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Abstract: Radio frequency fingerprint (RFF) identification represents a promising technique for
lightweight device authentication. However, current research on RFF primarily focuses on the close-
set recognition assumption. Moreover, the high computational complexity and excessive latency
during the identification stage represent an intolerable burden for Internet of Things (IoT) devices. In
this paper, we propose a deep-learning-based RFF identification framework in relation to open-set
scenarios. Specifically, we leverage a simulated training scheme, in which we strategically designate
certain devices as simulated unknowns. This allows us to fine-tune our extractor to better handle
open-set recognition. Additionally, we construct an exemplar set that only contains representative
RFF features to further reduce time consumption in the identification stage. The experiments are
carried out on a hardware platform involving LoRa devices and using a USRP N210 software-defined
radio receiver. The results show that the proposed framework can achieve 90.23% accuracy for rogue
device detection and 93.85% accuracy for legitimate device classification. Furthermore, it is observed
that using an exemplar set consisting of half the total data size can reduce the time overhead by 58%
compared to using the entire dataset.

Keywords: IoT; LoRa; radio frequency fingerprint; deep learning; open-set

1. Introduction

The increasing use of wireless devices has raised security concerns regarding device
authentication in Internet of Things (IoT) networks, which is essential for allowing legit-
imate devices to access the network and preventing rogue devices doing so. Traditional
identification schemes, such as MAC addresses and cryptographic keys [1], are suscepti-
ble to tampering and cracking, respectively [2,3], thereby allowing attackers to disguise
themselves as legitimate devices and to access private data. Furthermore, key-based identi-
fication suffers from excessive latency with an increasing number of devices due to heavy
computation in key management procedures [4–6]. In contrast, use of a radio frequency
fingerprint (RFF) is an efficient alternative tool for wireless security that generates a unique
fingerprint for each wireless device by leveraging imperfections. The RFF is difficult to
modify or tamper with and requires no extra operation from the transmitter [7], making it
desirable for power-constrained and low-cost LoRa devices.

However, recent studies on RFF identification have mainly focused on the close-set
recognition hypothesis, where the system assumes prior knowledge of all possible wireless
communication devices. During testing, there may be unknown classes that the classifier
has seldom encountered before [8]. Therefore, in reality, it is difficult to obtain knowledge of
all devices, making RFF recognition an open-set problem. If a close-set recognition scheme
is utilized in such cases, the system may erroneously accept rogue devices by incorrectly
assigning them to one of the known classes due to the limited scope of the deep learning
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network [9]. This issue can lead to false negative identifications or incorrect classifications,
which can have severe consequences, particularly in security-critical applications. Urgent
attention and further research are needed to develop effective strategies to address this
issue. Shen et al. [10] introduced a short-time Fourier transform (STFT)-based spectrogram
coupled with a CNN for RFF. Their approach exhibited superior identification performance
compared to I/Q-based and fast-Fourier-transform-based methods. Furthermore, they
investigated the impact of the carrier frequency offset (CFO) on identification performance
and proposed the use of an estimated CFO to adjust the identification results, mitigating
potential performance degradation. In addressing the challenge of online device authen-
tication scenarios, ref. [11] presented a novel approach utilizing a deep metric learning
framework for RFF identification. Additionally, to enhance the robustness of deep learning
models towards channel variations, ref. [11] introduced a method leveraging channel-
independent spectrograms for feature representation. Ref. [12] introduced “Hawk”, an
anomaly-based intrusion detection system employing federated learning against emerging
new and unknown attacks towards LoRa devices. Leveraging the distinct features of de-
vices, such as the CFO, Hawk achieves effective anomaly detection and exhibits robustness
against emerging threats.

Based on the above discussion, this paper proposes a DL-based RFF identification
framework that addresses the open-set recognition problem. The framework includes a
training method that designates certain devices as unknown classes, allowing for fine-
tuning of the feature extractor to better handle open-set recognition. Additionally, an
exemplar set is created using partial features from known and simulated unknown classes.
These carefully selected features can accelerate the identification process without sacrificing
accuracy. The proposed framework’s performance is verified through RFF recognition
experiments with varying levels of openness. We conducted a comparison between our
proposed method and traditional threshold detection as well as the OpenMax [13] method
for open-set identification with regard to rogue device detection. Our contributions are
summarized as follows:

• We propose a scalable RFF identification framework based on an additional simu-
lated training stage towards open-set. This enhances the learned representation to
preserve useful information for separating rogue from legitimate devices, as well as
discriminating among legitimate devices.

• We keep the representative features from the training data to construct a feature
exemplar set that efficiently characterizes the RFF patterns of legitimate and rogue
devices. This could help to reduce the feature space and computational complexity
during the testing process.

• We verify the effectiveness of the proposed approach by utilizing LoRa devices and a
USRP N210 software-defined radio (SDR) platform. The experimental results show
that the accuracy of rogue device identification and device classification is higher than
when using the thresholds directly and other open-set algorithms, such as OpenMax.
Moreover, the exemplar set achieves over 90% accuracy even with half of the total
features, with a shorter recognition time.

The rest of the paper is organized as follows: Section 2 introduces related work.
Section 3 provides a system overview. Sections 4 and 5 introduce LoRa signal processing
and RFF extractor training, respectively. Section 6 presents the simulated training and
the procedure for rogue device detection and legitimate device classification. Section 7
provides extensive experimental results to demonstrate the system performance. Section 8
concludes the paper.

2. Related Work

The rapid development of IoT has increased the need for a reliable and low-latency
authentication scheme to ensure that RFF can be widely deployed. However, as wireless
communication research advances, meeting the demand for low latency in practical deploy-
ment scenarios has become increasingly challenging. Das [14] pointed out that wireless
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communication’s reliability and latency hinder industrial wireless control systems’ progress.
To address this issue, Weiner et al. [15] proposed a wireless system architecture based on
semifixed resource allocation and low-rate coding. In addition, Zheng et al. [16] proposed
a lightweight RFF recognition network based on a compact ResNet architecture to improve
RFF recognition speed and reduce computational complexity. Another study proposed an
embedded RFF recognition method based on a lightweight network architecture [17]. The
proposed method uses a combination of convolutional and recurrent neural networks to
extract RFF features and classify them. However, these works do not provide a detailed
evaluation of the proposed method’s limitations or its performance in scenarios with high
levels of noise or interference, which are common in many real-world applications.

Most of the existing RFF identification works focus on deep learning (DL) methods [18–20].
However, the majority of DL-based RFF research has been conducted based on the close-set
hypothesis, which assumes that the prior probability of all wireless communication devices
is known. In reality, there are many unknown devices in most scenarios, and many previous
DL-based RFF identification schemes lack scalability in the open-set environment [10]. This
is because previous methods usually rely on the softmax layer for classification, and once
training is completed, the number of neurons in this layer cannot be changed, turning RFF
identification into a close-set problem [21]. Furthermore, this design raises concerns that the
DL model needs to be retrained whenever unknown devices are present in the training set,
leading to greater time-consumption. Additionally, rogue devices are not readily predicted,
and their data is often not available for training. As a result, during identification, they will
be classified as legitimate devices with the most similar characteristics to those in the training
categories [22], and this is not acceptable.

In order to overcome this issue, in 2020, Geng et al. [8] conducted a survey on recent
advances in open-set recognition. Their findings showed that recent research mainly
focused on computer vision and pattern recognition, with limited studies on RFF open-set
recognition. However, in recent years, scholars have carried out research on RFF open-set
recognition. In 2021, Fang et al. [4] proposed an end-to-end RFF open-set recognition
method based on hypersphere representation. Furthermore, the OpenMax model [13]
based on meta-recognition theory [23] provides a solution to the DL network towards an
open-set problem without requiring extra retraining.

Compared with traditional DL methods, our approach emphasizes the distinguishabil-
ity of feature distances in the feature space by applying metric learning, which means that
devices of the same class are brought closer together, while devices of different classes are
pushed farther apart. Furthermore, we introduce a simulated training process to create an
exemplar set, effectively representing RFF features and reducing the time overhead without
significantly influencing the identification accuracy. This allows us to refine our feature
extractor and enhance its capacity for open-set identification.

3. System Overview

The proposed framework utilizes a DL-based RFF identification framework. It con-
sists of three stages, namely, training, simulated training, and identification, as shown in
Figure 1.

Training: During the training stage, we utilize a DL-based extractor model to extract
distinctive RFF features from training packets collected from various legitimate devices.
These packets undergo preprocessing steps, such as synchronization and CFO estimation
and compensation, and are labeled accordingly. The RFF extractor is trained based on
these preprocessed signals to extract device-specific RFF features. The training stage is only
performed once, whereas after the extractor is trained, we construct an exemplar set by
selecting representative RFF and CFO features from the extractor. This exemplar set is then
used to train an RFF classifier.

Simulated Training: During the simulated training stage, we utilize the exemplar
set to train an RFF classifier. After the training process, we split the exemplar set into two
parts, one part for legitimate devices and the other part for simulating rogue devices. Some
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data from the legitimate devices part are used to fit the K-nearest neighbors (KNN) model.
Then, the KNN model predicts the labels of the remaining data from the exemplar set. We
use the remaining data and labels given by the KNN model to train the logistic regression
(LR) model. During the device identification stage, the KNN model is mainly responsible
for the legitimate device classification function, while the LR model is responsible for the
rogue device detection function.
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Figure 1. System framework of the proposed RFF identification system.

Identification and Classification: The two main processes in the identification stage
are rogue device detection and legitimate device classification. First, preprocessing is
performed on the received signal in the same way as during the training phase. The RFF
features are then extracted from the preprocessed signal using the RFF extractor. The
legitimacy of the packets can be determined by applying the LR model. The legitimate
device is then classified using the KNN model if it is. If not, the packet is identified as
coming from a rogue device, and the access will be prevented.

4. LoRa Signal Preprocessing

In this section, we introduce the preprocessing method of the signal and then illustrate
the process of construction of the exemplar set.

4.1. LoRa Signal

LoRa uses chirp spread spectrum (CSS) technology for modulation, where chirps are
used to communicate. A basic LoRa symbol can be written as

x(t) = Aej2π(− bω
2 + bω

2T t)t (0 ≤ t ≤ T), (1)

where A and bω denote the amplitude and bandwidth, respectively, and T is the LoRa
symbol duration. The preamble, which consists of eight repeating x(t), is present at the
beginning of every LoRa packet and is identical for all device types.

4.2. Signal Acquisition

The transmitted baseband signal x(t) undergoes signal modulation and up-conversion
via hardware components, such as an oscillator and power amplifier. These components
introduce their specific impairments, and the overall effect of device i is denoted as Fi(·).
The signal is then captured by the receiver. The received baseband signal ri(t) of device i is
given by

ri(t) = h(t) ∗ Fi(x(t)) + v(t), (2)
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where h(t) is the time-varying channel impulse response, v(t) is the additive white Gaussian
noise, and ∗ denotes the convolution operation. When the receiver captures a packet from
device i, it extracts the preamble part ri(t) and digitizes it, denoted as ri(n).

4.3. Preprocessing

To make sure the received signal satisfies the fundamental requirements of the RFF
identification procedure, preprocessing is required. This covers normalization, preamble
extraction, synchronization, and CFO compensation. These algorithms are explained in
more detail in [24].

Synchronization: In this step, the packet’s starting point is identified. Precise syn-
chronization is essential because a segment of channel noise is introduced by imprecise
synchronization, which degrades RFF identification performance.

Preamble Extraction: To avoid the deep learning model capturing identity-related
details, such as the MAC address, when leveraging the entire packet for RFF, we selectively
use only the preamble part.

CFO Compensation: CFO compensation is required to ensure system stability in
RFF identification. Crystal oscillators are very sensitive to temperature variations. System
performance can be severely impaired by oscillator frequency drift [25].

Normalization: Normalization keeps the non-device-specific received power from
being learned by the system. By dividing its root mean square (RMS), the preamble portion
is normalized.

5. Rff Extractor Training

The RFF extractor, which is an essential module in the proposed RFF system, should be
capable of generalizing well towards open-set scenarios for the extraction of RFF features
of unknown devices.

5.1. Deep Learning Model Architecture

To efficiently extract the RFF features from the LoRa signal, we treat it as a time
sequence and employ a convolutional neural network (CNN) as our classification model.
Our goal is to design a deep neural network capable of fully extracting the RFF features from
the preprocessed signal. The network architecture is inspired by the ResNet architecture
but is optimized to be lightweight and suitable for the characteristics of LoRa signal data.

The architecture of our RFF extractor, illustrated in Figure 2, is based on a residual
neural network (ResNet) structure with cross-layer connections. This architecture consists
of nine convolution layers, one average pooling layer, and one dense layer with 512 neu-
rons. The RFF extractor takes a 1024-dimensional vector uniformly sampled from the
preprocessed LoRa signal as input. The first convolution layer comprises 32 filters with a
size of 7 × 1 and a stride of 2. Subsequent convolution layers (the second to fifth) consist
of 64 filters with a size of 3 × 1. The sixth to ninth convolution layers employ 32 filters
with the same size as the previous layers. To capture non-linear relationships, all the
convolutional layers are activated using rectified linear units (ReLU). Additionally, the
strategic use of padding in convolutional layers preserves the spatial information of the
input signal, preventing the loss of crucial features. The output of the last convolutional
layer undergoes average pooling before being fed into the dense layer. The L2 normalized
model produces a 512-dimensional vector, representing the RFF features extracted from the
received packets.



Electronics 2024, 13, 384 6 of 17

Figure 2. RFF feature extractor based on ResNet.

5.2. Deep Metric Learning

Deep metric learning is a technique used to train neural networks to learn embeddings.
It can represent input data in a space where samples with the same labels are close to
each other and samples with different labels are far apart. Unlike traditional methods
that rely solely on capturing patterns, deep metric learning enables learning of a more
discriminative and semantically meaningful representation of the RFF data. In this section,
the RFF extractor is trained using deep metric learning and triplet loss as the loss function.

The triplet loss, initially developed for face recognition [26], has gained popularity in
RFF recognition due to its ability to learn meaningful embeddings and enforce desirable
distance relationships between samples. It compares the distance between the embeddings
of an anchor sample, a positive sample (same label as anchor), and a negative sample
(different label than anchor). The triplet network uses a shared weight network to minimize
the distance between the anchor and positive samples and to maximize the distance between
the anchor and negative samples. Figure 3 illustrates a triplet consisting of an anchor (xan),
a positive (x+), and a negative (x−) sample, where the anchor and positive samples are
from the same device and the negative sample is from a different device. Mathematically,
the triplet loss can be expressed as:

LTriplet = max
[
||x+ − xan||2 − ||x− − xan||2 + ξ, 0

]
, (3)

where || · ||2 is ℓ2 norm, which denotes the Euclidean distance between two vectors. ξ is a
parameter in the loss function, which denotes the margin between the positive and negative
pairs. By leveraging deep metric learning based on triplet loss, as shown in Figure 3, the
feature embedding distances between the anchor and the negative sample are larger, while
the distances between the anchor and the positive sample are smaller.
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5.3. Exemplar Set Construction

We create an exemplar set by choosing exemplars from the RFF extractor’s outputs
after the training phase. We built the exemplar set using a fusion input of RFF signals and
the CFO to improve the efficacy of RFF verification. The observation that employing the
CFO and RFF signals separately does not produce satisfactory results served as the driving
force behind this decision.

The exemplar set construction algorithm is used to select a subset of exemplars from
the outputs of the RFF extractor. The RFF extractor is trained on the dataset X and the
CFO dataset C of the device y. Algorithm 1 takes as input the target number of exemplars
M for each class, and the current RFF extractor φ, which maps the input signal x to a
d-dimensional feature vector in Rd.

For each device y, the algorithm first calculates the mean feature vector µ of all the
samples in X. Then, for each class, the algorithm selects the M closest samples to µ
using the Euclidean distance as the similarity metric. For each of these M samples, the
algorithm records its RFF feature vector φ(sk) and its CFO value ck. The resulting set of
exemplars for device y is denoted Sy and consists of the M-selected samples along with
their corresponding RFF feature vectors and CFO values. In addition to constructing the
exemplar set, the algorithm also records the minimum and maximum CFO values of each
legitimate device in the training dataset. These values are stored in the variables CFOminy

and CFOmaxy , respectively.
The final output of the algorithm is the set of exemplars S, the minimum CFO values

CFOmin dataset, and the maximum CFO values CFOmax dataset for each device. The exem-
plar set is smaller than the original dataset since only a subset of samples is selected, and
the size can be controlled by changing the value of M. The RFF extractor can then be used
to extract the 512-dimensional RFF features from the input signal using the exemplar set.
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Algorithm 1 Exemplar Set Construction

Require: RFF data Xy = {x1, . . . , xn} of device y
Require: CFO data Cy = {c f o1, . . . , c f on} of device y
Require: M exemplars for each class
Require: Current RFF extractor φ : x → Rd

for y = 1, . . . , Y do
µ← 1

n ∑x∈Xy φ(x)
for k = 1, . . . , M do

sk ← argmin
x∈Xy

∥µ− φ(x)∥

ck ← c f oX. index(sk)

sk ← (φ(sk), ck)
end for
Sy ← {s1, . . . , sM}
CFOminy ← min

c f o∈Cy
(c f o)

CFOmaxy ← max
c f o∈Cy

(c f o)

end for
S← {S1, . . . , SY}
CFOmin ← {CFOmin1 , . . . , CFOminY}
CFOmax ← {CFOmax1 , . . . , CFOmaxY}

Ensure: S, CFOmin, and CFOmax

6. Device Identification and Verification

After the training of the RFF feature extractor, we focus on training a robust classifier
using the exemplar set constructed in Section 5.3, and provide a detailed description of the
simulated training and device identification processes.

The features after the extractor are designed to capture two important characteristics:
the CFO and distance information. The CFO is caused by inherent hardware defects in
devices, and the frequency offset of different devices can vary significantly. As for the
distance information, the RFF distances between the samples from legitimate devices and
rogue devices are quite distinct in the feature space. Therefore, we design two features, α
and β, which denote the feature distance and the CFO, respectively.

z = [α, β], (4)

α = Dmink , (5)

β = (CFO− CFOmin + CFOmax

2
) · sgn(CFO) (6)

The Dmink in (5) is the minimum distance between the test samples and their k nearest
neighbors in the KNN model. The CFOmin and CFOmax in (6) are the minimum and
maximum CFO values of the training samples with the same label as the predicted device,
respectively, while sgn(·) represents the sign function, which indicates the sign of CFO (1,
0, or −1). This formulation captures the directional deviation of β concerning CFO and
the midpoint.

After that, the exemplar set undergoes division into two distinct components: legiti-
mate device verification and simulated rogue device identification. The device verification
stage is to determine the specific labels of the devices from the signal, which outputs a
legitimate label, which is implemented by the KNN. The RFF of the received packets is first
extracted by the RFF extractor, and then the features will be selected according to (4). The
most frequent label among the K-neighbors is assigned to the device.

Rogue device detection is a process to identify whether a received signal is transmitted
from a legitimate device or not. It involves the use of both KNN and LR models. First, the
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KNN model calculates the distance between the test sample and the exemplar set data.
Then, we use the minimum distance between the test samples and the K-nearest samples to
calculate features based on Equations (5) and (6). Next, these features are used as input
to the LR model, which determines whether the packet is from a rogue device. The LR
model, with output f (z) = 1

1+e−θz , distinguishes legitimate from rogue devices. A “True”
prediction indicates a legitimate device and then is classified as the output label of the
KNN model, a “False” prediction implies a rogue device.

7. Experiments
7.1. Experimental Settings

The data collection system in Figure 4 consists of 35 target LoRa SX1262 devices for
testing and a USRP N210 software-defined radio (SDR) platform as the receiver. The carrier
frequency fc = 433 MHz, bandwidth B = 125 kHz, and SF = 7 are the settings for all LoRa
devices. The configuration of the receiver is a 2 MHz sampling rate and fc = 433 MHz.

(a) Target LoRa devices

(b) USRP

Figure 4. Experimental devices. (a) Target LoRa devices; (b) USRP N210 SDR.

From each LoRa device, we collected 470 packets between the transmitter and the
receiver. The 470 packets were divided into two groups: the remaining 70 packets were
set aside for testing, and the other 400 training data were chosen at random. All known
legitimate device packets, along with supplemented data from rogue device simulations,
were used to train the RFF extractor. The rest of the packets, including those from unknown
devices, were set aside for identification. The deep learning model was implemented using
PyTorch. The training procedure was carried out over 70 epochs under the guidance of the
triplet loss function. The learning rate started at 0.002 and decreased every 10 epochs by a
factor of 0.98. A 64-batch size was used when applying SGD optimization.

7.2. Preliminaries

When it comes to identifying rogue devices, a major challenge arises due to the lack of
training data available for them. The accuracy of identifying rogue devices is affected by
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the different levels of openness in the task. To evaluate the effectiveness of our proposed
method, we use multiple metrics.

(1) Openness: The openness [27] is chosen to symbolize the intricacy of open-set
identification in various experimental setups, which is denoted as:

O∗ = 1−

√
2× CTR

CTR + CTE
, (7)

where CTR and CTE represent the number of devices in the training samples and testing
samples. The larger the value of O∗, the more difficult the problem is.

(2) Overall Accuracy of Two Tasks: We calculate three types of accuracy to evaluate the
performance of the methods, which include the legitimate classification accuracy (L-acc),
the rogue detection accuracy (R-acc), and the overall accuracy (O-acc). L-acc represents the
correctly classified legitimate devices among all legitimate devices, while R-acc represents
the correctly detected rogue devices among all devices. O-acc is the balance of the L-acc
and R-acc, which evaluates the overall method performance. They are defined as:

L-acc =
TL

TL + FL
,

R-acc =
TR

TR + FR
,

O-acc =
2× L-acc× R-acc

L-acc + R-acc

=
TL + TR

TL + FL + TR + FR
.

(8)

where TL and FL correspond to the true correctly classified legitimate device data and
the false incorrectly classified legitimate device data, respectively. TR and FR refer to the
true correctly and false incorrectly classified rogue device data, respectively. The O-acc is
the balance of the L-acc and R-acc, which evaluates the overall method performance by
applying its harmonic mean.

(3) Device Identification Metrics: The task of rogue device detection can be regarded
as binary classification. Therefore, precision, recall, specificity, and the F1-score are used
to evaluate the performance of the proposed model via the confusion matrix. These
performance metrics are defined as follows:

Precision =
TP

TP + FP
, (9)

Recall =
TP

TP + FN
, (10)

F1-score = 2× (
Precision× Recall
Precision + Recall

), (11)

Specificity = 1− TN
FP + TN

, (12)

where TP, TN, FP, and FN are the true positives, true negatives, false positives, and false
negatives, respectively. The detailed performance metrics of the different methods are
shown in Table 1.

Here, we compare the different device verification methods used in our study to
classify packets received from devices as legitimate or rogue, adopting the same RFF
extractor. OpenMax, originally designed for image classification [13], is adapted by training
the CNN network and determining the score of a signal from an unknown device using
the OpenMax layer. Another approach involves setting a CFO threshold (λ) to classify
packets as rogue if the detected CFO is above λ. Similarly, a distance threshold (D) is
employed, categorizing packets as rogue if the minimum distance in the KNN model
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exceeds D. A combined approach utilizes the CFO and distance thresholds, where a packet
is considered rogue if either the distance or the CFO surpasses its threshold. Additionally,
logistic regression (LR) is employed, training the model using an exemplar set to discern
whether a packet is from a rogue device. Different device configurations are explored to
evaluate the LR model’s performance under varied conditions, with 18, 20, and 25 devices
designated as legitimate and 17, 15, and 10 as rogue, while setting M in the exemplar set
construction to 200.

The device verification results shown in Table 2 highlight the effectiveness of the
strategy of the two parts of the task separately across different openness levels. At a low
openness level (0.1548), LR outperforms the other methods, achieving a high legitimate
classification accuracy (L-acc) of 93.8%, a robust rogue detection accuracy (R-acc) of 90.2%,
and an impressive overall accuracy (O-acc) of 92.5%. In comparison, the other methods,
such as Openmax, CFO, distance, and CFO plus distance exhibit lower performance metrics.
As the openness level increases to 0.2441, LR maintains its superiority with an 86.5% overall
accuracy, surpassing alternative methods such as Openmax, CFO, distance, and CFO plus
distance. Even at a higher openness level of 0.2829, LR demonstrates robust performance,
achieving an 80.2% overall accuracy. This performance consistency across various levels
of openness highlights the validity of the effectiveness of our approach in distinguishing
between legitimate and rogue devices in open-set scenarios.

Table 1. The performance of device verification.

Device Verification

Openness Methods L-acc R-acc O-acc

0.1548

LR & KNN 0.938 0.902 0.925
Openmax 0.925 0.849 0.889

CFO 0.881 0.821 0.869
Distance 0.924 0.673 0.801

CFO & Distance 0.872 0.769 0.848

0.2441

LR & KNN 0.921 0.828 0.865
Openmax 0.872 0.804 0.851

CFO 0.874 0.781 0.831
Distance 0.911 0.626 0.807

CFO & Distance 0.861 0.739 0.821

0.2829

LR & KNN 0.916 0.753 0.802
Openmax 0.835 0.785 0.796

CFO 0.747 0.711 0.747
Distance 0.908 0.518 0.778

CFO & Distance 0.723 0.647 0.723

From Figure 5, we can see that our method has better performance than other methods
in L-acc. When openness is 0.1548, corresponding to the selection of 25 devices as legitimate
devices, the L-acc of our method reaches 93.85% on 35 devices, which is higher than the
92.57% of OpenMax, and the other threshold methods. As the number of unknown devices
gradually increases and the openness increases, the L-acc performance of all the methods
decreases. Nevertheless, our proposed method can still achieve an accuracy of 90.72% even
under high levels of openness, while other methods show a rapid decline in performance.
In terms of R-acc, our method shows a rapid performance degradation with increase in
openness. In contrast, OpenMax performs better in identifying unknown classes, indicating
that it is well-suited to open-set recognition problems. O-acc measures the combined effect
of both L-accand R-acc. From the perspective of O-acc performance, our proposed method
performs with 92.14% O-acc when the openness is 0.1548, which is better than OpenMax
and the other methods. However, as the openness increases, the performance of recognizing
unknown classes decreases rapidly, which needs to be improved in future work.
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Figure 5. Accuracy performance of different methods.

7.3. The Effect of Device Identification

Moreover, we evaluate the performance of our proposed method by constructing the
confusion matrix for legitimate device classification and the receiver operating charac-
teristic curve (ROC curve) for rogue device detection using 25 devices for training. The
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confusion matrix, depicted in Figure 6, indicates that most samples are accurately classified;
however, certain categories are frequently misclassified. Specifically, 12 samples belonging
to Category 3 are misclassified as Category 2, among others.

Figure 6. Confusion matrix about the legitimate device classification of our method.

As well as the confusion matrix, as Figure 7 illustrates, we use ROC curves to assess
the performance of rogue device detection. The ROC curve plots the false positive rate
(FPR) on the x-axis and the true positive rate (TPR) on the y-axis, calculated as follows:

FPR =
FP
N

=
FP

FP + TN
. (13)

TPR =
TP
P

=
TP

TP + FN
. (14)

Figure 7 illustrates the ROC curve of the simulated attack detection and the cor-
responding area under the curve (AUC) values. With an AUC value of 0.92, our LR
approach is a notable performer demonstrating its ability to discriminate between rogue
and legitimate devices. This performance is much better than that of the threshold-based
detection techniques, such as the CFO and distance, and it outperforms the OpenMax
method (AUC = 0.89). Remarkably, the LR curve is consistently dominant, confirming its
effectiveness in the open-set task of detecting rogue devices.

Table 2 shows the effect of using different methods on the confusion matrix, with a
focus on the F1-score, recall, precision, and specificity. The LR model achieves the highest
F1-score of 0.9080, followed by OpenMax with 0.9022, while the CFO and distance methods
have lower F1-scores of 0.8732 and 0.6347, respectively. The LR model also has the highest
recall and precision, indicating a better ability to correctly identify both rogue and legitimate
devices. Additionally, all methods have high specificity, with LR and OpenMax having
values close to 1, indicating a low false positive rate. Overall, the table highlights the
effectiveness of the LR model for device authentication, with better performance than the
other methods.
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Figure 7. ROC curve of rogue device detection under different methods.

Table 2. The performance of device identification.

Device Identification

Methods Precision F1-Score Recall Specificity

LR 0.9104 0.908 0.9081 0.9962
Openmax 0.9049 0.9022 0.9023 0.9959

CFO 0.8816 0.8732 0.8794 0.9892
Distance 0.6391 0.6347 0.6376 0.9693

7.4. The Effect of Exemplar Set

In this section, we present and discuss experiments that demonstrate the effect of
the exemplar set size on the accuracy and identification time for our proposed method.
Specifically, we construct exemplar sets of different sizes, including M = 20, 40, 60, 100,
200, and 400; M = 400 means the whole of the training data. The exemplar set is selected
from all the training data; thus, it has fewer data than the whole samples, resulting in lower
time cost.

Figure 8 illustrates the O-acc and identification time cost of the different exemplar set
sizes. The LR model trained with exemplar set construction achieves an O-accuracy of
92.14% and an identification time cost of 18.21 s when using all the training data (M = 400).
However, with a smaller exemplar set size of M = 100, the time cost is reduced to 6.73 s,
while maintaining a slightly lower O-accuracy of 90.82%. The results show its ability to
accelerate the training process while maintaining high accuracy.

7.5. The Effect of SNR

In this section, we describe the experiments conducted to evaluate the performance of
our method under varying SNRs. We first train the model using data with relatively high
original SNR under various openness. Subsequently, we evaluate the model’s recognition
accuracy on multiple test datasets with varying Gaussian white noise levels, ranging from
0 dB to 20 dB. The OpenMax method is employed as a benchmark for comparison.

As illustrated in Figure 9, it is evident that the accuracy of both LR and OpenMax
increases with higher SNR settings. Notably, as the degree of openness rises, there is a
decline in performance, potentially attributed to insufficient classifier training due to the
presence of more unknown samples. In the low-SNR region (0 dB to 5 dB), LR may exhibit
suboptimal performance compared to the OpenMax method, exhibiting a 1.83% accuracy
gap. However, under higher SNR conditions, LR outperforms OpenMax, which achieves



Electronics 2024, 13, 384 15 of 17

92.76% accuracy when the setting of the openness is 0.1548 and 20 dB. The observed poorer
performance of LR under low-SNR conditions is attributed to noise disrupting the original
data distribution, leading to a deviation from linear features in both the input and output
data. This phenomenon ultimately results in a decline in performance.
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Figure 8. Time and O-accuracy of different exemplar sets.
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Figure 9. The performance under different SNRs.

8. Conclusions

In conclusion, we introduced a novel DL-based RFF identification framework leverag-
ing device-intrinsic hardware impairments for robust device authentication. Our approach
incorporated a simulated training process to effectively train an RFF extractor with re-
markable generalization capabilities. Additionally, the implementation of an exemplar set
mitigated the time overhead during the identification stage. For rogue device detection, we
employed an LR model, while legitimate device classification was accomplished using the
KNN algorithm. The extensive experiments conducted validated the performance of our
method in both rogue device detection and legitimate device classification. Notably, our
constructed exemplar set demonstrated its efficacy in significantly accelerating the training
process with minimal impact on accuracy.
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