining in the
sector of the Earth observation from space, Tuan et al. in 2018 [17] analyzed the accuracy of
coastlines extracted from optical satellite images using as its reference a practical shoreline
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obtained with an in situ survey. They applied three water indices to Landsat 8 OLI images,
specifically, Normalized Difference Water Index (NDWI), Modified Normalized Difference
Water Index (MNDWI), and Automated Water Extraction Index (AWEI). The experiments
revealed that the best performing approach (AWEI) achieves an RMSE of 12.4 m. Finally,
with the use of much more expensive remote sensing technology such as LiDAR, the
results become better again; an example is the study by Yousef and Iftekharuddin [18]
in which a new algorithm is proposed to extract coastlines from digital elevation models
of LiDAR (DEM) fused with aerial imagery. LiDAR data and aerial imagery are fused
together to maximize the information in use. The algorithm used for information extraction
is the Support Vector Machine (SVM) classifier. The SVM-based approach has an average
coastline position error of 2.37 m. The studies mentioned above highlight the multiplicity of
techniques available for the acquisition of the coastline and the variability of the accuracies
that can be obtained. In addition, the choice of the dataset is of fundamental importance
and depends on the type of use made of it. Nowadays, the presence of many different
data with the further possibility of acquiring others requires an in-depth analysis of the
limitations or advantages that this entails. Specifically, in the case of optical remote sensing,
these datasets, despite referring to the same scene, appear to be very different from each
other not only due to the acquisition method but also the geometric resolution and the
multispectral bands available. Hence, the aim of this work is to evaluate the accuracy in
coastline extraction through the use of different datasets involving UAV/photogrammetric
and satellite ones.

The experiments are carried out using RGB images of a UAV drone and on Landsat-9
and Sentinel-2 satellite images. The study area considered is the public beach of Gdynia
(Poland) located on the Gulf of Gdansk. For each dataset, the supervised classification
method maximum likelihood classification and subsequent automatic vectorization are
applied. Furthermore, the coastlines are also extracted by manual vectorization through
photointerpretation on the RGB color composition.

In order to have a very precise comparison for the evaluation of the position of each
extracted line, the dataset of points obtained by surveying with a GNSS device in the RTK
mode is used. Finally, two evaluation methods are applied, one involving the distance
between the extracted line and a reference coastline and one of thematic accuracy. All
operations are performed using Quantum GIS (QGIS) version 3.28 and ArcGIS software
version 10.8.

This paper is organized as follows. Section 2 describes the study area analyzed, the
datasets used, and the methodology applied for coastline extraction. Section 3 presents the
results achieved by commenting and comparing with other results present in the literature.
Section 4 completes the paper, summarizing its main conclusions.

2. Materials and Methods
2.1. Study Area

The study area is Downtown beach (Śródmieście) located in the city of Gdynia, which
is on the northern coast of Poland, on the Baltic Sea (Figure 1). The beach is near the
tourist port of Mariusz Zaruski. This waterbody has a typically sandy coastline and is
approximately 400 m long. This stretch of coast is subject to recession, and in the past, in the
second half of the 19th century, it was estimated that it was 2 m, while currently, it is around
1 m per year [19]. Throughout history, the coasts of Gdynia and many other coastal areas of
the Baltic Sea have suffered events such as floods, storms, and erosion. These phenomena
are common in these regions and may be accentuated by climate change. In particular, the
Baltic Sea is known for its seasonal variations and winter storms can cause coastal erosion
and flooding. Instead, the depths starting from the dry bath increase linearly with the
presence of shallows and depressions that appear from the 1 m isobath. Furthermore, it
should be noted that this body of water is subject to nourishment by local authorities, with
a continuous consequence of changes in the seabed and the coastal environment in general.
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Finally, the transparency of the water is approximately 2 m depending on the degree of
visibility of the Secchi disk [20].

Electronics 2024, 13, x FOR PEER REVIEW 4 of 20 
 

 

the presence of shallows and depressions that appear from the 1 m isobath. Furthermore, 
it should be noted that this body of water is subject to nourishment by local authorities, 
with a continuous consequence of changes in the seabed and the coastal environment in 
general. Finally, the transparency of the water is approximately 2 m depending on the 
degree of visibility of the Secchi disk [20]. 

Long-term measurement research was conducted at 35 stations in the Baltic Sea [21] 
in which it was highlighted that this sea is not subject to tides as the differences in the 
water level due to the impact of the tides are negligible. In particular, the minimum tide 
recorded in the eastern part of the Bay of Gdansk (Baltiysk, Russia) was 3.5 cm, while the 
maximum was in the Gulf of Finland (Gorniy Institute, Kronstadt, Russia) and was ap-
proximately 18 cm. Furthermore, the differences in water levels were found to be very few 
centimeters (if not almost zero) for the Baltic Sea between consecutive measurements at 
the same stations. Therefore, the influence of tides on water level fluctuations in Gdynia 
can be considered insignificant [2]. 

 
Figure 1. The location of the study area: the RGB true color composition of the orthophoto in 
UTM/WGS 84 zone 34N (EPSG: 32,634) coordinates expressed in meters. 

2.2. Measurement Equipment and Dataset 
2.2.1. GNSS RTK Measurements 

Coastline measurements using the Global Navigation Satellite System (GNSS) Real 
Time Kinematic (RTK) [22] method were carried out on 5 September 2023 on the water-
body at the public beach in Gdynia. Hydrometeorological conditions are an important 
factor influencing the obtained results, hence the shoreline surveys were conducted in 
windless weather and at the water level of 0 on the Douglas scale (no currents or waves). 
The research used the GNSS RTK Trimble R10 receiver, which is designed to collect high-
precision geodetic and topographic data. This receiver allows us to receive satellite signals 
from all possible GNSS systems: BeiDou Navigation Satellite System (BDS), Galileo, 
GLObal NAvigation Satellite System (GLONASS), and Global Positioning System (GPS). 
Thanks to the RTK module built into the GNSS receiver, it enables measurements to be 
carried out with accuracies of 8 mm + 1 ppm Root Mean Square (RMS) in the horizontal 
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Long-term measurement research was conducted at 35 stations in the Baltic Sea [21] in
which it was highlighted that this sea is not subject to tides as the differences in the water
level due to the impact of the tides are negligible. In particular, the minimum tide recorded
in the eastern part of the Bay of Gdansk (Baltiysk, Russia) was 3.5 cm, while the maximum
was in the Gulf of Finland (Gorniy Institute, Kronstadt, Russia) and was approximately
18 cm. Furthermore, the differences in water levels were found to be very few centimeters (if
not almost zero) for the Baltic Sea between consecutive measurements at the same stations.
Therefore, the influence of tides on water level fluctuations in Gdynia can be considered
insignificant [2].

2.2. Measurement Equipment and Dataset
2.2.1. GNSS RTK Measurements

Coastline measurements using the Global Navigation Satellite System (GNSS) Real
Time Kinematic (RTK) [22] method were carried out on 5 September 2023 on the waterbody
at the public beach in Gdynia. Hydrometeorological conditions are an important factor
influencing the obtained results, hence the shoreline surveys were conducted in windless
weather and at the water level of 0 on the Douglas scale (no currents or waves). The research
used the GNSS RTK Trimble R10 receiver, which is designed to collect high-precision
geodetic and topographic data. This receiver allows us to receive satellite signals from
all possible GNSS systems: BeiDou Navigation Satellite System (BDS), Galileo, GLObal
NAvigation Satellite System (GLONASS), and Global Positioning System (GPS). Thanks to
the RTK module built into the GNSS receiver, it enables measurements to be carried out
with accuracies of 8 mm + 1 ppm Root Mean Square (RMS) in the horizontal plane and
15 mm + 1 ppm RMS vertical plane in real-time. For the purposes of coastline surveys, the
GNSS RTK Trimble R10 receiver was mounted on a 2 m survey pole. Additionally, this
pole was fitted with a special ferrule that allows it to be positioned on the bottom without
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penetrating it with the sharp tip. During the research, 63 shoreline points were determined,
spaced every few meters from each other (Figure 2). The geographic coordinate system of
acquisition was WGS84, transformed into metric coordinates in PL-Universal Transverse
Mercator (UTM) (34N zones). The choice to use this coordinate system is dictated by
the easy and direct comparison with the satellite images that are already provided in
WGS84/UTM zone 34. Furthermore, the geoid model used to determine the elevations is
PL-EVRF2007-NH [23]. The acquired points were located at the boundary between land
and sea during the measurements. The coastline course was determined with an average
2D position error of 6.4 cm and a mean height error of 5 cm. The shoreline marked out using
the GNSS RTK method served as a reference line against which the errors in determining
its course were determined with the use of Unmanned Aerial Vehicle (UAV) and satellite
methods.
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2.2.2. Photogrammetric Surveys Using a UAV

In parallel with the coastline measurements using the GNSS RTK method, photogram-
metric surveys with the use of a UAV were conducted on the waterbody at the public beach
in Gdynia. Their effect was to determine the shoreline based on an orthophotomap gener-
ated on the basis of images taken by a photogrammetric camera mounted on a drone [24].
Firstly, it was assessed whether the meteorological conditions prevailing in the studied
waterbody were suitable for carrying out photogrammetric surveys using a UAV [25]. On
5 September 2023, there were appropriate meteorological conditions, i.e., no precipitation,
windless weather (wind speed not exceeding 6–7 m/s), and sunny day. Such conditions
allowed clear, evenly lit photos to be taken [26]. Before starting the research, a photogram-
metric control network was designed in order to georeference images taken by a drone. It
consisted of 8 GCP that were evenly distributed over the studied waterbody. Following the
deployment of georeference points, their geometric centers were determined using a GNSS
RTK receiver. After completing the above activities, it was possible to start carrying out
photogrammetric surveys using the Aurelia X8 Standard LE octocopter, on which a camera
(Sony A6500 + Sony E 35 mm f/1.8 OSS) with a gimbal (Gremsy T3V3) was mounted.
The measurements were conducted at a speed of approx. 25 km/h at a height of 70 m
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along 10 flight profiles parallel to the coastline and spaced 10 m apart. This allowed us to
obtain almost 100% longitudinal and transverse coverage of the photos [27]. As a result of
photogrammetric surveys, 130 UAV images were taken with a Ground Sample Distance
(GSD) not exceeding 1 cm. After completing the measurements, the recorded data were
processed using the Pix4Dmapper software (version 4.8.0). Based on the Exchangeable
Image File Format (EXIF) data contained in the photos, the program selected the coordinate
system in which the images were originally recorded. The photos were recorded in the
World Geodetic System 84 (WGS-84). Therefore, it was possible to read the approximate
location of the images. The next stage of work consisted of georeferencing photos based
on 8 GCPs determined with a GNSS RTK receiver [28]. It should be stated that the images
taken by the drone have a high degree of accuracy. The Root Mean Square (RMS) of the
differences between the coordinates of georeference points indicated on the photos and the
coordinates of GCPs determined by a GNSS RTK receiver were several centimeters for the
easting, northing, and normal height. After georeferencing the images, an accurate and
high-resolution orthophotomap was generated for the coastal zone of the waterbody at the
public beach in Gdynia (Figure 3).
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2.2.3. Landsat 9 OLI

The Landsat 9 Operational Land Imager (OLI) is the ninth member of the satellite
series that is part of the Landsat program. It is the product of a collaboration between
NASA and the U.S. Geological Survey. This satellite was successfully launched in late
September 2021. Landsat satellites are known for their importance in collecting data such
as Earth mapping, natural resource management, environmental monitoring, and science.
Landsat-9 is in a sun-synchronous orbit near the pole at an altitude of 705 km, with an
inclination of 98.2◦. It completes one revolution around the Earth every 99 min, resulting in
a revisit time of 16 days [29]. However, because Landsat-9 operates together with Landsat-8
at 180◦, the revisit time is reduced to 8 days [30].

The two instruments supplied to Landsat 9, namely the Operational Land Imager-2
(OLI-2) and the Thermal Infrared Sensor-2 (TIRS-2), are very similar to those mounted on
the previous Landsat-8 satellite, which ensures data continuity. Finally, the substantial
difference is given by the radiometric resolution which goes from 12 bits (Landsat-8) to
14 bits. We also find the similarity in the spectral resolution and geometric resolution of the
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bands. In fact, the OLI-2 is composed of 9 bands with a resolution of 30 m except for the
panchromatic which is 15 m, and finally, the TIR-2 has two thermal bands with a resolution
of 100 m [31].

Three types of data collection are available from Landsat-9 mission: real time, level 1,
and level 2. The first is the raw data just acquired, and level 1 is radiometrically calibrated
and orthorectified using ground GCPs and DEM data to correct for relief displacement;
thanks to the high quality of this level, it allows the analysis of time series at the pixel level.
Finally, level 2, derived from level 1, provides surface reflectance and surface tempera-
ture scene-based products. These last two levels have a required geometric accuracy of
12 m [32].

For this study, we use images (level 2) acquired on 2 September 2023, from a clip of
the original dataset, which covers the entire affected area, as shown in Figure 4.
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2.2.4. Sentinel-2

Sentinel-2 is a series of Earth observation satellites operated by the Copernicus pro-
gram, starting from an initiative of the European Union in collaboration with the European
Space Agency (ESA) [33]. The Copernicus Sentinel-2 mission is designed to collect high spa-
tial and spectral resolution data for diverse purposes such as environmental surveillance,
Earth resource monitoring, and other scientific and operational objectives.

It is composed of a constellation of two identical satellites, called Sentinel-2A (S2A) and
Sentinel-2B (S2B), 180◦ out of phase, launched, respectively, on 23 June 2015 and 7 March
2017. They are designed to acquire 13 multispectral bands, whose geometric resolution is
variable and goes from 10 m to 60 m. In summary, at 10 m, there are the visible bands (they
are also resampled at 20 m) and the near infrared (NIR) band [34]. The short-wave infrared
(SWIR) bands are at 20 m (from band 5 to 8A), and finally, the thermal bands are at 60 m.

Also, for Sentinel-2 mission, different types of data collection are available; the highest
level is called level-2 and includes an atmospheric correction, Top-Of-Atmosphere (TOA),
applied to Level 1C orthoimage products. Level-2 is a surface reflectance product with
atmospheric correction of the orthoimage. The absolute geolocation estimates for the
Sentinel-2 products, as reported in the “Data Quality Report” [35] given by the same
manufacturer, show an absolute geolocation error of 7.1 m for S2A and 5.6 m for S2B.
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For this study, only bands (level-2, S2B) with a geometric resolution of 10 m are used,
acquired on 7 September 2023. Lastly, a clip of the study area is taken, as shown in Figure 5.
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2.3. Methods for Coastline Extraction

The workflow followed to extract the coastline from satellite images is shown in
Figure 6.
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Once the image has been downloaded from the dedicated portal, we proceed with
the clip of the interested area. As reported in the literature, the best way to separate
waterbodies from the rest of the scene is through the use of indices. In this work, an
index named Normalized Difference Water Index (NDWI) is chosen. Subsequently, the
supervised classification called maximum likelihood is used to determine whether a pixel
belongs to a certain class (in this case, two classes are used, water and no water).

Once the thematic map is obtained, we proceed with the automatic vectorization
and subsequent extraction of the separation line between these two features. Finally, to
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determine the accuracy of the results, we use an ArcGIS plugin, called Digital Shoreline
Analysis System (DSAS), which allows us to obtain the mean deviations between the
extracted coastline and the reference one. Furthermore, the thematic accuracy was also
assessed through the use of the confusion matrix.

In the case of the UAV image, since it only provides the visible bands, the workflow
is similar except in the phase of using the water index, we directly use the three available
bands (RGB) to classify, as illustrated in Figure 7.
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2.3.1. Normalize Difference Water Index

To support classification methods, the use of indices is often required, the best known
in coastline extraction is the Normalized Water Difference Index (NDWI). The NDWI is
used to highlight the water feature in a satellite image, allowing a body of water to “stand
out” from other features [36].

NDWI is calculated using the combination of visible green and near infrared, as shown
in the following formula:

NDWI =
Green − NIR
Green + NIR

(1)

The NDWI index was proposed by McFeeters in 1996 [37]. Its main use is to detect
and monitor waterbodies, such as rivers, lakes, and oceans.

Waterbodies have values greater than 0.5; in vegetation, however, they are much
smaller, which allows these two classes to be distinguished more easily. This is because
using the infrared band, the water reflects almost no light, while for the vegetation, we
have the reflectance peak compared to the other bands.

In general, the NDWI values correspond to the following:

• Values from 0.2 to 1 are water surface;
• Values from 0.0 to 0.2 are flooding, humidity;
• Values from –0.3 to 0.0 are moderate drought, non-aqueous surfaces;
• Values from –1 to –0.3 are drought, non-aqueous surfaces [38].

Whenever it is necessary to detect a waterbody, outline its contours on the map, and
monitor changes in its clarity, the NDWI index is applied.

The water index considered is applied to the Landsat-9 and Sentinel-2 datasets, pro-
ducing two NDWI maps. Since the NIR band is not present in the UAV image dataset, it is
not possible to apply this water index.
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2.3.2. Maximum Likelihood Classification

Pixel-based classification methods allow pixels to be grouped into distinct classes
based solely on spectral information. They are widely used in many fields, such as burned
area detection, road extraction, coastline extraction, and other feature extraction. To obtain
classes, statistical information from selected samples, called Training Sites (TS), are neces-
sary. The coastline can be extracted based on the water and land classification using the
maximum likelihood classifier which is one of the best performing methods.

The maximum likelihood classification, based on Bayesian theory, calculates for each
class the probability that the pixel belongs to it given the attribute values [39]. This approach
uses statistical values to assign classes to pixels in a remotely sensed image; it is necessary
to initially have a series of information, such as sample pixels that are known to belong to
a class, i.e., the TS. The maximum likelihood classification algorithm is trained using TS
with spectral information. The algorithm learns to recognize patterns that connect image
features to the subject classes. Once trained, for each pixel in the image, the classifier
calculates the probability that it belongs to a certain class.

Therefore, maximum likelihood classification is based on the a posteriori probability
for a pixel with a BV value to belong to class i, as shown by the following formula:

P(i|BV) =
P(BV|i)P(i)

P(BV)
(2)

where P(i) is the prior probability of a class occurring in the study area, and P(BV|i) is the
likelihood function. Finally, P(BV) is the total probability given by

P(BV) =
n

∑
i=1

P(BV|i)·P(i) (3)

where n is the number of classes. The class with the highest a posteriori probability is
assigned to that pixel [40].

Maximum likelihood classification is applied to the three types of datasets. The the-
matic maps produced by applying this classifier are submitted to automatic vectorization,
producing three different coastlines.

2.3.3. Accuracy Assessment

The accuracy evaluation is performed for each extracted coastline. To verify the
positional accuracy of each line, it is necessary to compare it with a reference one. In this
study, we compared each selected coastline with that obtained in a field survey with the
GNSS device.

In particular, a plugin present in ArcGIS called Digital Shoreline Analysis System
(DSAS) is used. It is considered one of the most efficient, as it is able to estimate the
deviation statistics between multiple lines [41]. Starting from a reference line, also called
baseline, DSAS generates orthogonal transects [42] that intersect the line under examination,
in this case the extracted coastlines. The distance measurements between the intersections
of the transect/extracted coastline and baseline are then used to calculate the statistical
values. In our study, six coastlines are extracted, of which three are through the application
of maximum likelihood classification and automatic vectorization and three with direct
manual vectorization on the RGB composition. The plugin allows you to choose the
distance between the transects, which in this case is set at 1 m, obtaining approximately
400 transects for each coastline examined. In this way, the minimum, maximum, mean,
standard deviation (σ), and Root Mean Square Error (RMSE) values are obtained.

The following formulas were used to calculate σ and RMSE:

σ =

√
∑N

i=1(xi − µ)2

N
(4)



Electronics 2024, 13, 412 11 of 20

RMSE =

√√√√ 1
N

N

∑
i=1

xi
2 (5)

where xi is each value obtained, i.e., the distance between the baseline and the extracted
line obtained from the transects, µ is the mean, and N is the number of observations in
the sample.

In order to evaluate whether the coastline extraction method meets the requirements
dictated by the International Hydrographic Organization (IHO) [43], the confidence level
is taken into consideration. In the context of the IHO standard, this value does not take
on strictly statistical meaning, but is defined as the 95% confidence level for horizontal
position, or 2D, (R95(2D)) as in the following formula:

R95(2D) = 2.45·σ (6)

Furthermore, Total Horizontal Uncertainty (THU) is defined, the value of which allows
the radial distribution of errors with respect to the real value (or taken as a reference) to
be described with a single number. By calculating the R95(2D) value, it is possible to
establish which order each extracted coastline belongs to. The two most severe orders are
highlighted, the “Exclusive order” (THU of 5 m with a confidence level of 95%) and the
“Special order” (THU of 10 m with a confidence level of 95%).

Thematic accuracy is another very useful tool for verifying the goodness of the classifi-
cation and, in this case, the successful execution of the coastline extraction. Starting from
the coastline obtained via the GNSS device, it divides the scene into a water area and a
no-water area. Then, we proceeded to obtain a buffer around the reference coastline, in
such a way as to obtain two large test sites. Through the test sites, we proceed with the
construction of the Confusion Matrix (CM), which is known as a powerful tool that allows
us to determine and quantify the success of the classification.

The CM is structured as a table of values, in which the columns represent the predicted
values, and the rows represent the real values, while the diagonal represents the values of
the correctly classified pixels. Starting from CM, it is possible to calculate three accuracy
values that permit this table to be summarized, called User Accuracy (UA), Producer
Accuracy (PA), and Overall Accuracy (OA) [44].

The first, UA, refers to the probability that a pixel assigned as a determined class in
the map really belongs in this class. For a generic class, j is given by the following formula:

UAj =
NAj

PCj
(7)

where NAj is the number of accurately classified pixels of j, and PCj is the number of the
pixels that are classified into class j.

The PA refers to the probability that a given feature of an area on the scene is classified
as such. For a generic class j, it is expressed as follows:

PAj =
NAi
PBi

(8)

PBj is the total pixels belonging to the class considered.
Finally, the OA denotes the total classification accuracy:

OA =
NAj + NAk + . . .+ NAl

P
(9)

The numerator is the sum of pixels correctly classified for each class (j,k. . .,l), while the
denominator is the total number of pixels used.
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3. Results and Discussion
3.1. NDWI Application

In this section, applications of NDWI for selected satellite images are shown. In
particular, for Landsat-9, it is shown in Figure 8, together with a zoom on the interested
area, and for Sentinel-2, it is displayed in Figure 9, with a zoom thereof.
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3.2. Supervised Classification Application and Coastline Extraction

Following the application of supervised classification and automatically coastline
vectorization, this section shows the three thematic maps (the water in blue and the not
water in yellow) and the respective coastlines obtained. In particular, Figure 10 shows the
classification on the UAV survey, with the corresponding extracted line, Figure 11 displays
the classification on the NDWI map obtained for the Landsat-9 images and the related
extracted coastline, and finally, Figure 12 is the result of the classification on the NDWI with
the Sentinel-2 dataset and the obtained coastline. We remind you that for the application
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on UAV images, the classification took place directly on the RGB composition and not on
the NDWI map due to the non-presence of the NIR band.
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Figure 10. UAV dataset: (a) thematic map (water in blue, not water in yellow); (b) extracted coastline.
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All of the extracted coastlines have undergone a smoothing and simplification process
in order to remove jaggedness given by the pixel.

3.3. Accuracy Assessment

Table 1 shows the statistical values obtained by applying the DSAS, for the three
coastlines extracted using supervised classification methods. In particular, for each line
examined, approximately 400 transects are generated with an equidistance of 1 m from
each other.

Table 1. Statistical values of DSAS for the extracted coastlines using supervised classification approach.

Dataset Min (m) Max (m) µ (m) σ (m) R95(2D) (m) RMSE (m)

UAV 0.000 1.142 0.332 0.229 0.561 0.403
Landsat-9 0.002 18.416 3.732 3.769 9.234 5.305
Sentinel-2 0.013 8.945 3.841 1.997 4.892 4.329

In order to carry out an accuracy assessment, the geometric resolution of each dataset
used is considered. It should therefore be noted that the UAV images have a pixel size of
3 cm, 30 m for Landsat-9 and finally 10 m for Sentinel-2.

As the resolution increases, the results are very different. For satellite data, the best,
with an RMSE equal to 4.329 m, is the coastline extracted by Sentinel-2. The maximum
shift with the reference line is approximately 8.9 m, below the geometric resolution of
this dataset. For the Landsat-9, despite having a worse RMSE (5.305 m) compared to the
Sentinel-2, in relation to the pixel size, they have an error of approximately one-sixth (i.e.,
0.176), while for the Sentinel-2, they are more than double this value (0.432 m). In other
words, in proportion to the geometric resolutions of the dataset used, Landsat-9 has a
smaller error than Sentinel-2. Finally, the coastline extracted from the UAV images has an
RMSE of 0.403 m, proving to be the best.
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Figures 13–15 show the coastlines extracted from the three datasets (UAV, Landsat-9,
Sentinel-2), the reference coastline (GNSS device), and the transects obtained with the DSAS
plugin. Furthermore, for each dataset, a detail of the affected area is shown.
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Table 2 shows the statistical parameters, from the comparison between the reference
line and the coastline extracted by manual vectorization (MV) on the RGB composition of
each dataset.

Table 2. Statistical values of DSAS for the extracted coastlines using manual vectorization approach.

Dataset Min (m) Max (m) µ (m) σ (m) R95(2D) (m) RMSE (m)

UAV-MV 0.000 1.140 0.332 0.218 0.534 0.397
Landsat-9-MV 0.017 17.552 4.170 2.986 7.315 5.129
Sentinel-2-MV 0.010 6.581 3.028 1.774 4.263 3.510

The values obtained, although better, differ slightly from the previous ones, which are
obtained through a classification process and consequent automatic vectorization. As you
can see, the ranking from best to worst remains unchanged. The UAV dataset is still the
best, the second is that of the Sentinel-2, which improves the RMSE by about one meter
(3.510 m), and finally, the Landsat-9 dataset is the worst. However, this process is considered
to be time consuming and is often subject to operator errors [45].

Table 3 shows the thematic accuracy values for the datasets used in this work and
classified with the maximum likelihood classification method. The OA accuracy values
close to 100% indicate correct classification.

The results actually show the quality of the coastline extraction of each dataset. In fact,
in this other way of evaluating accuracy, the best result is always given in the same order
previously shown by the DSAS, with the UAV first with an OA of 98.3%, followed by the
Sentinel-2 dataset with 97.9%, and finally the Landsat-9 with 97%.
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Table 3. Thematic accuracy values to determine the classification in two classes (water, no water).

Dataset Accuracy Water Water and No Water No Water

UAV
UA 99.029% 97.561%
PA 98.076% 98.765%
OA 98.378%

Landsat-9
UA 95.000% 99.456%
PA 99.523% 94.329%
OA 97.029%

Sentinel-2
UA 97.5606% 98.338%
PA 98.3762% 97.505%
OA 97.943%

Finally, to confirm the validity of the results obtained, other works present in the
literature are examined. In the experiment led by Su and Gibeaut [46], with the aim of
determining the coastal area using UAS hyperspatial RGB imagery along the southern
coast of Texas, they used the maximum likelihood classification approach achieving an OA
of 92%.

In the study conducted by Esendağlı et al. [47], they used the Landsat-9 dataset to
extract the shoreline, through the use of different indices including the NDWI, and they
obtained a mean error of 8.8 m with standard deviation of 6.6 m, which is more than double
what we obtained in our work.

In the work carried out by Şenol et al. [48], they extracted the shoreline from Hersek
Lagoon using Sentinel-2 satellite images and extracting this feature using the application
of a water index called Modified Normalized Difference Water Index (MNDWI) with
classification based on object orientation. In their application, the maximum thematic
accuracy achieved is equal to 91.5%. Also, in this case, the accuracy achieved appears to be
below the method we used.

4. Conclusions

The work performed on UAV-RGB, Landsat-9, and Sentinel-2 images, in the study area
concerning the Gdynia beach in Poland, analyzes the accuracy of the coastline extraction
with diverse datasets.

The experiments conducted on the chosen remote sensing images highlight different
results in terms of accuracy. Although the data were processed in a different way, i.e., with
two different coastline extraction workflows, the results are still excellent.

To establish the positional accuracy of the extracted lines, the statistical values obtained
through the DSAS were used, and furthermore, through the confusion matrix, it was also
possible to establish the thematic accuracy.

The first dataset analyzed, the UAV one, turns out to be the best overall among the
datasets used; in fact, in terms of RMSE, it reaches values in the order of a centimeter,
while in thematic accuracy, it has the best value analyzed in this work. Although the data
acquired by drones are limited only by the visible bands, they manage to make up for this
lack thanks to the greater spatial resolution.

The coastline extracted from Sentinel-2 images has a positional accuracy of 4.329 m
(RMSE) for extraction using supervised classification and an RMSE value of 3.510 m with
manual vectorization approach. It also reaches an overall accuracy value of 97.943%. These
values are excellent when compared to the size of the cell; in fact, Sentinell-2 ranks second
among the datasets used.

Finally, the last dataset used is the one coming from the Landsat-9 satellite, where the
RMSE values are in the order of 5 m for both coastline extraction approaches, reaching a
high value of thematic accuracy. This type of dataset, despite having a lower geometric
resolution when compared to the other two examined, achieves really good thematic and
positional accuracy values.
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Another parameter examined in this work is the one dictated according to publication
S-44 which defines the standard applicable to hydrographic surveys aimed at improving
navigation safety carried out by the IHO. In fact, the coastlines extracted are compliant
as they respect the minimum requirement terms. In particular, the coastlines extracted
from UAV-RGB and Sentinel-2 images fall within the requirements of the “Exclusive Order”
(5 m THU with a 95% confidence level), while the Landsat-9 coastline falls within the
requirements of the “Special order” (10 m THU with 95% confidence level).

Future developments and further studies will focus on the possibility of extending the
application to other satellite images, especially those that have a higher resolution than the
datasets used, as well as to UAV images with multispectral bands in addition to the visible
band (RGB). Finally, we will focus on evaluating further automatic classification methods
or based on machine learning approaches.
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