
Citation: Guo, W.; Xue, J.; Meng, W.;

Han, W.; Liu, Z.; Wang, Y.; Li, Z.

MalOSDF: An Opcode Slice-Based

Malware Detection Framework Using

Active and Ensemble Learning.

Electronics 2024, 13, 359. https://

doi.org/10.3390/electronics13020359

Academic Editor: Aryya

Gangopadhyay

Received: 10 December 2023

Revised: 11 January 2024

Accepted: 12 January 2024

Published: 15 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

MalOSDF: An Opcode Slice-Based Malware Detection
Framework Using Active and Ensemble Learning
Wenjie Guo 1, Jingfeng Xue 1, Wenheng Meng 1, Weijie Han 2, Zishu Liu 1, Yong Wang 1 and Zhongjun Li 1,*

1 School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
3120215536@bit.edu.cn (W.G.); xuejf@bit.edu.cn (J.X.); 3220221066@bit.edu.cn (W.M.);
wangyong@bit.edu.cn (Y.W.)

2 School of Space Information, Space Engineering University, Beijing 101416, China
* Correspondence: leezj@bit.edu.cn

Abstract: The evolution of malware poses significant challenges to the security of cyberspace. Ma-
chine learning-based approaches have demonstrated significant potential in the field of malware
detection. However, such methods are partially limited, such as having tremendous feature space,
data inequality, and high cost of labeling. In response to these aforementioned bottlenecks, this paper
presents an Opcode Slice-Based Malware Detection Framework Using Active and Ensemble Learning
(MalOSDF). Inspired by traditional code slicing technology, this paper proposes a feature engineering
method based on opcode slice for malware detection to better capture malware characteristics. To
address the challenges of high expert costs and unbalanced sample distribution, this paper proposes
the SSEAL (Semi-supervised Ensemble Active Learning) algorithm. Specifically, the semi-supervised
learning module reduces data labeling costs, the active learning module enables knowledge mining
from informative samples, and the ensemble learning module ensures model reliability. Furthermore,
five experiments are conducted using the Kaggle dataset and DataWhale to validate the proposed
framework. The experimental results demonstrate that our method effectively represents malware
features. Additionally, SSEAL achieves its intended goal by training the model with only 13.4% of
available data.

Keywords: malware classification; opcode slice; active learning; ensemble learning

1. Introduction

In an era of unprecedented expansion in the digital landscape’s gray areas, the pro-
liferation of numerous threats has reached an alarming scale. According to Kaspersky,
there has been a 20% increase in detected malware attack attempts, surpassing 74.2 million
incidents in 2022 compared to 61.7 million in the previous year. By 2025, it is projected that
the total volume of human-generated data will reach a staggering 175 ZB [1]. This surge in
data and evolving digital threats underscores the growing significance of network security.
The relentless pace of malware evolution, characterized by the continuous emergence of
new versions and families, poses a formidable challenge for cybersecurity professionals.

Malware not only adapts to its environment but also enhances its anti-detection
capabilities through advanced techniques such as obfuscation, encryption, and shell usage,
thereby posing significant challenges for cybersecurity. Traditional methods, including
classic virus signature databases and heuristic scanning, have encountered limitations due
to their inability to effectively combat malware while exhibiting high false-positive rates.
As a result, these methods have struggled to cope with the current state of network security.
The evolving threat landscape has prompted the emergence of machine learning as a critical
tool in malware detection [2]. Machine learning techniques have proven their ability to
analyze known malware samples, extract discriminative features, and accurately classify
these samples [3,4].

Electronics 2024, 13, 359. https://doi.org/10.3390/electronics13020359 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13020359
https://doi.org/10.3390/electronics13020359
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1572-068X
https://doi.org/10.3390/electronics13020359
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13020359?type=check_update&version=1

Electronics 2024, 13, 359 2 of 19

The essence of effective malware detection lies in feature engineering [5]. Feature engi-
neering aims to extract the intrinsic attributes that are most likely to be used to distinguish
malicious software from benign software in PE files, and then generate corresponding
digital features for representation. Feature engineering generally includes the analysis, def-
inition, extraction and other steps of features. With accurate feature selection, the detection
engine can capture the deep and unique features of malicious software, providing strong
support for subsequent malicious code detection. Features typically encompass both
static and dynamic attributes. In the real physical world, initiating the dynamic analysis
of unknown software can be challenging, rendering static analysis the most immediate
and expeditious method for initial assessment. Moreover, from an efficiency perspective,
static features remain the industry’s preferred choice for detection [6]. While existing static
structures such as Data Flow Graphs (DGs) [7], Control Flow Graphs (CFGs) [8], and Func-
tion Call Graphs (CGs) [9] can encompass a substantial amount of semantic information,
they suffer from significant space consumption. Furthermore, even minor alterations in
the source code can result in substantial variations in the extracted graph features [10].
Therefore, the extraction of features from opcodes remains the most common and efficient
approach [11].

Machine learning-based methods not only require a large amount of computing re-
sources to train models but also have high data requirements [12]. The distribution of
benign and malware samples in the real world exhibits significant imbalances. Simultane-
ously, the rapid evolution of potential and unknown samples occurs at an extraordinary
pace. Despite the existence of platforms such as VirusShare, which provides an extensive
repository of malware samples, machine learning-based models for malware code detection
may still result in false negatives when they fail to adequately learn the characteristics
of malware samples. On the classic Win32 Platform, disassembling malware generates
more than 800 different instructions, where there is significant semantic duplication and
redundancy among them. Therefore, generating features solely based on all assembly
instructions is not the most efficient method. Features corresponding to invalid instructions
and redundant instructions can reduce detection efficiency and even lead to overfitting
problems. Some existing methods [13] have performed feature selection during feature
engineering to reduce dimensionality. However, this practice may result in the loss of some
semantic information that could affect the accuracy of the detection results.

Additionally, current malware detection engines [14] demonstrate effective perfor-
mance in detecting known sample types. However, they face challenges when dealing with
emerging families and unknown types of malware. Moreover, the high cost associated
with human judgment needs to be considered. Therefore, the current research focus lies
in designing a detection model that can accurately operate with minimal known labeled
samples. This model should possess the capability to withstand label scarcity and the
unequal distribution of types. This challenge limits the effectiveness of existing methods,
necessitating the exploration of solutions to overcome this bottleneck.

Why is the opcode slice defined by this work? Firstly, the concept of slicing, referred
to as program slicing, was initially proposed by Mark D. Weiser in the 1980s for debugging
and modifying source code [15]. With technological advancements, the scope of slicing
has gradually expanded from static to dynamic analysis and from forward to backward
traversal [16], encompassing a single process to multiple processes and non-distributed
to distributed programs. Application scenarios also include software debugging, testing,
maintenance, reconstruction, and security purposes [17]. Additionally, classic objects for
slicing include data streams, information flows, and dependency graphs [18], which involve
handling control flows, composite data types, and pointers. The ability to identify the
behavioral points of malware, such as data transfers, process comparisons, flow control,
program control, loop control, and other operations, offers malware analysts a clearer
understanding of the intent behind the malware. On the other hand, detection engines
primarily focus on feature engineering that can extract and quantify the critical behavioral
points of each malware.

Electronics 2024, 13, 359 3 of 19

Despite extensive research on malware detection techniques based on semantic infor-
mation, researchers continue to face several challenging issues:

• Existing deep learning methods based on opcodes demand embedding all instructions,
which can be time consuming. Moreover, the extensive variety of opcodes, some of
which lack meaningful semantic information, can protract model construction.

• Malware evolves at a rapid pace, making it challenging to obtain accurate labels for
the latest, real-world malware samples. The central research concern revolves around
employing a minimal set of labeled samples for effective detection—a pivotal issue for
practical engineering applications.

• Current detection engines unavoidably grapple with false positives and false negatives
when confronted with previously unknown types of malware. These challenges
are intrinsically linked to human expert analysis and judgment. Consequently, it is
imperative to consider the associated costs of manual detection.

This paper introduces the MalOSDF framework designed to address the need for effi-
cient and rapid feature extraction from malware samples and develop a resilient malware
detection engine capable of identifying unknown malware types. Specifically, this work
presents an opcode slice-based feature engineering method and Semi-supervised Ensemble
Active Learning (SSEAL) malware detection algorithm. The opcode slice-based feature
engineering method conducts semantic aggregation, effectively reducing feature dimen-
sionality. Simultaneously, malicious samples are embedded with semantic information
to resolve the issue of sparse features and dimensionality explosion associated with the
one-hot encoding of all opcodes [19]. The MalOSDF malware detection method employs the
principles of semi-supervised learning, and utilizes active learning and ensemble learning
techniques. This approach enhances the quality of knowledge extraction and learning for
model training while addressing the limitations of classical machine learning models in
detecting unknown categories of malware and their vulnerability to noisy data.

The contributions of this article include the following points:

• In this paper, the opcode slice-based feature engineering method is proposed to reduce
dimensions efficiently.

• This work presents the SSEAL approach, which effectively addresses the limitations
of having extensive dataset requirements and encourages a more comprehensive
exploration of sample knowledge.

• This paper uses the Kaggle dataset for experiments and evaluates the effectiveness of
the proposed framework.

The rest of the paper is organized as follows. Section 2 surveys the related work in
the field of malware detection. Section 3 describes the framework of MalOSDF. Section 4
evaluates its performance and compares it with similar studies. Section 5 discusses this
work. Section 6 concludes our findings in the paper.

2. Related Work

Malware detection can be considered a classic feature engineering process, which
includes feature definition, feature extraction, and feature detection [20]. Malware detec-
tion methods can be categorized into syntax-based and semantic-based approaches. The
semantic-based approach provides stable support for interpretability.

MalInsight [21] is proposed by profiling malware from three aspects, which are the
basic structure, low-level behavior, and high-level behavior. And the importance of the
three aspects is evaluated and sorted, quantitatively demonstrating that these aspects have
the same effects with the optimal feature set. Han et al. proposed MalDAE [22], which
correlates and fuses dynamic and static API sequences into one hybrid sequence based
on semantics mapping and constructs the hybrid feature vector space. MalDAE gives an
understandable explanation for common types of malware and provides predictive support
for understanding and resisting malware. Inspired by this method, this work believes that
we can focus on selecting opcode with strong maliciousness for slicing.

Electronics 2024, 13, 359 4 of 19

Huang et al. [23] proposed EAODroid, an approach based on the enhanced API order
for Android malware detection, which learns the similarity of system APIs from a large
number of API sequences and groups similar APIs into clusters. The extracted API clusters
are further used to enhance the original API calls executed by an app to characterize the
behaviors and perform classification. The method of clustering similar APIs provides us
with inspiration, that is, we can define corresponding slices for similar opcode.

The issue of feature redundancy is addressed by Kong et al. [24] through the utilization
of mutual information-based feature selection techniques. This approach effectively reduces
over 900 features to 64 dimensions while incorporating sample row and size characteristics,
thereby achieving efficient feature detection. However, extensive feature selection based
on mutual information consumes a substantial amount of time. Our intuition is to directly
extract features from a semantic perspective, which can offer a more rapid and potentially
even more interpretable alternative. Therefore, this paper endeavors to define feature slices
from a semantic standpoint as the basis for subsequent feature engineering.

In the feature detection phase, machine learning has been widely adopted by numerous
scholars as the primary technical approach due to its powerful data mining capabilities [25].
The field of machine learning encompasses various subfields, including supervised learn-
ing, unsupervised learning, semi-supervised learning, and reinforcement learning. Both
supervised and unsupervised learning require labeled data for model training.

The conventional approach in existing semi-supervised machine learning methods
typically involves assigning pseudo-labels to unlabeled data that closely resemble the
distribution of existing labeled data. However, this practice may lead to potential model
detection failures when confronted with unknown samples. The acquisition of malicious
samples varies across different scenarios, resulting in imbalances within the sample distri-
bution. Addressing this challenge is crucial during the model training process, prompting
researchers to contemplate effective strategies for training models using an unbalanced
and limited amount of malware samples.

Renato et al. [26] proposed an iterative data preprocessing method capable of in-
creasing the separation between clusters. Unlike other methods, it iteratively favors more
meaningful features. Wang et al. proposed SIMPLE [27], a few-shot malware classification
approach that utilizes a multi-prototype modeling technique to generate multiple proto-
types for each malware family, thereby enhancing its generalization capacity based on
observations derived from dynamic analysis of API call sequences. Gao et al. proposed
MaliCage, a packed malware family classification framework based on DNN and GAN.
MaliCage consists of three core modules: a packer detector, a malware classifier, and a
packer generative adversarial network (GAN). This method effectively overcomes the
bottleneck caused by an insufficient sample size.

Numerous scholars have conducted research in the realm of the cost-effective acqui-
sition of labeled data, employing technical and mathematical methods. This domain is
referred to as active learning, which involves human intervention in the labeling process
during the training of detection models. Annotated samples contain knowledge that is
more amenable to exploration, thereby enhancing the model’s capabilities.

The paper argues that samples which can be easily misclassified by existing detection
engines actually contain more information that is helpful for improving the accuracy of
the detector. In other words, these challenging-to-categorize samples may possess crucial
features. If these features can be correctly identified and utilized, they have the potential
to enhance the performance of the detector. The work presented in [28] focuses on the
anomaly detection domain and introduces an active learning-based approach. The crucial
aspect of this study lies in the fact that data points located at the classification boundaries of
detection engines are likely to possess a wealth of untapped information, particularly when
making determinations about unknown samples. In machine learning models that require
extensive training data, accurately labeling these data points holds paramount importance
for enhancing the model’s detection performance. Consequently, active learning becomes
exceptionally vital in such scenarios.

Electronics 2024, 13, 359 5 of 19

3. Methdology

To tackle the above challenges, this section provides an overview of the MalOSDF
framework. Specifically, this paper presents a comprehensive assembly slicing approach
to characterize malicious behavior and proposes a feature engineering method for the
efficient embedding and optimal utilization of semantic information. Additionally, this
section outlines the SSEAL detection algorithm that considers the real-world expert costs
associated with addressing threats posed by rapidly malware evolving.

3.1. MalOSDF Overall Architecture

This work introduces a malware detection framework based on opcode slice as de-
picted in Figure 1. It consists of two main components: the feature engineering method
and the SSEAL algorithm. In this section, we provide a brief description for each step
as follows:

1. Disassembly: Decompiling binary code.
2. Feature Definition: Based on the semantic analysis of assembly instructions, we

customarily define malware opcode slice. Assembly program slicing refers to the
statements or expressions in assembly programs that affect specified variables within
the sample, leading to the creation of a mapping dictionary.

3. Feature Engineering: Data preprocessing is performed on the samples, and based on
predefined opcode slice types, opcode slice sequences are extracted from the assembly
programs of malware.

4. Generating Feature Matrices: The statistical features are calculated for each malware
sample based on the opcode slice sequences. Specifically, this method counts the
occurrences of each slice and N-gram statistically, thereby generating the feature
matrix of the set of malware samples.

5. Malware Detection: Using the proposed SSEAL algorithm, a classifier is trained based
on the feature vectors of malware samples.

Figure 1. MalOSDF overall architecture.

The classifier utilized for malware detection consists of two key modules, which will be
introduced in Section 3.3 in detail. For the Ensemble Learning Module, ensemble classifiers
are generated through a hard voting mechanism, including Random Forest (RF), Extra
Trees (ET), and Gradient Boosting Trees (GBT). And the Semi-Supervised Active Learning
Sample Sampling Module handles the semi-supervised active learning process.

This paper addresses the challenge of managing a large number of features in tradi-
tional machine learning-based malware detection. This work proposes a method based
on opcode slice construction for generating static features of malware. This approach not

Electronics 2024, 13, 359 6 of 19

only conserves significant computational resources but also reduces the time required for
malware detection, thereby providing a robust foundation for efficient detection.

Furthermore, this framework introduces a Semi-supervised Ensemble Active Learning
algorithm that not only enhances the efficiency of training multi-class models but also
reduces the training time, mitigates the impact of noisy data, tackles the issue of imbalanced
sample distribution, and equips the system with the capability to identify unknown family
samples of malware.

3.2. Feature Engineering

From the above analysis, this section proposes an opcode slice-based feature engineer-
ing method. Specifically, we give the definition of opcode slices and describe the method of
features embedding.

3.2.1. Opcode Slice Definition

After disassembling the malware binary file, the assembly instruction is obtained. An
assembly instruction generally consists of two parts: the operation code and the operation
number. Building upon classical instructions that encompass data transfer, arithmetic
operations, logical operations, string operations, program control, input–output opera-
tions, processor control, privilege instructions, and system function call instructions, this
invention leverages the distinctive semantics of opcode in malware assembly instruc-
tions. Furthermore, we explore the inclusion of additional semantic information from the
operands associated with opcodes, such as pointers, variable values, function addresses,
and memory details, to enhance the feature engineering process.

Specifically, after extracting all the opcodes and operands, we first normalize and
standardize the operands according to the method [29] shown in Table 1. (1) Immediate
numbers are divided into function call, jump address, reference, and default classes based
on their purpose. Calling functions are further classified as standard library function
calls, recursive calls, internal calls (within the same file), and external calls (in different
files). Jump addresses represent jumps between basic blocks within a function. References
distinguish between string references, static variable references (in the program’s global
data area or static data area), and data references (in the program’s data segment or
stack). Other immediate numbers are not differentiated. (2) Registers are classified into
the following categories: The flag registers, such as control registers, debugging registers,
floating-point registers and segment registers, are classified into one class. In the special
purpose register, the stack pointer register, base register and instruction pointer register are
grouped into one class. Except for the aforementioned registers, all others are classified
as general-purpose registers and further differentiated based on the number of bytes they
can hold (such as 1 byte, 2 bytes, 4 bytes, 8 bytes, etc). (3) Pointers are divided into direct
addressing and indirect addressing based on their addressing method. Direct addressing is
further categorized into pointers less than 8 bytes in size and pointers greater than 8 bytes in
size. Indirect addressing is divided into string pointers and other pointers according to their
pointing object class. The second step is to sort the importance of operation instructions
based on TF-IDF (term frequency–inverse document frequency) statistical analysis. Then,
semantic analysis is performed on opcodes with a TF-IDF value greater than 1 to obtain
the opcode slices. Our work customizes the corresponding opcode slices for frequently
occurring opcodes within malware by categorizing 157 commonly appearing assembly
instructions into 35 distinct opcode slices as shown in the Table 2.

Electronics 2024, 13, 359 7 of 19

Table 1. Normalization rules for instruction operands: immediate, register and pointer [29].

Operand Categories Normalized Form

function call libc[funcname], self, innerfunc, externfunc
jump address jmpdst
reference dispstr, dispbss, dispdataImmediate

default immval

size reg[1|2|4|8]
stack/base/instruction [s|b|i]p[1|2|4|8]Register
special purpose reg[cr|dr|st], reg[c|d|e|f|s]s

direct memptrPointer indirect [base + index×scale + dispstr]

Table 2. Opcode slice definition.

Slice Label Opcode Contained Slice Label Opcode Contained

Data_Transfer mov, movsx, movzx Arithmetic_Div div, idiv

Data_Swap xchg, xlat, bswap Logical_Operation and, or, not, xor

Stack_Operation push, pop, pusha, pushad,
popa, popad Test test

Address_Transmission lea, lds, lss, les, lfs, lgs Bit_Test bt, bts, btr, btc

Flag_Transfer_Ah lahf, sahf Bit_Scan bsf, bsr

Flag_Transfer_Stack pushf, pushfd, popf, popfd Shift_Operation shl, shr, sal, sar, rol, ror, rcl, rcr,
shld, shrd

Type_Conversions cbw, cwd, cwde, cdq, bswap Unconditional_Tran jmp

String_Operation movs, movsb, movsw, movsd Conditional_Tran

jz, jnz, je, jne, js, jns, jo, jno, jp,
jpe, jnp, jpo, jc, jnc, jb, jnb, jae,
jnae, jl, jnge, jnl, jge, jle, jng,
jnle, jg, ja, jnbe, jna, jbe

String_Storage stos, stosb, stosw, stosd Conditional_Transfer jcxz, jecxz

String_Reads lods, lodsb, lodsw, lodsd Loop_Control loop, loopz, loope, loopnz,
loopne

String_Comparison cmps, cmpsb, cmpsw, cmpsd Call call

String_Scan scas, scasb, scasw, scasd Return ret

Arithmetic_Add add, adc, inc Interrupt int, iret

Arithmetic_Sub sub, sbb, dec Repeat rep, repe, repz, repne, repnz,
irp, irpc

Arithmetic_Neg neg Basic_Input_Output in, out

Compare cmp String_Input_Output ins, ins, insb, insw, insd, outs,
outsb, outsb, outsw, outsd

Arithmetic_Mul mul, imul Flag clc, cmc, stc, cld, stc, cli, sti

Processor nop, hlt, wait Privilege sgdt, lsi, invd

3.2.2. The Process of Feature Engineering

Regarding the section on assembly program feature representation, after obtaining
the opcode slices, our method computes their statistical features. This involves calculating
the N-gram statistical features based on the opcode slices for each malware sample. These
features serve as the feature vectors for the assembly program training samples. The specific
workflow is shown in Figure 2:

Electronics 2024, 13, 359 8 of 19

1. Malware samples’ disassembled opcodes are sequentially read, and opcode slices are
extracted based on predefined opcode slice definitions, ignoring undefined opcodes.

2. The occurrences of opcode slice N-grams are counted and sorted for N = 1, 2, 3.
3. The top-k opcode slices N-grams are selected as features.
4. The N-gram statistical features are computed for each assembly sample, forming

individual sample feature vectors.
5. A feature matrix is constructed for the code sample dataset.

Figure 2. The process of feature engineering.

For example, we can use s1 ∼ sm to mark assembler training samples.
Define the top-k opcode slice n-gram as follows: Si, i ∈ (1 n). Given the assembler

sample sp of a malware, count the number of Si occurrences as Np,i. Then, the feature vector
of sample sp is defined as Equation (1), where labelp is the label of the assembler sample
malwarep:

F⃗pj = { Np,1 . . . Np,i . . . Np,n labelp } (1)

Defining the feature matrix as a collection of feature vectors, then the feature matrix
for p assembly program samples is shown as Equation (2):

FM =

N1,1 . . . N1,i . . . N1,n label1

Np,1 . . . Np,i . . . Np,n labelp

Nm,1 . . . Nm,i . . . Nm,n labelm

 (2)

The various dimensions (columns) of N in the figure above represent the frequency of
corresponding slice types. Subsequently, we can use the feature matrix FM derived from
the assembly program samples to train the subsequent detection engine.

3.3. Semi-supervised Ensemble Active Learning

One of the challenges that semi-supervised learning algorithms need to address is the
introduction of a significant amount of noisy samples during the training process, which
can hinder the model from learning the correct information. SSEAL alleviates the issue
of noisy samples by employing a collaborative training algorithm for multiple classifiers,
which is an ensemble learning approach.

Active learning methods enable a more efficient identification of samples that contain
valuable information within the dataset. Expert queries also equip the model with the
capability to detect unknown samples. It is important to note that, for the purpose of
analysis, we assume that all labels provided by experts are reliable.

This algorithm includes the following modules in sequence.

1. Ensemble Learning Module
The integrated learning module includes multiple base learners. In this method, three
base learners are designed, namely RF, Extra Trees, and GBT. Each sample is inputted
to different base learners to obtain the probabilities of the test samples belonging to
different categories. Simultaneously, the detection results of each base learner are
outputted, and the final results of the test samples are obtained by hard voting from
the three base learners.
Let us delve deeper into the three base learners involved. Each of these base learners
possesses unique characteristics and operating mechanisms, collectively forming the
framework of our integrated learning module (Figure 3).

Electronics 2024, 13, 359 9 of 19

Figure 3. The process of feature engineering.

Random Forest (RF): Random Forest is an ensemble learning method that operates
by constructing a multitude of decision trees at training time and outputting the
class that is the mode of the classes (classification) or mean prediction (regression)
of the individual trees. It enhances the performance of a single decision tree by
introducing randomness in the feature selection and bootstrap sampling, thereby
improving robustness and generalization.
Extra Trees (ET): Extra Trees, or Extremely Randomized Trees, is another ensemble
learning method that builds multiple decision trees and combines their predictions.
Similar to Random Forest, it introduces randomness in the feature selection process,
but Extra Trees takes it a step further by using random thresholds for each feature
rather than searching for the best split points. This additional randomness can lead to
increased diversity among the trees and potentially better generalization.
Gradient Boosting Trees (GBT): Gradient Boosting is an ensemble technique where
weak learners (typically shallow decision trees) are combined to create a strong
learner. GBT builds trees sequentially, with each tree correcting the errors made by the
previous ones. It minimizes a loss function by adding weak learners, which allows
it to capture complex relationships in the data and achieve high predictive accuracy.
Gradient Boosting Trees are particularly effective in handling diverse and non-linear
patterns in the data.

2. Semi-supervised active learning module

The integrated learning module calculates the detection confidence value for each
sample by determining the probability that it belongs to different categories as output by
the three classifiers. Samples with high and low confidence levels are marked according
to preset screening criteria, which will be described in detail below. The active learning
component transfers low-confidence samples to an expert marker, who inputs labeled codes
into the tagged dataset. In the semi-supervised learning part, firstly, count the maximum
value Num_max of different types of samples in the labeled sample set. Then obtain the
corresponding pseudo tags for these high-confidence samples and calculate the difference
Num_aug between this category and Num_max. Finally, select the high-confidence samples
with the maximum Num_aug from this category to add them to the labeled dataset.

Uncertainty sampling involves the extraction of samples that are challenging for
the model to distinguish, which are then provided for expert annotation. These hard-to-
distinguish samples contain valuable knowledge that can significantly enhance algorithmic
detection. The key here is quantifying the model’s difficulty in differentiation. Classic ap-
proaches include least confident, margin sampling, and entropy methods. Margin sampling
selects samples that are almost equally likely to be classified into two categories, meaning

Electronics 2024, 13, 359 10 of 19

the difference in the model’s probabilities for these data points is minimal. Specifically,
margin sampling chooses samples with the smallest difference between the highest and
second-highest predicted probabilities. In the context of multi-class malware detection in
this paper, margin sampling is found to be more effective for model training.

The newly added dataset with tags needs to be removed from the original test set,
which is the unlabeled set. Then, it should be re-entered into Module 1 to update the model
until reaching the specified number of iterations or when the overall tag ratio reaches
the threshold. At that point, the loop stops, and we obtain the final training model and
classification results.

The overall algorithm is shown in Algorithm 1.

Algorithm 1: Semi-supervised Ensemble Active Learning (SSEAL).

Input: unlabeled data Du, labeled data D, classifiers RF,Extra Trees and GBT,
confidence threshold θ.

Output: trained models RF,Extra Trees,GBT.

1 // Ensemble learning
2 foreach xi in Du do
3 probr f ← RF(xi)

4 probet ← ExtraTrees(xi)
5 probgbt ← GBT(xi)

6 end
7 pseudo label pli ← vote(probr f , probet, probgbt)

8 // Semi-supervised active sampling
9 foreach xi in Du do

10 con fr f ← RF(xi)
11 con fet← ExtraTrees(xi)
12 con fgbt← GBT(xi)
13 if conf<θ then
14 // Active learning
15 get expert label eli
16 add <xi, eli> to data Temp
17 add data Temp to labeled data D
18 remove data Temp from unlabeled data Du

19 else
20 // Semi-supervised Learning
21 nummax ← max(num(class1)

, num(class2)
, . . . , num(classn))

22 if num(pli) < nummax then
23 add <xi, pli> to data Temp
24 add data Temp to labeled data D
25 remove data Temp from unlabeled data Du

26 else

27 end
28 end
29 end

In particular, each base learner outputs the probability of classification results for each
sample. Then, the edge sampling margin sampling is carried out to calculate the probability
difference between the largest and second categories. It is called reliability, shown in the
following formula:

Con fx = margin(x) = Py1 − Py2 (3)

Electronics 2024, 13, 359 11 of 19

The classifier has a low confidence in the sample, which indicates that the sample
contains more mining knowledge and is more useful for model training. Then, we select M
samples with a mining value in turn as shown in the following formula:

x∗M = argminx(Pθ(ŷ1 | x)− Pθ(ŷ2 | x)) (4)

The algorithm utilizes the pool-based active learning method. Pool-based active
learning allows for labeling by experts, enabling the algorithm framework to identify
unknown samples. Specifically, the tested sample queues are sorted from high to low to
obtain a confidence queue. Experts are then contacted to manually label samples with
low confidence levels. Samples with higher reliability can be used to enrich and balance
datasets. The classification results of all classifiers are unified, that is, the confidence level
is high, and pseudo tags are directly added. After the newly obtained pseudo-label sample
is selected, it is initially qualified to be added to the training set. However, the sample
selection strategy also needs to consider the sample equilibrium situation. This algorithm
sets that if the malware sample type already occupies the largest distribution, it will not be
added to the training set.

The above measures make the training dataset of the model balanced and enable the
model to obtain the ability to resist noise data.

4. Experiment and Analysis

In this section, we provide details about the experiments conducted to evaluate the
proposed method for disassembling binary code and its application in malware detection.
We start by introducing the dataset used in the experiments and then proceed to discuss
the experimental setup.

4.1. Dataset

To disassemble binary code, this work employs IDA Pro 6.4 for the disassembly of
binary source files. This paper uses Microsoft’s Kaggle dataset [30] and Intel’s DataWhale
dataset for experiments. The distribution of various types in the dataset is shown in the
following Table 3.

Table 3. Distribution of samples in experimental dataset Kaggle.

Family Kaggle DataWhale
1 (Ramnit) 1541 385

2 (Lollipop) 2478 598
3 (Kelihos_ver3) 2942 784

4 (Vundo) 475 6641
5 (Simda) 42 5676
6 (Tracur) 751 7563

7 (Kelihos_ver1) 398 7560
8 (Obfuscator.ACY) 1228 11,368

9 (Gatak) 1013 9425
Total 10,868 50,000

4.2. Experiment Setup
4.2.1. Experimental Environment

The runtime environment of the experiment is (1) Intel(R) Core(TM) i7-10870H CPU @
2.20 GHz, 16 GB memory, (2) Ubuntu 18.04 (64 bit).

4.2.2. Experimental Design

In order to verify the effectiveness of the proposed method, we designed experiments
to verify the effectiveness of the proposed feature engineering and SSEAL. Specifically,
the following five types of experiments are designed in this paper. Reducing the cost of

Electronics 2024, 13, 359 12 of 19

data labeling is one of the core focuses of our research. Therefore, out of a total of over
10,000 samples, we select only 100 labeled samples as initial data. The model obtains
50 semi-supervised learning samples and 50 active learning samples, respectively, in each
iteration as supplements to the training set.

(1) To demonstrate that feature engineering can effectively reflect the characteristics of
different malicious code families, we compare the performance of traditional machine
learning methods using features of varying dimensions.

(2) To verify that SSEAL is more robust than a single classifier, we compare SSEAL with a
single classifier. This work observes an accuracy trend of SSEAL and single classifiers
as the number of iterations increases. The single classifiers includes Random Forest,
GBT and Extra Trees. There is no difference in the sampling strategy between SSEAL
and base classifiers except that the base classifier only uses its own queue to filter
low-confidence samples and high-confidence samples.

(3) To verify the effect of SSEAL under different dimensional features, we compare SSEAL
algorithms in different N-gram dimensions.

(4) To verify the ability of SSEAL to detect unknown malicious samples, this paper
observes its performance on unknown malware that was not included in the initial
labeled dataset.

(5) To verify the ability of SSEAL to detect unbalanced malware datasets, this study
compared the performance of SSEAL with different numbers of labeled samples for
the initial training. We set 50, 100, and 200 samples in the initial labeled sample set,
and each experiment performed 20 iterations with 50 samples queried in each iteration
to evaluate the performance of SSEAL by observing the accuracy of the model in
each iteration.

4.3. Results and Analysis
4.3.1. Comparison of Machine Learning Methods Across Varying Feature Dimensions

In order to evaluate the feature engineering method proposed in this paper, this paper
adopts classifiers such as Random Forest, decision tree, nearest neighbor classification and
extreme gradient lifting tree to carry out the experiments. The results of the classification
detection based on traditional classifiers are shown in Table 4.

Table 4. Detection results of traditional classifiers.

Random
Forest

Decision
Tree KNN XGBoost

Accuracy 97.93% 96.23% 96.04% 97.38%
precision 97.38% 94.32% 95.93% 95.19%
Recall 93.12% 91.52% 91.39% 91.43%

Kaggle

F1 score 97.59% 92.52% 92.96% 92.69%
Accuracy 98.11% 97.28% 96.19% 97.13%
precision 97.70% 94.81% 93.06% 92.74%
Recall 94.34% 94.06% 90.58% 91.55%

DataWhale

F1 score 95.36% 94.02% 91.39% 92.38%

As shown in Table 4, the accuracy of using the Random Forest classification algorithm
is relatively higher, and the experimental results show that 97.93% accuracy can be obtained
based on 37-dimensional feature vectors.

Further, in order to prove whether this feature engineering method has space for
further optimization, this paper further selects top-k (k = 37, 21, 15) dimension slice features
for classification according to the occurrence frequency of these features. The experimental
results are shown in Table 5.

Electronics 2024, 13, 359 13 of 19

Table 5. Classification results of different dimension of opcode slice features.

Feature Dimension Metric Random Forest Decision Tree KNN XGBoost

N = 37
Accuracy 97.93% 96.23% 96.04% 97.38%
Precision 97.38% 94.32% 95.93% 95.19%

Recall 93.12% 91.52% 91.39% 91.43%
F1 Score 94.59% 92.52% 92.96% 92.69%

N = 21
Accuracy 97.79% 96.55% 96.04% 97.33%
Precision 97.22% 95.77% 95.93% 96.62%

Recall 93.07% 91.84% 91.39% 91.27%
F1 Score 94.47% 93.10% 92.96% 92.89%

N = 15
Accuracy 97.47% 95.63% 96.14% 97.06%
Precision 97.03% 92.42% 96.03% 96.40%

Recall 92.81% 91.02% 91.47% 92.49%
F1 Score 94.25% 91.47% 93.04% 93.77%

The experimental results demonstrate that the Random Forest algorithm still achieves
higher detection rates, and the impact is not significantly reduced when reducing the slice
dimension. The accuracy rate reaches 97.79% when selecting 21-dimensional slice features
and 97.47% when selecting 15-dimensional slice features.

This experiment proves that by only selecting key opcode slice features with richer
semantics, the desired classification effect can be achieved.

It can be observed that the feature engineering designed in this paper yields superior
results compared to other methods, as it saves time for feature preprocessing and training
while also reducing the space complexity.

4.3.2. Comparison between SSEAL and Single Classifiers

In this experiment, SSEAL is compared with single classifiers with the BSS strategy
to show the impact of ensemble classifiers. Figure 4 shows that the accuracy of SSEAL is
higher than other single classifiers. When the iteration rounds 20 times, the accuracy of the
approaches gradually becomes stable, and the accuracy of SSEAL is slightly higher than the
other approaches; when the iteration round is less than 20, SSEAL has better performance
than the other approaches in most iterations.

(a) (b)

Figure 4. Comparison between SSEAL and single classifier. (a) Kaggle, (b) DataWhale.

Our advantage is that we use a small part of the data. The total sample size is 10,212,
but our initial data size is 100, and after 20 iterations, we use a total of 1098 samples, which

Electronics 2024, 13, 359 14 of 19

accounts for 1098/8169 = 13.4% of the unlabeled data, and our work still achieves over
99 percent accuracy.

4.3.3. Comparison of SSEAL Algorithms in Different Feature Dimensions

In this experiment, we compared the effect of SSEAL algorithm using different feature
dimensions. Figure 5 shows the running results of the 956-dimensional feature (left) and
the 4250-dimensional feature (right), which take 7 min 25 s and 13 min 54 s, respectively.
Although the final accuracy of using the 956-dimensional characteristic matrix is slightly
lower than the result of the 4250-dimensional one, it still reaches 98.9%. On the basis of
maintaining high accuracy, the model with low feature dimension converges faster and
takes less training time, showing excellent performance.

(a) (b)

Figure 5. Comparison of SSEAL algorithms in different feature dimensions. (a) 956-dimension,
(b) 4250-dimension.

4.3.4. Evaluation of SSEAL to Detect Unknown Malware

In this experiment, the ability of SSEAL to detect unknown malware is evaluated.
As shown in Figure 6, SSEAL can achieve a good detection effect on the samples with a
relatively large proportion. The detected F1-score gradually converges to 1. For malware of
the fourth and sixth categories, which have very few samples, SSEAL can quickly filter out
these rare attack samples. The detection rate of the fifth category samples is completely
undetected in the beginning, but it can be found in the sixth round. As the iterations
increase, the detection ability of SSEAL for this malware improves rapidly.

(a) (b)

Figure 6. F1 scores of nine families. (a) Kaggle, (b) DataWhale.

Electronics 2024, 13, 359 15 of 19

Figure 7 shows the distribution of different types of samples input to the model in
each round after using the sample selection equalizer. It can be seen that the nine types
of samples basically meet the equilibrium conditions and can provide a good training
environment for the sample to resist noise data.

(a) (b)

Figure 7. Sample distribution of different categories. (a) Kaggle, (b) DataWhale.

4.3.5. Evaluation of SSEAL with Different Samples in Pre-Training

This experiment evaluates the influence of the pre-training dataset to SSEAL. This
work pre-trains SSEAL with 20, 50, and 100 labeled samples, and records the accuracy
of SSEAL in each iteration. As shown in Figure 8, the influence of the pre-training data
to SSEAL is obvious. When there are fewer pre-training samples, the initial accuracy of
SSEAL is lower.

Figure 8. Accuracy of different pre-training sample sizes.

When the pre-training samples are 20, the initial accuracy of SSEAL is only below 70%,
but when the pre-training samples are 100, the accuracy can reach 86%. As the number
of iterations increases, the detection capability of SSEAL is rapidly improved, and the
advantage of using more labeled samples in the pre-training is no longer reflected. After
14 iterations, the 20-sample pre-trained model catches up with the 100-sample pretrained
model in terms of performance.

Electronics 2024, 13, 359 16 of 19

4.3.6. Comparison with Similar Studies

In this section, we compared our method with other studies using the same dataset or
similar algorithms, from the aspects of accuracy, features, time consumption and occupied
space. The comparison results are shown in Table 6, where “-” means unstated.

Table 6. Comparison with similar studies.

This
Work All Opcode Ahmadi et al. [31] Kong et al. [24] Raff

et al. [32]
Le

et al. [33]

Dataset “Kaggle” from Microsoft Malware Classification Challenge

Selected Feature Opcode
Slice Opcode

Hex dump-based
features + Features

extracted from
disassembled files

Mutual
information

method based
Top-18 opcodes

Entire
malware as
embedded

input

Entire
malware as
embedded

input

Dimension of feature 35 737 1804 18 - 10,000

Classification accuracy (%) 97.93 98.80 99.77 98.60 97.80 98.20

Time consumption of
feature engineering (s) 3059.41 5889.16 183,477 5907.27 - -

Time consumption of model
training (s) - - - - 32,087.4 6372

Time consumption of model
classification (s) 2.38 24.92 15 7.76 804.65 214.32

Occupied space (KB) 1223 15,120 - 1043 - -

In addition, [34] utilized ensemble learning and achieved high accuracy. However, this
work extracted information from different sections of PE and converted it into images, and
then used multiple CNN models as base classifiers, resulting in a longer training time than
ours. In contrast to [35], this work builds four static feature comprehensive description
PE files, including API and dll, which will consume more feature processing time. The
proposed feature engineering method based on opcode slice in this paper achieves the
optimal compromise between efficiency and classification accuracy. The length of the
feature vector constructed by our method is 35, and the classification accuracy is 97.93%.
On the one hand, although the classification accuracy is slightly lower than that of similar
studies [24,33], it can meet the detection requirements. On the other hand, the feature
processing time in this paper is the shortest [32,36], which means that this method can
provide promising classification results under the condition of reducing the complexity of
feature engineering.

Above all, the method proposed in this paper has a main advantage: our work can
effectively reduce the time and space occupation of model training and classification while
retaining high accuracy.

5. Discussion

As we reflect on the findings and implications of our proposed method, it is essential
to recognize both its strengths and limitations. In this discussion, we address some of
the key considerations related to the limitations, scalability, and ethical implications of
our approach.

5.1. Limitations of Our Work

Not limited to the same malware family, functional similarities of opcode slice may also
exist between benign samples and malicious samples, which will lead to the detection of
false negatives. In addition, there are some cases where the training data are unbalanced due
to the small sample size. For example, the Simda family in the Kaggle dataset is sensitive
to the detection results due to its relatively small data, which leads to false positives.

Electronics 2024, 13, 359 17 of 19

Another limitation of our study is that the high-information samples are manually la-
beled, which is assumed to always be correct. However, experts may mislabel some samples
in practical applications so that mislabeled high-information samples may be added into
the labeled training set. In this context, a more sophisticated study should be conducted on
how to avoid the impact of manually mislabeled samples on the detection model.

5.2. Scalability of Our Work

We think this method has good scalability in practical application. When implement-
ing the framework in the real world, our opcode slicing method only needs to make a
simple substitution based on semantic analysis, which can support the subsequent feature
engineering. As for adaptability to evolving malware techniques, some malware will
pack itself to escape the disassembly tool, which will destroy the foundation of the slicing
operation, thus affecting the final detection result. Therefore, we need to detect whether
the malware is packed first.

5.3. Ethical Implications and Considerations

Due to concerns related to data leakage, enterprises or individuals may be hesitant
to provide raw samples, making it challenging for many research methods to be widely
applied. The privacy protection issues associated with original or feature data of malicious
code need to be addressed [37]. In response to this situation, the introduction of federated
learning techniques [38] can be considered. This approach facilitates the training process
without the need for users to transmit their training data models directly. As a result, the
entire training procedure can be conducted without compromising the privacy of user data.

6. Conclusions and Future Work

Our work proposes an Opcode Slice-Based Malware Detection Framework Using
Active and Ensemble Learning in order to address the rapid evolution of malicious code,
the high cost of manual annotation, and the unbalanced distribution of different families.
Specifically, it introduces a feature engineering method based on opcode slice and a SSEAL
detection algorithm for malware classification. The experiments conducted in this paper
are based on the Kaggle dataset and DataWhale. The feature engineering method utilizing
opcode slice is proven effective in extracting behavioral characteristics from malware
samples, laying the foundation for efficient classification. SSEAL has demonstrated its
ability to reduce data labeling costs, extract more knowledge from samples, and exhibit
higher reliability compared to single classifiers.

After conducting research in this paper, we have the intuition that further work
can be conducted as follows: we will try to put forward a solution for the problem of
insufficient datasets caused by sample imbalance. In addition, we will combine more
semantic information, such as API, to improve the robustness of our system.

Author Contributions: Conceptualization, W.G. and W.H.; methodology, W.G. and W.M.; software,
W.M.; validation, W.G.; formal analysis, W.M.; investigation, J.X., Y.W. and Z.L. (Zhongjun Li); data
curation, Z.L. (Zishu Liu); writing—original draft preparation, W.G. and W.H.; writing—review and
editing, W.M.; supervision, J.X.; project administration, J.X.; funding acquisition, J.X. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was supported by Major Scientific and Technological Innovation Projects of Shan-
dong Province (2020CXGC010116) and the National Natural Science Foundation of China (No. 62172042).

Data Availability Statement: The data used to validate the outcomes of this investigation can be
obtained by contacting the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2024, 13, 359 18 of 19

References
1. Kaspersky Cyber Security Solutions for Home and Business|Kaspersky. Available online: https://usa.kaspersky.com/ (accessed on

10 November 2023).
2. Hu, Y.; Wang, S.; Li, W.; Peng, J.; Wu, Y.; Zou, D.; Jin, H. Interpreters for GNN-Based Vulnerability Detection: Are We There Yet?

In Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, Seattle, WA, USA, 18–20
July 2023; pp. 1407–1419.

3. Li, H.; Cheng, Z.; Wu, B.; Yuan, L.; Gao, C.; Yuan, W.; Luo, X. Black-box Adversarial Example Attack towards FCG Based Android
Malware Detection under Incomplete Feature Information. arXiv 2023, arXiv:2303.08509.

4. Hu, P.; Liang, R.; Cao, Y.; Chen, K.; Zhang, R. {AURC}: Detecting Errors in Program Code and Documentation. In Proceedings
of the 32nd USENIX Security Symposium (USENIX Security 23), Anaheim, CA, USA, 9–11 August 2023; pp. 1415–1432.

5. Ye, Y.; Li, T.; Adjeroh, D.; Iyengar, S.S. A survey on malware detection using data mining techniques. ACM Comput. Surv. (CSUR)
2017, 50, 1–40. [CrossRef]

6. Chow, Y.W.; Schäfer, M.; Pradel, M. Beware of the unexpected: Bimodal taint analysis. arXiv 2023, arXiv:2301.10545.
7. Gollapudi, R.T.; Yuksek, G.; Demicco, D.; Cole, M.; Kothari, G.; Kulkarni, R.; Zhang, X.; Ghose, K.; Prakash, A.; Umrigar, Z.

Control flow and pointer integrity enforcement in a secure tagged architecture. In Proceedings of the 2023 IEEE Symposium on
Security and Privacy (SP), San Francisco, CA, USA, 21–25 May 2023; pp. 2974–2989.

8. Wu, X.; Guo, W.; Yan, J.; Coskun, B.; Xing, X. From Grim Reality to Practical Solution: Malware Classification in Real-World
Noise. In Proceedings of the 2023 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 22–24 May 2023;
pp. 2602–2619.

9. Yang, L.; Chen, Z.; Cortellazzi, J.; Pendlebury, F.; Tu, K.; Pierazzi, F.; Cavallaro, L.; Wang, G. Jigsaw puzzle: Selective backdoor
attack to subvert malware classifiers. In Proceedings of the 2023 IEEE Symposium on Security and Privacy (SP), San Francisco,
CA, USA, 21–25 May 2023; pp. 719–736.

10. Patrick-Evans, J.; Dannehl, M.; Kinder, J. XFL: Naming Functions in Binaries with Extreme Multi-label Learning. In Proceedings
of the 2023 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 21–25 May 2023; pp. 2375–2390.

11. Luo, Z.; Wang, P.; Wang, B.; Tang, Y.; Xie, W.; Zhou, X.; Liu, D.; Lu, K. VulHawk: Cross-architecture Vulnerability Detection with
Entropy-based Binary Code Search. In Proceedings of the NDSS, San Diego, CA, USA, 27 February–3 March 2023.

12. Ucci, D.; Aniello, L.; Baldoni, R. Survey of machine learning techniques for malware analysis. Comput. Secur. 2019, 81, 123–147.
[CrossRef]

13. Cui, L.; Cui, J.; Ji, Y.; Hao, Z.; Li, L.; Ding, Z. API2Vec: Learning Representations of API Sequences for Malware Detection. In
Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis, Seattle, WA, USA, 18–20
July 2023; pp. 261–273.

14. Lucas, K.; Pai, S.; Lin, W.; Bauer, L.; Reiter, M.K.; Sharif, M. Adversarial Training for {Raw-Binary} Malware Classifiers.
In Proceedings of the 32nd USENIX Security Symposium (USENIX Security 23), Anaheim, CA, USA, 9–11 August 2023;
pp. 1163–1180.

15. Weiser, M. Programmers use slices when debugging. Commun. ACM 1982, 25, 446–452. [CrossRef]
16. Horwitz, S.; Reps, T.; Binkley, D. Interprocedural slicing using dependence graphs. ACM Trans. Program. Lang. Syst. (TOPLAS)

1990, 12, 26–60. [CrossRef]
17. Xu, B.; Qian, J.; Zhang, X.; Wu, Z.; Chen, L. A brief survey of program slicing. ACM SIGSOFT Softw. Eng. Notes 2005, 30, 1–36.

[CrossRef]
18. Ottenstein, K.J.; Ottenstein, L.M. The program dependence graph in a software development environment. ACM Sigplan Not.

1984, 19, 177–184. [CrossRef]
19. Lee, Y.; Kwon, H.; Choi, S.H.; Lim, S.H.; Baek, S.H.; Park, K.W. Instruction2vec: Efficient Preprocessor of Assembly Code to

Detect Software Weakness with CNN. Appl. Sci. 2019, 9, 4086. [CrossRef]
20. Haq, I.U.; Caballero, J. A Survey of Binary Code Similarity. ACM Comput. Surv. 2021, 54, 1–38. [CrossRef]
21. Han, W.; Xue, J.; Wang, Y.; Liu, Z.; Kong, Z. MalInsight: A systematic profiling based malware detection framework. J. Netw.

Comput. Appl. 2019, 125, 236–250. [CrossRef]
22. Han, W.; Xue, J.; Wang, Y.; Huang, L.; Kong, Z.; Mao, L. MalDAE: Detecting and explaining malware based on correlation and

fusion of static and dynamic characteristics. Comput. Secur. 2019, 83, 208–233. [CrossRef]
23. Huang, L.; Xue, J.; Wang, Y.; Qu, D.; Chen, J.; Zhang, N.; Zhang, L. EAODroid: Android Malware Detection Based on Enhanced

API Order. Chin. J. Electron. 2023, 32, 1169. [CrossRef]
24. Kong, Z.; Xue, J.; Wang, Y.; Zhang, Q.; Han, W.; Zhu, Y. MalFSM: Feature Subset Selection Method for Malware Family

Classification. Chin. J. Electron. 2023, 32, 26–38. [CrossRef]
25. Alrabaee, S. A stratified approach to function fingerprinting in program binaries using diverse features. Expert Syst. Appl. 2022,

193, 116384. [CrossRef]
26. Cordeiro de Amorim, R.; Lopez Ruiz, C.D. Identifying meaningful clusters in malware data. Expert Syst. Appl. 2021, 177, 114971.

[CrossRef]
27. Wang, P.; Tang, Z.; Wang, J. A novel few-shot malware classification approach for unknown family recognition with multi-

prototype modeling. Comput. Secur. 2021, 106, 102273. [CrossRef]

https://usa.kaspersky.com/
http://doi.org/10.1145/3073559
http://dx.doi.org/10.1016/j.cose.2018.11.001
http://dx.doi.org/10.1145/358557.358577
http://dx.doi.org/10.1145/77606.77608
http://dx.doi.org/10.1145/1050849.1050865
http://dx.doi.org/10.1145/390011.808263
http://dx.doi.org/10.3390/app9194086
http://dx.doi.org/10.1145/3446371
http://dx.doi.org/10.1016/j.jnca.2018.10.022
http://dx.doi.org/10.1016/j.cose.2019.02.007
http://dx.doi.org/10.23919/cje.2021.00.451
http://dx.doi.org/10.23919/cje.2022.00.038
http://dx.doi.org/10.1016/j.eswa.2021.116384
http://dx.doi.org/10.1016/j.eswa.2021.114971
http://dx.doi.org/10.1016/j.cose.2021.102273

Electronics 2024, 13, 359 19 of 19

28. Niu, Z.; Guo, W.; Xue, J.; Wang, Y.; Kong, Z.; Huang, L. A novel anomaly detection approach based on ensemble semi-supervised
active learning (ADESSA). Comput. Secur. 2023, 129, 103190. [CrossRef]

29. Koo, H.; Park, S.; Choi, D.; Kim, T. Semantic-aware binary code representation with bert. arXiv 2021, arXiv:2106.05478.
30. Panconesi, A.; Marian; Cukiersk, W.; WWW BIG-Cup Committee. Microsoft Malware Classification Challenge (BIG 2015).

Kaggle. 2015. Available online: https://kaggle.com/competitions/malware-classification (accessed on 10 November 2023).
31. Ahmadi, M.; Ulyanov, D.; Semenov, S.; Trofimov, M.; Giacinto, G. Novel feature extraction, selection and fusion for effective

malware family classification. In Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy, New
Orleans, LA, USA, 9–11 March 2016; pp. 183–194.

32. Raff, E.; Nicholas, C. Malware classification and class imbalance via stochastic hashed lzjd. In Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, Dallas, TX, USA, 3 November 2017; pp. 111–120.

33. Le, Q.; Boydell, O.; Mac Namee, B.; Scanlon, M. Deep learning at the shallow end: Malware classification for non-domain experts.
Digit. Investig. 2018, 26, S118–S126. [CrossRef]

34. Niu, W.; Cao, R.; Zhang, X.; Ding, K.; Zhang, K.; Li, T. OpCode-level function call graph based android malware classification
using deep learning. Sensors 2020, 20, 3645. [CrossRef]

35. Soni, H.; Kishore, P.; Mohapatra, D.P. Opcode and API based machine learning framework for malware classification. In
Proceedings of the 2022 2nd International Conference on Intelligent Technologies (CONIT), Hubli, India, 24–26 June 2022; pp. 1–7.

36. Santos, I.; Brezo, F.; Ugarte-Pedrero, X.; Bringas, P.G. Opcode sequences as representation of executables for data-mining-based
unknown malware detection. Inf. Sci. 2013, 231, 64–82. [CrossRef]

37. Dara, S.; Zargar, S.T.; Muralidhara, V.N. Towards privacy preserving threat intelligence. J. Inf. Secur. Appl. 2018, 38, 28–39.
[CrossRef]

38. Lyu, L.; Yu, H.; Ma, X.; Chen, C.; Sun, L.; Zhao, J.; Yang, Q.; Philip, S.Y. Privacy and robustness in federated learning: Attacks and
defenses. IEEE Trans. Neural Netw. Learn. Syst. 2022. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.cose.2023.103190
https://kaggle.com/competitions/malware-classification
http://dx.doi.org/10.1016/j.diin.2018.04.024
http://dx.doi.org/10.3390/s20133645
http://dx.doi.org/10.1016/j.ins.2011.08.020
http://dx.doi.org/10.1016/j.jisa.2017.11.006
http://dx.doi.org/10.1109/TNNLS.2022.3216981
http://www.ncbi.nlm.nih.gov/pubmed/36355741

	Introduction
	Related Work
	Methdology
	MalOSDF Overall Architecture
	Feature Engineering
	Opcode Slice Definition
	The Process of Feature Engineering

	Semi-supervised Ensemble Active Learning

	Experiment and Analysis
	Dataset
	Experiment Setup
	Experimental Environment
	Experimental Design

	Results and Analysis
	Comparison of Machine Learning Methods Across Varying Feature Dimensions
	Comparison between SSEAL and Single Classifiers
	Comparison of SSEAL Algorithms in Different Feature Dimensions
	Evaluation of SSEAL to Detect Unknown Malware
	Evaluation of SSEAL with Different Samples in Pre-Training
	 Comparison with Similar Studies

	Discussion
	Limitations of Our Work
	Scalability of Our Work
	Ethical Implications and Considerations

	Conclusions and Future Work
	References

