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Abstract: Federated learning stands as a pivotal component in the construction of data infrastructure.
It significantly fortifies the safety and reliability of data circulation links, facilitating credible sharing
and openness among diverse subjects. The presence of missing data poses a pervasive and challenging
issue in the implementation of federated learning. Current research on imputation missing values
predominantly concentrates on centralized methods and horizontal federation scenarios. However,
there is a notable absence of exploration in the context of vertical federated application scenarios.
In this paper, the problem of missing imputation in vertical federated learning is investigated and
a novel vertical federated k-nearest neighbors (KNN) imputation method is proposed. Extensive
experiments are conducted using publicly available data sets to compare existing imputation methods,
the results demonstrate the effectiveness and progress of our approach.

Keywords: federated learning; missing data; vertical federated imputation; k-nearest neighbors

1. Introduction

Over the last few years, there has been an escalating demand for the protection of
personal data privacy. In response, the European Union, the United States, and China have
introduced various relevant policies to make clear provisions on the collection, storage,
and use of personal information such as the General Data Protection Regulation (GDPR)
implemented by the EU on 25 May 2018 [1] and Consumer Privacy Bill of Rights in the
U.S. [2].

At the same time, artificial intelligence technologies, including machine learning,
computer vision, natural language processing and deep learning, develop rapidly. These
artificial intelligence methods are built on the foundation of big data [3], but as the le-
gal environment is becoming more and more severe, the data cannot be directly traded,
and in many cases, the scale of the data obtained before modeling is insufficient to meet
training requirements. This may include a smaller amount of data, the absence of labels,
or the absence of features, resulting in the formation of the data isolated islands [4]. Pri-
vacy computing is an effective way to deal with data isolated islands, and there are three
mainstream privacy computing methods: multi-party secure computing [5,6], federated
learning, and trusted execution environments [7]. Among them, the concept of feder-
ated learning is a machine learning model based on distributed data sets proposed by
Google [8–10]. Reference [4] categorizes federated learning into horizontal federated learn-
ing, vertical federated learning and federated transfer learning based on the distribution
of training data in the data feature space and sample ID space among different parties as
showed in Figure 1.

Among them, vertical federated learning is applicable to the cases that data sets of
different parties share the same sample ID space but differ in feature space. For diverse
business purposes, datasets owned by different enterprises often have distinct feature
spaces. Despite the dissimilarities in data features, they come from the same customer
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group and show the status of customers from different levels. Using the heterogeneous data
distributed across these enterprises, superior machine learning models can be built. Due
to data security laws and regulations, direct data sharing among enterprises is precluded.
Even intra-enterprise data may not be shared among disparate departments. Consequently,
only a few large Internet companies have real “big data”, and most small and micro enter-
prises and small and medium-sized enterprises are faced with the problem of scarce feature
dimensions, which restricts the application of artificial intelligence technology. The advent
of vertical federated learning resolves the challenge of jointly modeling heterogeneous data
across enterprises without necessitating the exchange or compromise of private data. Based
on vertical federated learning, many algorithms have been developed to enable federated
learning. Reference [11] proposes a novel lossless privacy-preserving tree-boosting system
known as SecureBoost in the setting of federated learning. Reference [12] proposes a quasi-
Newton method based vertical federated learning framework for logistic regression within
the additively homomorphic encryption scheme. References [13,14] improve classical neu-
ral network models such as backpropagation neural networks with minimal computation
and communication costs while ensuring lossless model accuracy.

Figure 1. Federated Learning Classification.

Nevertheless, the vertical federated methods mentioned above rely on data sets devoid
of missing values. In instances where data sets include missing values, it impedes the
modeling process, necessitating the imputation of missing values in the data set. Currently,
there are some researches on missing values imputation algorithms in federated learning
scenarios. Reference [15] proposes a conditional GAN imputation method under a federated
learning framework to solve the data sets that come from diverse data-owners without
sharing. Reference [16] proposes a novel federated learning method, a light weight yet
effective autoencoder-based model is employed to address the examined problem, modified
properly to capture the temporal dependencies of the time series data. On the one hand, all
the above methods are horizontal federated missing values imputation methods, but the
research on vertical federated missing values imputation methods is still lacking. On the
other hand, the current popular federated learning platform such as FATE [17] only provides
simple imputation methods such as maximum imputation (MAX), minimum imputation
(MIN), and mean imputation (MEAN). These simple imputation methods have limited
effect on model improvement. Therefore, it is necessary to study and explore more complex
methods suitable for vertical federated missing values imputation.

Compared to federated imputation, centralized imputation methods, which can also
be referred to as traditional imputation, contains various of methods. In general, the miss-
ing imputation techniques can be categorized into two types, namely, statistical-based
imputation techniques and machine learning-based imputation techniques [18,19]. In the
area of statistically based imputation techniques, most widely used statistical techniques
include MEAN [20], expectation management (EM) [21], linear regression (LR) [22], least
squares (LS) [23] and principal component analysis (PCA) [24]. Reference [25] summarizes
the fundamental principle of expectation management (EM), linear regression (LR) and
least squares (LS) methods. Reference [26] describes normal-model multiple imputation
(MI) and maximum likelihood methods. Machine learning-based imputation techniques
are developing fast, most widely used machine techniques include k-nearest neighbors
(KNN) [27], Random forest (RF) [28], Decision tree (DT) [29] and Clustering [30].

However, all above statistical and machine learning-based imputation algorithms
are limited to their own data, and the process of imputation is carried out independently.
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The correlation between the data sets of different parties that can bring improvement to data
imputation is ignored. Therefore, in this paper, the centralized KNN imputation algorithm
is improved and a federated KNN imputation method based on vertical federated learning
is proposed. This approach can impute the missing values of all parties’ data sets in
vertical federated scenarios and encrypt the intermediate results of the transmittal using
homomorphic encryption algorithms to protect the privacy and security.

The remainder of this paper is organized as follows. Section 2 shows problem state-
ment and Section 3 provides an introduction to the vertical federated KNN imputation
method proposed in this paper, followed by comparative experiments to validate the ef-
fectiveness of the method in Section 4. Lastly, conclusions and future works are given in
Section 5.

2. Problem Definition

In this paper, it is assumed that multiple parties hold their respective data sets that
share the same sample ID space but differ in feature space. Each party is precluded from
directly utilizing the data sets of other parties for training the missing data imputation
model, primarily owing to concerns related to privacy, data security, and competitive
considerations. In this section, the problem definition is divided into two parts to describe
the missing data formulation and vertical federated imputation settings.

2.1. Missing Data Formulation

Consider that the data comes from m-dimensional space F. Each sample xi in the
non-missing data set X = {x1; x2; ...xi; ...xn}(|X| = n, xi ∈ Rm) is a random variable in F.
When it occurs that data is missing, the observed data Xobs contains missing data, which
is represented by NaN. Let M represents the mask matrix, which indicates whether the
observed data point in X exists or misses, if xi,j exists, mi,j is 0 , otherwise is 1. The following
is the relationship between X, M and Xobs with an example:

Xobsi,j =

{
xi,j, if mi,j = 0,
NaN, if mi,j = 1.

(1)

X =

 4 3 5 7
15 6 12 20
9 8 3 9

 (2)

M =

0 1 0 0
0 0 1 0
0 1 1 0

 (3)

Xobs =

 4 NaN 5 7
15 6 NaN 20
9 NaN NaN 9

 (4)

Therefore, the relation between Xobs, M and X can be presented by:

Xobs ⊙M = X⊙M (5)

where ⊙ denotes element-wise multiplication.

2.2. Vertical Federated Imputation Settings

Suppose that there are Np data holders or training parties P = {P1, . . . , PNp} that
are not allowed to use the other data holder’s data sets directly to train an imputation
model. Consider that the samples of data sets are intersected, and the alignment of the
samples corresponds by ID numbers. Sample alignment by ID yields n intersected samples.
The features of the data are different for each party, so the data dimensions may be different.
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The data quality of different holders is diverse and when data missing occurs, there
may be different degrees of data missing in each party. The objective of vertical federated
imputation is to collaborate all participants’ feature spaces and produces a collaborated
imputation model without leaking privacy data.

3. Vertical Federated k-Nearest Neighbors Feature Imputation

In this section, the proposed method will be described in detail. The first part in-
troduces the basic principle of the centralized KNN imputation algorithm. The second
part discusses the application scenarios and system architecture. The third part presents
the KNN imputation algorithm under a federated learning architecture and outlines the
specific execution steps for missing values imputation. The last part describes the imple-
mentation process.

3.1. Fundamentals

The basic principle of the centralized KNN imputation algorithm is introduced first,
as the inspiration for the proposed method primarily stems from it. The KNN imputa-
tion algorithm can be defined as the process of identifying K samples in each data set
that are spatially similar or closely located by measuring distances. These K samples are
subsequently utilized to impute the values of the missing data points. When encounter-
ing missing features, the distance is computed by disregarding the missing features and
assigning greater importance to the non-missing features.

Considering the distance between two samples xp and xq, each potentially containing
missing values, is defined as:

d(xp, xq) =
1
S

S

∑
s=1

(xp,s − xq,s)
2, | M(p, s) ̸= 1 & M(q, s) ̸= 1, (6)

where s represents non-missing features in both xp and xq satisfying the condition behind
the |. S represents the total number.

Assuming the o-th feature of the p-th sample xp,o is missing, let xK
k,o represents the K

nearest samples without missing the o-th feature. Then, the missing value of xp,o can be
imputed using Equation (7):

x̂p,o =
∑K

k=1 xK
k,o

K
(7)

3.2. Architecture

Based on the typical vertical federated learning architecture, the vertical federated
imputation architecture is designed as shown in Figure 2, where the vertical federated
modeling of two parties is taken as an example.

Figure 2. Architecture of vertical federated k-nearest neighbors imputation method. (a) Vertical
federated learning framework. (b) Specific implementation of encrypted model training.
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The architecture of federated learning is shown in Figure 2a, suppose that Party A
and Party B, namely guest and host, want to train a vertical federated model using their
respective data, both Party A’s data and Party B’s data contains some different features with
the same sample ID. Both parties’ data sets contain missing values, so the missing feature
values need to be imputed before federated modeling such as vertical linear regression,
vertical secure boosting tree etc. For data privacy and security reasons, Party A and Party B
cannot exchange data directly. Figure 2b is the specific implementation of encrypted model
training in Figure 2a. The equations and symbols are explained in the next section.

3.3. Algorithm

In order to ensure the confidentiality of the data, a trusted third-party collaborator C is
introduced to coordinate the intermediate interaction results, and party C can be played by
an authoritative organization such as the government or replaced by secure computing node
such as Intel Software Guard Extensions [31]. The federated KNN imputation algorithm
executes the following six steps:

Step 1: Collaborator C generates public key public_key and private key private_key of
homomorphic encryption, distributes public_key to the parties.

Step 2: Each party computes the local distance matrix DPi :

DPi (p, q) = d(xp, xq), Pi ∈ P, D ∈ Rn×n (8)

The property of symmetry of the distance matrix is utilized to improve computational
efficiency. According to Equation (6), The elements at symmetric positions in the upper
and lower triangular matrices have equal values, i.e.:

d(xp, xq) = d(xq, xp) (9)

Therefore, calculations are performed only for the elements in the upper triangular
matrix, reducing computational workload. The calculation of different elements can be
conducted independently, allowing for parallel computation to further enhance computa-
tional efficiency.

Step 3: Each party encrypts DPi to obtain a local encryption distance matrix JDPiK
using public_key, where the J·K represents homomorphic encryption. Then, each party
transmits JDPiK to party A, A aggregates all parties’ local encryption distance matrix to
obtain the global encryption distance matrix JDcomK and transmits it to C:

JDcomK =
Np

∑
i=1

JDPiK, Pi ∈ P (10)

Step 4: Collaborator C uses the private key to decrypt JDcomK to obtain the global
distance matrix Dcom:

Dcom = private_key(JDcomK) (11)

Then, C takes the square root of each value in the Dcom, sorts the results by row in
descending order to obtain the index matrix Dindex and transmits Dindex to each party,
where sort() represents the sorting of row vectors in descending order and return the index:

Dindex = sort(
√

Dcom) (12)

During sorting, the distance of the current sample to itself is not taken into consideration.
Step 5: Collaborator C sends Dindex to each party.
Step 6: Each party computes the mean and imputes missing value. Obtain the missing

locations (p, o) from mask M where the value is 1, and for each missing feature xp,o,
compute the mean of the feature values of the corresponding K-nearest neighbors samples
without missing the o-th feature and replace NaN values with the mean:
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X̂obs(p, o) =
1
K

K

∑
λ=1

Xobs(Dindex(p, λ), o), | M(Dindex(p, λ), o) ̸= 1, (13)

where λ satisfies the condition behind |. The steps are summarized as Algorithm 1.

Algorithm 1 Federated process. P represents party set, J·K represents homomorphic
encryption algorithm, Decry() represents decryptsion algorithms, Sort() represents
distance sorting.

1: Party executes:
2: for each party n ∈ P do
3: for each xp, xq ∈ Xobs do
4: D← D(p, q) = d(xp, xq)
5: end for
6: for D(p, q) ∈ D do
7: JDK← JD(p, q)K
8: end for
9: end for

10: JDcomK← Aggregate all JDK
11: Transmit JDcomK, Receive Dindex
12: for each xp,o(i.e., Xobs(p, o)), where Maskpo = 1 do
13: Impute using Equation (13)
14: end for
15: Coordinator executes:
16: Receive JDcomK
17: Dcom ← Decry(JDcomK)
18: Dindex ← Sort(Dcom)
19: Transmit Dindex

The contributions of this algorithm can be summarized as follows. It specifically ad-
dresses missing value imputation in a vertical federated learning setting. In such scenarios,
multiple parties collaborate to perform computations while keeping their data locally stored
and secure. The method’s capability to impute missing values across all parties’ datasets is
also a crucial contribution as it can help each party to enrich its own feature space.

3.4. Implementation

Figure 3 gives an implementation of the above algorithm with an example of two-party
federated modeling.

In terms of the complexity of the algorithm, it is illustrated in terms of time and space.
The time complexity of the algorithm is O(n2 log2 n), which can be mainly broken up as
(1) computing the distance matrix D, the complexity is n(n−1)

2 , (2) encrypting the distance
matrix D, which is n2, (3) decrypting the distance matrix JDK, which is n2, (4) computing
the mean value, impute the missing values, which takes rn2 + rn2 log2 n + rn time in total.
The spatial complexity of the algorithm is O(n2). The user must store the distance matrix
D, encryption distance matrix JDK, and the index matrix Dindex, which are O(n2) in total.

The work on data privacy protection can be summarized into three aspects. Firstly,
the calculation of distance matrix is conducted locally by each party, ensuring that the
raw data remain within the local environment, and the original data of each party remain
opaque. Secondly, the choice of distance matrix as intermediate exchange results helps
prevent reverse inference and untrustworthy behavior by participating parties. Finally,
utilizing homomorphic encryption for calculations ensures that, while obtaining the results
of distance ranking, any party is unable to decrypt and access the raw data or even the
distance matrix of other parties.
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Figure 3. The process of federated KNN imputation algorithm.

The involvement of Coordinator C is optional. If the intermediate result of the ex-
change does not involve privacy or if the participant is semi-honest, Coordinator C is not
required. However, if privacy is implicated, Coordinator C becomes necessary. The chal-
lenge lies in balancing privacy protection and efficiency. Striving for extreme security
compromises learning efficiency or renders it impractical. Conversely, an unwavering pur-
suit of efficiency may result in privacy breaches. Thus, the decision to employ Coordinator
C hinges on striking a balance between safety and efficiency. If the distance matrix is con-
sidered non-sensitive, it can be transmitted between parties using RSA encryption without
the need for homomorphic encryption. This approach reduces communication frequency
and, consequently, minimizes the time required. The participants can also include multiple
guest parties.

4. Experimental Section
4.1. Environment

In this section, all the experiments are performed based on an open-source federated
learning framework namely FATE [17]. This framework can be deployed using Kubernetes,
docker compose or the standalone way, which are suitable for production environment,
model development environment and algorithm development environment, respectively.
As the purpose of this paper is to develop a new imputation algorithm, FATE is deployed in
the standalone way. The 1.10 version of FATE is deployed in CentOS 7 system. Fateboard is
also deployed to exhibit the result of modeling. Fate-flow is deployed to achieve federated
job&task scheduling and monitoring. The programming language is python and the IDE of
VS code is used as the main development tool. In the aspect of the hardware, a personal
computer with the Intel(R) Core (TM) I5-11400CPU, 16 GB running memory, 512 GB SSD
and 6 GB graphics memory is adopted to perform the experiment.

4.2. Data

The permanent Magnet synchronous motor (PMSM) data set is used for missing data
imputation experiments, which is provided by the open-source project of FATE. The data
set is collected from a PMSM deployed on the test bench and contains one label (speed)
and 11 features. Set the two parties of vertical federated learning as party A and party B,
namely guest and host, and when this data set is used for vertical federated learning, it
is divided into two data sets. The guest has a label and four features, while the host has
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seven features. Assuming that the four features owned by the guest cannot predict the
speed well, we hope to add the host’s data to enhance the model, and during the modeling
process, the data from both parties does not leave their respective domains, protecting data
privacy. In fact, it is also the biggest motivation of vertical federated learning, where the
party with the label does not have enough features to establish an effective model to predict
the label, and it is necessary to introduce effective features held by other parties to improve
the model. This situation is widely present in fields such as finance and healthcare. Actually,
the partitioning of the data set exactly simulates this situation, which can be exhibited by a
simple linear regression for example. Perform four-fold cross validation on 800 samples
for speed prediction. Using only the four features of the guest party obtains a validation
RMSE of 0.709 and adding seven features of the host side obtains a validation RMSE
of 0.097, indicating that the features of the host side can effectively improve the model.
Therefore, this data is suitable for the application scenarios of vertical federated learning.
The partitioned guest and host data sets named “motor_ hetero_ guest.csv” and “motor_
hetero_ host.csv”, respectively, can be downloaded [32]. Features and their descriptions are
shown in Tables 1 and 2.

Table 1. Data set of Party A.

Features Description Features Type

idx 138 h to 185 h of records int
pm Permanent magnet temperature (in °C) measured with thermocouples float

stator_yoke Stator yoke temperature (in °C) measured with thermocouples float
stator_tooth Stator tooth temperature (in °C) measured with thermocouples float

stator_winding Stator winding temperature (in °C) measured with thermocouples float
motor_speed (label) Motor speed (in rpm) float

Table 2. Data set of Party B.

Features Description Features Type

idx 138 h to 185 h of records int
ambient Feed pump flow float
coolant Coolant temperature (in °C) float

u_d Voltage d-component measurement in dq-coordinates float

u_q Voltage q-component measurement in dq-coordinates
(in V) float

torque Motor torque (in Nm) float
i_d Current d-component measurement in dq-coordinates float
i_q Current q-component measurement in dq-coordinates float

4.3. Results

To verify the effectiveness of our method, four comparative experiments are designed.
In the first experiment, three statistical imputation techniques provided by the FATE
platform are considered for comparison: MAX, MIN, and MEAN. In the second experiment,
the proposed vertical federated imputation approach is compared with a typical centralized
imputation method. Then, in the third experiment, the lossless performance of the federated
method is verified. Finally, the KNN imputation method is applied to the regression task to
verify its contribution to regression task.

According to Little and Rubin [25], there are three types of missingness mechanisms
that can cause an incomplete data set. They are missing completely at random (MCAR),
missing at random (MAR), and not missing at random (NMAR) [33]. Assuming that the
missing values in the data set do not depend on either the known values or the missing
data, the MCAR mechanism is used for the experiments.
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4.3.1. Federated Comparative Experiment

In this experiment, the proposed vertical federated imputation method is compared
with the existing missing imputation methods. As far as we have learned, no one has
researched about vertical federated imputation method before, and constant value impu-
tation methods such as MAX, MIN, and MEAN are most frequently used in the vertical
federated situation currently. So, the above three methods are compared. In the aspect of
data missing generation, MCAR mechanism is adopted to generate an incomplete data set
with missing rates of 10%, 20%, and 30% randomly. This process is repeated 10 times to
obtain the averaged evaluation. For the imputed data, we test the validity by comparing
the original values to the imputed values.

The experimental results are as Figure 4, where the results with 10% missing rate
appear in the first row, and the remaining rows indicate the evaluation results with 20%,
30% missing rates. The ’missing value index’ in Figure 4 refers to the positional index of an
element within matrix M, signifying the ordinal placement of a value equal to 1.

Figure 4. Comparison of original and imputed values across different missing rates.

Overall, among the methods studied, the proposed federated KNN imputation method
yields imputed values that are closer to the original distribution of the data. As more values
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are removed, the data matrix becomes sparser (i.e., fewer complete values are available for
training), which in turn degrades interpolation performance. That is, all techniques tend to
use denser data matrices to produce more accurate imputation, which is consistent with
previous research [34]. Root mean squared error (RMSE) is selected as the performance
metric to further compare the imputation effect of the proposed method with the other
three methods. Each experiment is conducted 10 times, results are shown in Table 3 and
displayed in Figures 5–7.

Table 3. RMSE performance of the proposed method compared to the benchmarks.

Missing Rate Federated KNN MAX MIN MEAN

10% 0.3677 2.4136 2.3402 0.9861
20% 0.3358 2.1008 2.1515 0.8188
30% 0.3883 2.5465 2.2252 0.9650

Figure 5. RMSE at the 10% missing rate.

Figure 6. RMSE at the 20% missing rate.
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Figure 7. RMSE at the 30% missing rate.

We perform 10 evaluations using different random seeds to remove different parts
of the original values. As can be seen from Figures 5–7, the RMSE values of the pro-
posed method are significantly lower than the RMSE values of the other three methods.
Among the remaining three methods, MAX and MIN have the highest RMSE values across
different missing rates. Compared to MEAN, our method has lower RMSE values across
different missing rates.

Constant value imputation methods are to impute all missing values by using fixed
values that meet certain conditions. These methods are not sensitive to the variation
of feature values, and do not consider the correlation between samples and features.
Compared with constant value imputation methods, the superiority of the vertical federated
KNN imputation method lies in the following aspects. Firstly, it leverages the similarity
between samples to impute missing values, providing potentially more accurate estimates
compared to simple constant imputation methods, as it considers the overall data structure
of different parties. Secondly, it not only takes into account information from the feature
with missing values but also considers relationships between other features. This helps
capture the complex structure and patterns in the data. Lastly, it is a non-parametric method,
making no assumptions about the distribution of data. This flexibility is advantageous
when dealing with diverse types of data and problems.

4.3.2. Centralized Comparative Experiment

In this experiment, we compare the proposed method with traditional centralized
imputation algorithms including MEAN, LR, KNN, and RF to verify the enhancement of the
imputation effect by heterogeneous data sets from two parties. In conducting experiments
with the centralized imputation algorithm, only the missing data set from party A is utilized
for imputation. For experiments with the proposed federated algorithm, both data sets of
party A and party B are employed to impute the missing data set of party A. Compare the
imputation effect of the data set of party A under the five imputation methods. Similarly,
the missing rates are increased from 5% to 40% at the intervals of 5%, and each experiment
is conducted three times under each missing rate, using RMSE as the performance metric.
The average RMSE of three repeated experiments are given in Table 4 and the deviation is
shown in Figure 8.
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Table 4. Comparison of imputation performances, FKNN vs. centralized methods.

Missing Rate FKNN MEAN LR KNN RF

5% 0.38509 1.06481 1.01250 0.83104 1.07105
10% 0.33951 1.01277 0.95623 0.86715 1.02745
15% 0.36231 1.04159 0.99785 0.92863 1.06034
20% 0.43012 1.02356 0.97037 0.94683 1.03123
25% 0.44781 1.05121 1.01357 1.05514 1.10138
30% 0.48925 1.04509 1.00616 1.05207 1.08145
35% 0.51976 1.02456 0.97432 1.08242 1.07756
40% 0.53624 1.04242 0.99425 1.11375 1.06162

“FKNN” standards for federated KNN imputation method.

Figure 8. Average RMSE and its deviations at different missing rates in centralized comparative
experiment.

The results of the vertical federated KNN imputation method are notably superior to
other traditional data imputation methods in all cases of missing rates. The performance of
the proposed method and the centralized KNN imputation algorithm gradually decreases
when the missing rate exceeds 10%. As the missing rate increases, the experimental metrics
of different methods collectively deteriorate and gradually converge. This phenomenon is
attributed to the increasing difficulty in imputation as the missing rate rises.

The centralized algorithms can only be applied to one side of the data set, and the
effectiveness of the algorithms will be reduced when the one-sided data set has fewer
features. Compared with the centralized imputation algorithms, the proposed algorithm
expands the feature space by using multi-party data sets, and provides more basis for
the similarity of samples. By combining data sets from different sources for imputation,
the proposed federated missing data imputation algorithm contributes to enhancing the
model’s generalization performance. This is because they can capture a broader range of
data features and patterns.

4.3.3. Lossless Testing

When the distance matrix is encrypted and decrypted, the calculation results may be
affected. This experiment is to compare the federated KNN imputation method with the
centralized KNN algorithm to verify the lossless nature. By combining the local data of
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the two parties, the centralized imputation experiment is conducted, the imputation effect
of partial missing values is shown in Figure 9. Paired-sample t-test is performed on the
imputation results of the two methods across different missing rates, and the results are
shown in Table 5.

Figure 9. Comparison of imputed values of two methods.

Table 5. Paired sample t-test across different missing rates (α = 0.05).

Missing Rates 5% 10% 15% 20% 25% 30% 35% 40%

p value 0.6412 0.4416 0.7110 0.4836 0.1732 0.3608 0.9499 0.5784

It can be seen from the Figure 9 that the federated KNN imputation results are com-
pletely consistent with the centralized KNN imputation results, indicating that the federated
KNN imputation method can almost realize lossless federated imputation while protecting
local data set.

Furthermore, to demonstrate that the lossless is credible, the t-test is conducted.
Within each missing rate, repeated experiments are conducted and the two RMSE vectors
for both FKNN and centralized KNN are obtained, which is used for paired-sample t-test
under the significance level of 0.05. As shown in Table 5, all p values are much greater than
0.05 proving that the two RMSE vectors have no significant difference and the lossless is
proved to be credible.

4.3.4. Contribution to Regression

Another experiment to verify the effectiveness of the federated KNN method is to use
the imputed data for modeling tasks, and compare the corresponding modeling perfor-
mances with other imputation methods. In this experiment, federated KNN imputation
method is selected as the basic experimental group, and the MAX, MIN, and MEAN im-
putation methods are selected as the comparison group to carry out the vertical federated
linear regression modeling tasks, respectively.

The imputed data set is utilized for linear regression modeling to predict motor speed.
The 80% of the data set is used as the training set and the rest as the test set. During the
testing process, there are basically two methods for imputation. The first method is to carry
out the completely same process as training process on testing data set. The other method
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is to impute with well imputed training data set. Considering the scale of testing set may
be small and cannot impute by itself, the second way is adopted. Explainable variance
and RMSE are selected as the regression performance metrics. For each method, 10 sets of
randomized experiments are conducted, and the average performance metrics from these
10 sets are taken as the final values. The algorithm of vertical federated linear regression
realized inside FATE is adopted and the whole training and testing processes are shown in
the Figure 10.

Figure 10. Linear regression modeling processes.

Both processes utilize the Reader component to read the data, and the processed data
enters the DataTransform component for format conversion. After completing the data
conversion, both sides’ data is intersected through the Intersection component to align
the data samples based on the ID. The KnnImputation component is then employed to
impute any missing values in the data. Following feature imputation, the HeteroLinR
linear regression component is used for vertical federated regression modeling. Finally,
the results are passed to the Evaluation component to compute the explainable variance
and RMSE of the imputation. The experimental results are as follows.

In Figure 11, the left side depicts a chart comparing explained variances. The horizontal
axis represents the missing rate, while the vertical axis indicates the values of explained
variance. For each missing rate, the explained variances of the four methods are plotted
together in a group. It can be observed that, within each group, the FKNN method
consistently achieves the maximum value. The right side is a chart comparing RMSE
values. The horizontal axis represents the missing rate, while the vertical axis displays the
values of RMSE. For each level of missing data, the RMSE values of the four methods are
plotted together as a group. It can be observed that, within each group, the FKNN method
consistently achieves the minimum value.

In the Figures 12–14, the left side comprises box plots illustrating explained variance,
while the right side depicts box plots for RMSE. The upper and lower edges of the box
represent the middle 50% range of the ten dots, with the midpoint indicating the mean.
Additionally, dots are plotted and methods are distinguished by different colors. It can
be observed that FKNN exhibits optimal and significant mean performance. However,
the performance gap between the MEAN method and the FKNN method is relatively small.
The reasons are as follows.
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Figure 11. Bar charts of explainable variance and RMSE across different missing rates (The data of
Party A contain missing values).

Figure 12. Box plots of explainable variance and RMSE with 10% missing rate (The data of Party A
contain missing values).

Figure 13. Box plots of explainable variance and RMSE with 20% missing rate (The data of Party A
contain missing values).
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Figure 14. Box plots of explainable variance and RMSE with 30% missing rate (The data of Party A
contain missing values).

In this experiment, it is assumed that Party A’s data contain missing values, while
Party B’s data are devoid of any missing values. According to the experimental results,
even though the imputed Party A’s data exhibit a lower imputation RMSE, the contribution
to regression model performance is limited. This is because, as it is settled, Party A’s data
set contributes less to the label prediction while Party B’s data set contributes more to
the label prediction. Subsequently, the experiment is modified once again, assuming that
Party B’s data set also contains missing values. Under the same missing rate with Party A,
the experiment is conducted once more, and the results are illustrated as follows.

In Figure 15, the differences between the four methods, whether in terms of explained
variance or RMSE, have increased compared to Figure 11, making the distinctions more
pronounced. For example, at the 10% missing rate, the difference of the explained variance
between FKNN and MEAN is about 0.04, which is larger than 0.01 in Figure 11. In the
Figures 16–18, FKNN consistently achieves optimal mean performance. Compared to the
Figures 12–14, it can be observed that the interquartile range of each box plot is further
expanded at the upper and lower edges, and the distribution of the 10 dots becomes more
dispersed. This is because that the missing data from the Party B has a significant impact on
the linear regression model. Generally speaking, the proposed federated KNN imputation
method makes a significant contribution to linear regression modeling tasks.

Figure 15. Bar charts of explainable variance and RMSE across different missing rates (The data of
Party A and Party B contain missing values).
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Figure 16. Box plots of explainable variance and RMSE with 10% missing rat (The data of Party A
and Party B contain missing values).

Figure 17. Box plots of explainable variance and RMSE with 20% missing rate (The data of Party A
and Party B contain missing values).

Figure 18. Box plots of explainable variance and RMSE with 30% missing rate (The data of Party A
and Party B contain missing values).

Based on the results, it is evident that compared to the scenario where only Party
A’s data contain missing values, the imputed Party B’s data show a more noticeable
improvement in regression model performance. This indicates, from the perspective of
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predicting the guest label, that the quality of Party B’s data is superior to that of Party A’s
data. This aligns with the original intention of vertical federated modeling, which is to
leverage different features from other parties to obtain a better machine learning model.

Taking into consideration the results from the above two experiments, the proposed
missing imputation method achieves the maximum value of explainable variance, and the
minimum value of RMSE for the listed 10%, 20%, and 30% missing rate cases, compared to
the other three basic methods. In the case of 10% missing rate, all four methods achieve
their respective maximum explainable variance values, minimum RMSE values.

Overall, data imputation contributes significantly to regression modeling, with the
proposed FKNN imputation method demonstrating the most evident modeling contribu-
tion. This contribution is also dependent on the features themselves, such as the features
of Party B contributing more to the regression model than those of Party A. In such cases,
imputing missing data for Party B can enhance the performance of the regression model
more effectively.

5. Conclusions

Currently, there is a lack of research on vertical federated data imputation methods.
A vertical federated data imputation method is proposed which considers the correlation
between data from different parties, aiming to enhance imputation accuracy. The proposed
method does not require the exchange of raw data during computation; instead, only the
exchange of distance matrix and index matrix is necessary, mitigating the risk of privacy
leakage. To further address concerns of potential data leakage or dishonest participants at-
tempting to recover original data through distance matrix during network communication,
homomorphic encryption is employed. Party A aggregates the encrypted global distance
matrix and submits it to the coordinating party for decryption. Throughout this process, no
party can decrypt the local distance matrices of other parties, ensuring the privacy of their
data while completing the imputation of missing data based on the global distance matrix.

The imputation method comparison experiment, centralized comparison experiment,
lossless testing experiment, and linear regression modeling experiment are designed to
verify the validity. According to the comparative evaluation results, our approach exhibits
consistently better performance than several simple imputation methods in different per-
formance measurement and prediction tasks. The merits of our method can be attributed
to several factors. Firstly, feature values among similar samples exhibit a closer proxim-
ity than to other samples. This closeness is dictated by the realistic physical meaning of
the features. Therefore, imputing missing values using feature values from similar sam-
ples is more aligned with the true values. Secondly, by federating host parties, feature
space is expanded, and the sample similarity calculation is more credible to improve its
imputation performance.

In future work, enhancements can be made to the proposed method. Similar to other
KNN methods, the vertical federated KNN imputation method proposed in this paper also
faces computational time constraints. Due to the high computational complexity and spatial
complexity of the algorithm, it cannot handle large sample data sets at present. As the size
of data set increases, the computational time grows exponentially. There are two directions
for improvement in the future. One direction is to federalize other centralized imputation
algorithms such as LR and RF, the difficulty is how to deal with the problem of missing
values in the modeling process. Another improvement direction is to use approximate
KNN algorithm to shorten the computation time and improve the computation efficiency.
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