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Abstract: The optimization and allocation of transport cost savings among stakeholders are two im-
portant issues that influence the satisfaction of information providers, drivers and passengers in
ridesharing recommendation systems. For optimization issues, finding optimal solutions for noncon-
vex constrained discrete ridesharing optimization problems poses a challenge due to computational
complexity. For the allocation of transport cost savings issues, the development of an effective method
to allocate cost savings in ridesharing recommendation systems is an urgent need to improve the
acceptability of ridesharing. The hybridization of different metaheuristic approaches has demon-
strated its advantages in tackling the complexity of optimization problems. The principle of the
hybridization of metaheuristic approaches is similar to a marriage of two people with the goal of
having a happy ending. However, the effectiveness of hybrid metaheuristic algorithms is unknown a
priori and depends on the problem to be solved. This is similar to a situation where no one knows
whether a marriage will have a happy ending a priori. Whether the hybridization of the Firefly
Algorithm (FA) with Particle Swarm Optimization (PSO) or Differential Evolution (DE) can work
effectively in solving ridesharing optimization problems needs further study. Motivated by deficien-
cies in existing studies, this paper focuses on the effectiveness of hybrid metaheuristic algorithms for
solving ridesharing problems based on the hybridization of FA with PSO or the hybridization of FA
with DE. Another focus of this paper is to propose and study the effectiveness of a new method to
allocate ridesharing cost savings to the stakeholders in ridesharing systems. The developed hybrid
metaheuristic algorithms and the allocation method have been compared with examples of several
application scenarios to illustrate their effectiveness. The results indicate that hybridizing FA with
PSO creates a more efficient algorithm, whereas hybridizing FA with DE does not lead to a more
efficient algorithm for the ridesharing recommendation problem. An interesting finding of this study
is very similar to what happens in the real world: “Not all marriages have happy endings”.

Keywords: ridesharing; shared mobility; recommendation systems; evolutionary algorithm;
cost allocation

1. Introduction

Human activities such as daily commutes to work, business travel, leisure trips, man-
ufacturing, logistics, etc., often consume different types of energy and generate enormous
amounts of greenhouse gases in the atmosphere, which leads to global warming. Sustain-
able transport attempts to mitigate global warming through energy-efficient, affordable
modes of transport to achieve the benefits of reduced carbon emissions and energy con-
sumption and improved cost savings and accessibility with less reliance on fuels [1,2].
Sustainable transport has become one of the most important topics related to Sustainable
Development Goals (SDGs), as transportation is the major driving force behind a growing
world demand for energy [3]. As about one-fourth of energy-related emissions come from
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transport, sustainable transport is mainstreamed across several SDGs in the 2030 Agenda
for Sustainable Development [4,5].

The sharing economy concept provides an effective approach to the development of
innovative transport models and realizes sustainable transport. In the literature, there were
many studies on the effectiveness of applying different sharing-based transport modes,
such as ridesharing [6], car-sharing [7,8], bike-sharing [9] and autonomous car-sharing [10],
to reduce greenhouse gas emissions. The analysis of [11] compared the greenhouse gas
emissions of electrified fleets and gasoline-powered fleets, and it indicated that electrified
fleets had 40–45% lower greenhouse gas costs per trip than gasoline-powered fleets. The
paper reported in [12] for several car-sharing case studies showed that a 3–18% reduction
of greenhouse gas emissions can be achieved. The study also indicated that ridesharing
would introduce a much more significant reduction in greenhouse gas emissions. The
analysis of [13] indicated that shared mobility services had the potential to eliminate 6.3%
of passenger transport emissions on average, and the mitigation potential varied widely
across cities. The above discussions indicate the potential for shared mobility services to
mitigate greenhouse gas emissions.

Ridesharing is one of the important shared mobility services. It has been applied
in different application scenarios to share travel costs, reduce energy consumption and
mitigate the negative impact on the environment. These application scenarios include the
provision of ridesharing services in universities [14,15] and providing ridesharing services
by transport service providers such as Lyft [16], Uber [17], Didi [18], Wingz [19] and
Via [20] to the general public. In the literature, different aspects and issues of ridesharing
services have been studied. These research issues include studies on detrimental factors
influencing the adoption and use of ridesharing by people [21,22] and the optimization
of performance [23–25], as well as the consideration of social factors and trust factors in
ridesharing systems [26,27]. In this study, we will focus on the optimization issue and cost
allocation issue in ridesharing recommendation systems.

The optimization issue in ridesharing recommendation systems is used to deter-
mine the set of drivers sharing rides and the passengers on each ride according to the
requirements of drivers and passengers. Optimization of performance in ridesharing recom-
mendation systems is usually formulated as a nonconvex constrained discrete optimization
problem. Finding optimal solutions for nonconvex constrained discrete optimization prob-
lems is a challenging issue due to computational complexity. Due to the limitation of
classical optimization methods to solve nonconvex constrained discrete optimization prob-
lems, many metaheuristic methods such as Firefly Algorithm (FA) [28], Particle Swarm
Optimization (PSO) [29], Differentiation Evolution (DE) [30] and their variants [31] have
been proposed to find solutions for ridesharing recommendation problems. The hybridiza-
tion of different metaheuristic approaches has demonstrated its advantages in the literature.
For example, there were success stories of hybrid DE/Firefly approaches [32,33] as well as
hybridization of Firefly with the PSO approach [34–37].

The principle of the hybridization of metaheuristic approaches is similar to a marriage
of two people with the goal of having a happy ending by helping each other. However,
no one knows whether a marriage will have a happy ending a priori. The effectiveness
of hybrid metaheuristic algorithms is unknown a priori and depends on the problem
to be solved. Whether the hybridization of FA with PSO or DE can work effectively in
solving ridesharing recommendation problems needs further study. In the studies reported
in [38,39], some preliminary results show the merits of hybridization of FA with PSO or
DE. However, only one of the DE mutation strategies was used in the hybrid algorithm
to solve ridesharing problems. It is interesting to study whether other well-known DE
mutation strategies can work effectively through hybridization with FA to solve ridesharing
recommendation problems. In addition, there is a lack of comparative studies on the
effectiveness of the hybridization of FA with PSO and the hybridization of FA with different
DE mutation strategies to solve ridesharing recommendation problems. Motivated by
deficiencies in existing studies, one focus of this paper will be on the development of
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hybrid metaheuristic algorithms for solving ridesharing optimization problems based on
the hybridization of FA with PSO or DE. The hybrid metaheuristic algorithms developed
in this paper include a discrete Firefly-PSO (FPSO) algorithm and six discrete Firefly-DEi
(FDEi) algorithms, where i ∈ {1, 2, . . . , 6}, for solving the ridesharing optimization problem.

Besides the optimization issue, the study of how to allocate the benefits of travel cost
savings in transportation systems has attracted researchers’ attention in recent years. A
review of approaches to allocating cost savings in collaborative transportation systems can
be found in [40]. Another focus of this paper is on the development of a method to allocate
ridesharing cost savings. The problem of allocating travel cost savings in ridesharing
systems can be defined based on the cooperative game theory, as the stakeholders in a
ridesharing system can be modeled as the players that form coalitions and cooperate with
one another to achieve some goals in ridesharing. These well-known solution approaches
to allocating cost savings include the Shapley value [41], nucleolus [42] and proportional
methods [43]. Although these well-known solution approaches to allocating travel cost
savings are available and well founded, some of these approaches are computationally
infeasible for real cases due to complexity issues. Therefore, computationally efficient
methods such as proportional methods are usually used in practice. To address this
issue, several heuristic proportional methods have been proposed to reduce computational
complexity [44–46]. These heuristic proportional methods were referred to as the Local
Proportional (LP) Method, Fifty–Fifty (FF) Method and Global Proportional (GP) Method
in [47,48]. These heuristic proportional methods allocate the benefits among members in a
cooperative game based on coalitions that are defined intuitively. In this paper, we defined
two coalitions called the driver group and the passenger group (DGPG) in a ridesharing
system. Based on DGPG, we developed a new method to divide the benefits (cost savings)
among the stakeholders in the ridesharing system. The benefits were first divided into three
parts and allocated to information providers, the driver group and the passenger group,
respectively. The proportional method was then applied to divide the benefits among the
set of drivers in the driver group. Similarly, the proportional method was then applied to
divide the benefits among the set of passengers in the passenger group. The developed
hybrid metaheuristic algorithms and allocation method had been verified by examples of
several application scenarios.

The contributions of this study are twofold. First, we have developed several hy-
brid metaheuristic algorithms for solving ridesharing problems based on combining FA
with PSO or DE approaches and studied the effectiveness of these hybrid metaheuristic
algorithms. Besides the optimization of cost savings, a new allocation method has been
proposed in this study to improve the number of acceptable shared rides and the number of
ridesharing participants. The new allocation method can be applied to deal with different
minimal expectations of drivers and passengers by setting a parameter.

The rest of this paper is organized as follows. In Section 2, we will first introduce the
ridesharing problem formulation and then define a new proportional method to allocate
cost savings. In Section 3, we will first review the standard Firefly Algorithm and then
propose several hybrid metaheuristic algorithms for solving the ridesharing cost = saving
optimization problems, including the hybrid discrete Firefly-PSO (FPSO) algorithm and
six hybrid discrete Firefly-DEi (FDEi) algorithms, where i ∈ {1, 2, . . . , 6} denotes a specific
mutation strategy selected from the six well-known mutation strategies in the Differential
Evolution approach. In Section 4, we will present the results for verification of the devel-
oped hybrid metaheuristic algorithms and compare the effectiveness of these algorithms.
We will also compare the proposed allocation method with the existing methods, including
the Local Proportional Method, Fifty–Fifty Method and Global Proportional Method in
the literature. We will briefly discuss the results in Section 5 and conclude this paper in
Section 6.
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2. Optimization Problem in Ridesharing Recommendation Systems and a New
Proportional Method to Allocate Cost Savings

This paper focuses on two research issues: (1) a comparative study of applying
hybrid metaheuristic algorithms developed based on hybridizing FA with PSO or DE to
solve the ridesharing optimization problem and (2) the development of a new cost-saving
allocation method and a study of its effectiveness for ridesharing systems. In this section,
we will briefly review the ridesharing optimization problem and propose a new cost-saving
allocation method for the ridesharing system. The notation used in this section is defined
in Table 1.

Table 1. Notation of symbols, variables and parameters.

Variable Meaning

P the number of passengers.

p passenger index, p ∈ {1, 2, 3, . . . ., P}.
D the number of drivers.

d driver index, d ∈ {1, 2, 3, . . . ., D}.
k location index, k ∈ {1, 2, . . . , P}.
Jd the number of bids submitted by driver, d ∈ {1, 2, . . . , D}.
j bid index of a driver, j ∈ {1, 2, . . . , Jd}, d ∈ {1, 2, . . . , D}.

BIDdj

the j-th bid of driver d with BIDdj =
(q1

dj1, q1
dj2, q1

dj3, . . . , q1
djP, q2

dj1, q2
dj2, q2

dj3, . . . , q2
djP, odj, cdj, Γdj), where

q1
djk: number of seats allocated to passenger k’s pick-up location;

q2
djk: number of seats released at passenger k’s drop-off location;

odj: driver original cost of j-th bid of driver d without ridesharing;
cdj: the transport cost of j-th bid of driver d.
Γdj: the set of passengers on the ride of the j-th bid of driver d

BIDp

the bid of passenger p with BIDp = (s1
p1, s1

p2, s1
p3, . . . , s1

pP, s2
p1, s2

p2, s2
p3 . . . , s2

pP, fp),
where
s1

pk: number of seats requested for passenger k’s pick-up location;

s2
pk: number of seats released for passenger k’s drop-off location;

fp: original cost of passenger p without ridesharing.

xdj
decision variable for the j−th bid of driver d; xdj = 1 if the j−th bid of driver d is a
winning bid; otherwise, xdj = 0 if the j−th bid of driver d is not a winning bid.

yp
decision variable for passenger p; yp = 1 if the bid of passenger p is a winning bid,
and yp = 0 if the bid of passenger p is not a winning bid.

α share value of ridesharing information provider.

βP
p share value of passenger p.

βD
d share value of driver d.

F(x, y)
the objective function for cost

savings:F(x, y) =

(
P
∑

p=1
yp

(
fp

))
+

(
D
∑

d=1

Jd

∑
j=1

xdjodj

)
−
(

D
∑

d=1

Jd

∑
j=1

xdjcdj

)

A ridesharing recommendation system is defined by a set of drivers, {1, 2, . . . , D}, a
set of passengers, {1, 2, 3, . . . ., P}, and passengers’ requests, Rp = (Lop, Lep, ωe

p, ωl
p, np)∀p ∈

{1, 2, 3, . . . ., P}, where Lop is the origin, Lep is the destination, ωe
p is the earliest departure

time, ωl
p is the latest arrival time, and np is the number of seats requested by passenger

p; drivers’ requests Rd = (Lod, Led, ωe
d, ωl

d, ad)∀d ∈ {1, 2, . . . , D}, where Lod is the origin,
Led is the destination, ωe

d is the earliest departure time, ωl
d is the latest arrival time, and ad

is the number of seats available for a driver d. The ridesharing recommendation system
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applies proper bid generation procedures such as the ones proposed in [46] to generate
the bids: BIDdj, j ∈ {1, 2, . . . , Jd}, for the driver, d ∈ {1, 2, . . . , D}, and the bids, BIDp,
p ∈ {1, 2, 3, . . . ., P}, for the passenger, p ∈ {1, 2, 3, . . . ., P}, according to the drivers’ re-
quests, Rd ∀d ∈ {1, 2, . . . , D}, and passengers’ requests, Rp = ∀{1, 2, 3, . . . ., P}, respectively,
where BIDdj and BIDp are defined in Table 1. The bids, BIDdj, j ∈ {1, 2, . . . , Jd}, for
the driver, d ∈ {1, 2, . . . , D}, and the bids, BIDp, p ∈ {1, 2, 3, . . . ., P}, for the passenger,
p ∈ {1, 2, 3, . . . ., P}, will be submitted to the ridesharing recommendation system.

The ridesharing optimization problem is defined by decision variables xdj,
d ∈ {1, 2, . . . , D}, j ∈ {1, 2, . . . , Jd} and yp, p ∈ {1, 2, 3, . . . ., P}. The decision variable xdj is
equal to 1 if BIDdj is a winning bid. Otherwise, the decision variable xdj is equal to 0. The
decision variable yp is equal to 1 if BIDp is a winning bid. Otherwise, the decision variable
yp is equal to 0. The objective function F(x, y) is the overall cost savings of the ridesharing
system. The ridesharing optimization problem is used to determine the values of the
decision variables xdj, d ∈ {1, 2, . . . , D}, j ∈ {1, 2, . . . , Jd} and yp, p ∈ {1, 2, 3, . . . ., P} such
that the objective function F(x, y) in (1) is maximized subject to the following constraints:
the demand and supply constraints specified in (2) and (3), the cost-saving constraint
specified in (4), the drivers’ single winning bid constraint specified in (5) and the binary
values constraint for the decision variables specified in (6) and (7).

max
x,y

F(x, y) =

(
P

∑
p=1

yp fp

)
+

(
D

∑
d=1

Jd

∑
j=1

xdjodj

)
−
(

D

∑
d=1

Jd

∑
j=1

xdjcdj

)
(1)

s.t.
D

∑
d=1

Jd

∑
j=1

xdjq1
djk = yps1

pk∀p ∈ {1, 2, . . . , P} ∀k ∈ {1, 2, . . . , P} (2)

D

∑
d=1

Jd

∑
j=1

xdjq2
djk = yps2

pk∀p ∈ {1, 2, . . . , P} ∀k ∈ {1, 2, . . . , P} (3)

P

∑
p=1

yp fp +
D

∑
d=1

Jd

∑
j=1

xdjodj ≥
D

∑
d=1

Jd

∑
j=1

xdjcdj (4)

Jd

∑
j=1

xdj ≤ 1∀d ∈ {1, . . . , D} (5)

xdj ∈ {0, 1}∀d ∈ {1, . . . , D} ∀j ∈ {1, . . . , Jd} (6)

yp ∈ {0, 1}∀p ∈ {1, 2, . . . , P} (7)

The above ridesharing optimization problem can be solved by applying different
solution approaches. In this study, we will develop several hybrid metaheuristic algorithms
to solve the above ridesharing optimization problem based on hybridizing FA with PSO or
DE in the next section. Suppose a solution (x, y) for the above problem is found. A cost-
saving allocation method must be applied to divide the cost savings F(x, y) of the solution
(x, y) properly and to allocate the cost savings to the stakeholders of the ridesharing system,
including the information provider, drivers and passengers. A cost allocation method
can be defined by the portion of F(x, y) allocated to each stakeholder of the ridesharing
system. The concept of shared values is used to describe the portion of the cost savings,
F(x, y), allocated to each stakeholder of the ridesharing system. In this paper, we use
α, βP

p and βD
d to denote the shared values for the information provider, passenger p and

driver d, respectively. Please refer to Table 2 for the definition of α, βP
p and βD

d . The shared

values must satisfy the following constraints
P
∑

p=1
βP

p +
D
∑

d=1
βD

d + α = 1, where 0 ≤ α ≤ 1,

0 ≤ βD
d ≤ 1 and 0 ≤ βP

p ≤ 1. Based on the concept of shared values, the portion of F(x, y)
allocated to the information provider is represented by αF(x, y), where α is defined in
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(8). The portion of F(x, y) allocated to passenger p is represented by βP
p F(x, y), where βP

p

is defined in (9). The portion of F(x, y) allocated to driver d is represented by βD
d F(x, y),

where βD
d is defined in (10). In this paper, we define a new method to allocate cost savings

based on the shared values α, βP
p and βD

d defined in Table 2.

Table 2. The DGPGP method for dividing cost savings among the ridesharing participants.

Method Stakeholder Share Value

Driver Group–Passenger Group
Proportional (DGPGP) Method

information provider α (8)

passenger βP
p =

δ(1−α)yp fp[(
P
∑

p=1
yp fp

)] , where 0 < δ < 1 (9)

driver βD
d =

Jd
∑

j=1
(1−δ)(1−α)xdjcdj(

D
∑

d=1

Jd
∑

j=1
xdjcdj

) , where 0 < δ < 1 (10)

The shared value, α, for the information provider is determined by the ridesharing
service provider. Note that the cost savings allocated to the information provider are
αF(x, y). Typically, the value of α must be set properly such that the cost savings allocated
to the information provider are sufficient to maintain the operations of the ridesharing
system. However, if the value of α is too big, the cost savings allocated to drivers and
passengers will not be sufficient to make more drivers and passengers accept ridesharing.
Another parameter that influences the cost savings allocated to the passengers and drivers
is δ. The value of δ must be set properly. The cost savings allocated to the passenger
group are δ(1− α)F(x, y), where 0 < δ < 1. The cost savings allocated to passengers

p are βP
p F(x, y) =

δ(1−α)yp fp[(
P
∑

p=1
yp fp

)] F(x, y). The cost savings allocated to the driver group

are (1− δ)(1− α)F(x, y) , where 0 < δ < 1. The cost savings allocated to drivers d are

βD
d F(x, y) =

Jd
∑

j=1
(1−δ)(1−α)xdjcdj(

D
∑

d=1

Jd
∑

j=1
xdjcdj

) F(x, y).

If the value of δ is too big, the cost savings allocated to drivers will not be sufficient
to make more drivers accept ridesharing. If the value of δ is too small, the cost savings
allocated to passengers will not be sufficient to make more passengers accept ridesharing.
Therefore, in addition to setting the value of α properly, the value of δ must be set properly
such that the cost savings allocated to drivers and passengers are sufficient to make more
drivers and passengers accept ridesharing.

Cost savings are one of the key determinant factors for potential users of ridesharing
services, including drivers and passengers, to decide whether or not to share a ride. A
driver or a passenger may accept to share a ride only if their expected cost savings can be
satisfied. To characterize whether a ride can satisfy the expected cost savings of a driver or
a passenger, the concept of minimal expected reward rates has been introduced in [47,48].
The minimal expected reward rate is the minimal expected cost savings of a ridesharing
participant due to ridesharing divided by the original cost. In this paper, it is assumed
that minimal expected reward rate for all drivers is the same and is denoted by rD. In this
paper, it is assumed that minimal expected reward rate for all passengers is the same and is
denoted by rP. A ride is called an acceptable ride if the reward rate for the driver on the
ride is greater than or equal to the minimal expected reward rate of drivers, rD, and the
reward rate for each passenger on the ride is greater than or equal to the minimal expected
reward rate rP. The number of acceptable rides and the number of ridesharing participants
on acceptable rides are important performance metrics to assess the effectiveness of cost-
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saving allocation methods for ridesharing systems. We will use these performance metrics
to illustrate the effectiveness of the new proposed allocation method.

3. Development of Hybrid Algorithms Based on Hybridization of Firefly Algorithm
with PSO or DE

Before presenting the hybrid metaheuristic algorithms developed based on the hy-
bridization of the Firefly Algorithm with the PSO approach or DE approach for solving the
ridesharing optimization problem, we first briefly review the Firefly Algorithm. We then
introduce the hybrid metaheuristic algorithms. To describe the discrete Firefly Algorithm
and the discrete hybrid metaheuristic algorithms, we define the notation in Table 3.

Table 3. Notation of Firefly Algorithm and Hybrid Algorithms.

Variable Meaning

F1(x, y) the fitness function,F1(x, y) =
{

F(x, y) i f (x, y) satis f ies constra int s (2) ∼ (7)
U(x, y) otherwise

S f the set of feasible solutions in the current population

S f min
the objective function value of the worst feasible solution in S f , S f min = min

(x,y)∈S f
F(x, y)

U1(x, y) U1(x, y) =
P
∑

p=1

K
∑

k=1

∣∣∣∣∣ D
∑

d=1

Jd
∑

j=1
xdjq1

djk − yps1
pk

∣∣∣∣∣
U2(x, y) U2(x, y) =

P
∑

p=1

K
∑

k=1

∣∣∣∣∣ D
∑

d=1

Jd
∑

j=1
xdjq2

djk − yps2
pk

∣∣∣∣∣
U3(x, y) U3(x, y) = min(

P
∑

p=1
yp fp +

D
∑

d=1

Jd
∑

j=1
xdjodj −

D
∑

d=1

Jd
∑

j=1
xdjcdj), 0.0)

U4(x, y) U4(x, y) =

∣∣∣∣∣ D
∑

d=1
(1−

Jd
∑

j=1
xdj)

∣∣∣∣∣
U(x, y) the function to evaluate infeasible solution

I population size

i the index of an individual in the population, i ∈ {1, 2, . . . , I}
N the dimension of the problem

zi the i-th individual in the population, where i ∈ {1, 2, . . . , I}
zin the value of the n-th dimension of the i-th individual, where i ∈ {1, 2, . . . , I}

and n ∈ {1, 2, . . . , N}
zb the best individual in the current population

vin
the value of the n-th dimension of the candidate vector generated for the i-th individual,
where i ∈ {1, 2, . . . , I} and n ∈ {1, 2, . . . , N}

tmax the total number of generations

t the index of generation

rij the distance between firefly i and firefly j

γ the light absorption coefficient

β0 the attractiveness when the distance rij between firefly i and firefly j is zero

β0e−γr2
ij the attractiveness for the distance rij between firefly i and firefly j

εt
in a random number drawn from a uniform distribution in [0, 1]

αt a constant parameter in [0, 1]

T(x) T(x) = e2|x|−1
e2|x|+1

, a function to transform a real value into a value in [0, 1]

γ1 a random variable with uniform distribution, U(0, 1)

γ2 a random variable with uniform distribution, U(0, 1)

c1 cognitive acceleration coefficient, which is a non-negative real parameter less than 1

c2 social acceleration coefficient, which is a non-negative real parameter less than 1
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Table 3. Cont.

Variable Meaning

Pzi
the personal best of particle i at time t, where i ∈ {1, 2, . . . , I}, and Pzin is the n-th element of
the vector Pzi , where n ∈ {1, 2, . . . , N}.

Gz the global best, and Gzn is the n-th element of the vector Gz, where n ∈ {1, 2, . . . , N}
CS the procedure to map a real value to zero or one defined in Procedure 1

η(0, 1) Gaussian distribution with mean 0 and standard deviation 1.0

Fi the scale factor, which is generated from Gaussian distribution η(0, 1)

CR the crossover rate

Procedure 1: CS to map a real value to zero or one

Input: a
Output: b
Begin
If a > Vmax

a← Vmax
If a < −Vmax

a← −Vmax
s(a) = 1

1+exp−a

Generate rsid, a random variable with uniform distribution U(0, 1)

b =

{
1 rsid < s(a)
0 otherwise

return b
End

3.1. Fitness Function

In an evolutionary algorithm, a fitness function is used as an indicator to quantize
the quality of solutions in the solution-finding processes. For a constrained optimiza-
tion problem, a proper fitness function needs to be designed to take into account the
quality of a solution in terms of the objective function value and violation of constraints.
In the literature, a variety of approaches to dealing with violations of constraints have
been proposed. One common concept of these approaches is the use of penalty terms
in the fitness function. These approaches are called penalty methods in optimization
theory [49]. Although penalty methods can be applied to deal with constraints, they
suffer from the drawbacks of performance degradation due to the improper setting of
penalty coefficients. For this reason, an alternative approach proposed in [50] is adopted
in this study to deal with constraints. This approach discriminates between feasible and
infeasible solutions to deal with constraints without penalty coefficients. By applying
this approach, the objective function value of the worst feasible solution in the current
population is calculated by S f min = min

(x,y)∈S f

F(x, y), where S f = {{(x, y)|(x, y) is a fea-

sible solution in the current population}. The fitness function is defined as F1(x, y) ={
F(x, y) i f (x, y) satis f ies constra int s (2) ∼ (7)
U(x, y) otherwise

, where U(x, y) = S f min + U1(x, y) +

U2(x, y)+U3(x, y)+U4(x, y)+U5(x, y), U1(x, y) =
P
∑

p=1

K
∑

k=1

∣∣∣∣∣ D
∑

d=1

Jd
∑

j=1
xdjq1

djk − yps1
pk

∣∣∣∣∣, U2(x, y)

=
P
∑

p=1

K
∑

k=1

∣∣∣∣∣ D
∑

d=1

Jd
∑

j=1
xdjq2

djk − yps2
pk

∣∣∣∣∣, U3(x, y) = min(
P
∑

p=1
yp fp +

D
∑

d=1

Jd
∑

j=1
xdjodj −

D
∑

d=1

Jd
∑

j=1
xdjcdj),

0.0) and U4(x, y) =

∣∣∣∣∣ D
∑

d=1
(1−

Jd
∑

j=1
xdj)

∣∣∣∣∣.
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3.2. Firefly Algorithm

The Firefly Algorithm is a nature-inspired metaheuristic method. It was inspired by
fireflies’ flashing patterns and behavior. The Firefly Algorithm mimics the behavior of
fireflies: the less bright firefly moves towards the brighter one. In case no brighter one
can be found, a firefly moves randomly. In the Firefly Algorithm, a brighter firefly refers
to a firefly with a better fitness function value. The underlying assumption of the Firefly
Algorithm is that fireflies are attracted to other ones regardless of their sex.

The Firefly Algorithm follows the paradigm of evolutionary algorithms to solve
problems. Evolutionary algorithms use the mechanism of reproduction, mutation, crossover
and selection in biological evolution to solve problems. Typically, an evolutionary algorithm
starts with the initialization of a randomly generated population of candidate solutions.
Each candidate solution in the population is referred to as an individual of the population.
The quality of candidate solutions is characterized by the fitness function. The individuals
in the population evolve from one generation to another. In each generation, the individuals
in the population undergo the operations of mutation, crossover and selection to attempt
to improve the quality of candidate solutions. The evolution processes terminate when a
pre-specified number of generations is reached. There are several common parameters used
in an evolutionary algorithm, including population size, I, the total number of generations,
tmax, and the dimension of the problem, N. In addition to these common parameters,
there are other parameters specific to each type of metaheuristic approach. For example,
the Firefly Algorithm needs the parameters of the light absorption coefficient, γ, and the
attractiveness, β0. A flowchart of the Firefly Algorithm is shown in Figure 1. The way the
i-th firefly in position zin moves toward the j-th firefly in the n-th dimension and reaches a
new position vin is according to (11), with αt and εt

in being defined in Table 3.

vin = zin + β0e−γr2
ij(zjn − zin) + αtεt

in (11)
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The discrete Firefly Algorithm is defined in Algorithm 1:

Algorithm 1: Discrete Firefly Algorithm

Input: I, tmax, N, β0, γ, αt

Output: the global best, Gz
Step 1: Generate I fireflies in the initial population of swarm
Step 2:
While (t < tmax)

Evaluate the fitness function F1(zi) for each firefly i ∈ {1, 2, . . . , I}
For each i ∈ {1, 2, . . . , I}

For each j ∈ {1, 2, . . . , I}
If (F1(zi) < F1(zj))

For n ∈ {1, 2, . . . , N}
Move the i-th firefly toward the j-th firefly in the n-th dimension:

vin = zin + β0e−γr2
ij (zjn − zin) + αεin

Transform vin to binary and update i-th firefly i as follows:
Generate rsid randomly based on uniform distribution U(0, 1)

zin =

{
1 rsid > T(vin)
0 otherwise

End For
Evaluate F1(zi)

End If
End For

End For
Update the global best Gz
t← t + 1

End While

3.3. Discrete Firefly-PSO (FPSO) Algorithm and Discrete Firefly-DEi (FDEi) Algorithm

Hybrid Firefly-based metaheuristic algorithms can be developed by extending fireflies’
behavior. For example, in case one firefly fails to find another better firefly to update its
position, the firefly will attempt to fly following the behavior of other approaches, such as
PSO and DE, to create a trial solution. Table 4 lists PSO and six DE strategies to create a
trial solution in case one firefly fails to find a better one. This way of combining the Firefly
Algorithm with PSO or DE approaches to create a new candidate solution leads to hybrid
metaheuristic algorithms. Figure 2 shows the flowchart of a discrete hybrid Firefly Algorithm
obtained by hybridizing the Firefly Algorithm with a selected strategy to create a trial vector.

Table 4. The methods to create a trial vector in PSO and DE approaches.

Approach The Way to Create the n-th Element of Trial Vector

PSO
Step 1: Generate random numbers γ1 and γ2 with uniform distribution U(0, 1)
Step 2: Calculate the n-th dimension vin of trial vector vi
vin ← vin + c1γ1(Pzin − zin) + c2γ2(Gzn − zin)

(12)

DE1

Step 1: Generate numbers r1, r2 and r3 from {1,2,. . ., I} randomly
Step 2: Calculate the n-th element, µin, of mutant vector µi
µin = zr1n + Fi(zr2n − zr3n)
Step 3: Calculate the n-th dimension vin of trial vector vi by applying the crossover operation

vin =

{
µin i f Rand(0, 1) < CR
zin otherwise

(13)

DE2

Step 1: Generate numbers r2 and r3 from {1,2,. . ., I} randomly
Step 2: Calculate the n-th element, µin, of mutant vector µi
µin = zbn + Fi(zr2n − zr3n)
Step 3: Calculate the n-th dimension vin of trial vector vi by applying the crossover operation

vin =

{
µin i f Rand(0, 1) < CR
zin otherwise

(14)
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Table 4. Cont.

Approach The Way to Create the n-th Element of Trial Vector

DE3

Step 1: Generate numbers r1, r2, r3, r4 and r5 from {1,2,. . ., I} randomly
Step 2: Calculate the n-th element, µin, of mutant vector µi
vin = zr1n + Fi(zr2n − zr3n) + Fi(zr4n − zr5n)
Step 3: Calculate the n-th dimension vin of trial vector vi by applying the crossover operation

vin =

{
µin i f Rand(0, 1) < CR
zin otherwise

(15)

DE4

Step 1: Generate numbers r1, r2, r3 and r4 from {1,2,. . ., I} randomly
Step 2: Calculate the n-th element, µin, of mutant vector µi
vin = zbn + Fi(zr1n − zr2n) + Fi(zr3n − zr4n)
Step 3: Calculate the n-th dimension vin of trial vector vi by applying the crossover operation

vin =

{
µin i f Rand(0, 1) < CR
zin otherwise

(16)

DE5

Step 1: Generate numbers r2 and r3 from {1,2,. . ., I} randomly
Step 2: Calculate the n-th element, µin, of mutant vector µi
µin = zin + Fi(zbn − zin) + Fi(zr1n − zr2n)
Step 3: Calculate the n-th dimension vin of trial vector vi by applying the crossover operation

vin =

{
µin i f Rand(0, 1) < CR
zin otherwise

(17)

DE6

Step 1: Generate numbers r1, r2, r3 and r4 from {1,2,. . ., I} randomly
Step 2: Calculate the n-th element, µin, of mutant vector µi
vin = zin + Fi(zbn − zin) + Fi(zr1n − zr2n) + Fi(zr3n − zr4n)
Step 3: Calculate the n-th dimension vin of trial vector vi by applying the crossover operation

vin =

{
µin i f Rand(0, 1) < CR
zin otherwise

(18)

The strategy that PSO creates a trial solution is based on Formula (12), which uses two
parameters, the cognitive acceleration coefficient, c1, and the social acceleration coefficient,
c2, to take into account the difference between the current individual and the personal
best as well as the difference between the current individual and the global best. The
pseudocode of the discrete Firefly-PSO (FPSO) algorithm is shown in Algorithm 2.

The DE approach provides six strategies referred to as DE1, DE2, DE3, DE4, DE5
and DE6 in this paper. These DE strategies can be used to create a trial solution based
on either Formula (13) for mutation strategy DE1, Formula (14) for mutation strategy
DE2, Formula (15) for mutation strategy DE3, Formula (16) for mutation strategy DE4,
Formula (17) for mutation strategy DE5 or Formula (18) for mutation strategy DE6. The
differences between these methods are the ways in which to calculate mutant vectors. For
example, in DE1, three individuals, zr1 , zr2 and zr3 , are randomly sampled from the current
population and then combined according to Formula (13) to calculate the mutant vector.
In DE2, the best individual, zb, and two individuals, zr2 and zr3 , are randomly sampled
from the current population and then combined according to Formula (14) to calculate
the mutant vector. In DE3, five individuals, zr1 , zr2 , zr3 , zr4 and zr5 , are randomly sampled
from the current population and then combined according to Formula (15) to calculate
the mutant vector. In DE4, the best individual, zb, and four individuals, zr1 , zr2 , zr3 and
zr4 , are randomly sampled from the current population and then combined according to
Formula (16) to calculate the mutant vector. In DE5, the current individual, zi, the best
individual, zb, and two individuals, zr1 and zr2 , are randomly sampled from the current
population and then combined according to Formula (17) to calculate the mutant vector. In
DE6, the current individual, zi, the best individual, zb, and four individuals, zr1 , zr2 , zr3 and
zr4 , are randomly sampled from the current population and then combined according to
Formula (18) to calculate the mutant vector. After the mutant vector has been calculated,
the crossover operation will be applied to the mutant vector to find the trial vector. A Firefly
Algorithm hybridized with Dei is referred to as the Discrete Firefly-DEi (FDEi) Algorithm.
The pseudocode of the FDEi Algorithm is shown in Algorithm 3.
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Algorithm 2: Discrete Firefly-PSO (FPSO) Algorithm

Input: I, tmax, N, β0, γ, αt

Output: the global best,Gz
Step 1: Generate I fireflies in the initial population of swarm
Step 2:
While (t < tmax)

Evaluate the fitness function F1(zi) for each firefly i ∈ {1, 2, . . . , I}
For each i ∈ {1, 2, . . . , I}

For each j ∈ {1, 2, . . . , I}
If (F1(zi) < F1(zj))

Step 2.1: Fly according to fireflies’ pattern
For n ∈ {1, 2, . . . , N}

Move the i-th firefly toward the j-th firefly in the n-th dimension

vin = zin + β0e
−γr2

ij (zjn − zin) + αε in
Transform vin to binary and update i-th firefly i as follows:
Generate rsid randomly based on uniform distribution U(0, 1)

zin =

{
1 rsid > T(vin)
0 otherwise

End For
Else

Step 2.2: Fly according to particle swarm’s pattern to attempt to increase diversity
For n ∈ {1, 2, . . . , N}
Generate r1, a random variable with uniform distribution U(0, 1)
Generate r2, a random variable with uniform distribution U(0, 1)
vin ← vin + c1r1(Pzin − zin) + c2r2(Gzn − zin)
Transform each element of the trial vector to one or zero
zin ← CS(vin)
End For

End If
End For

End For
Update the global best Gz
t← t + 1
End While

Algorithm 3: Discrete Firefly-DEi (FDEi) Algorithm

Input: I, tmax, N, β0, γ, αt

Output: the global best, Gz
Step 1: Generate I fireflies in the initial population of swarm
Step 2:
While (t < tmax)

Evaluate the fitness function F1(zi) for each firefly i ∈ {1, 2, . . . , I}
For each i ∈ {1, 2, . . . , I}

For each j ∈ {1, 2, . . . , I}
If (F1(zi) < F1(zj))

Step 2.1: Fly according to fireflies’ pattern
For n ∈ {1, 2, . . . , N}

Move the i-th firefly toward the j-th firefly in the n-th dimension

vin = zin + β0e
−γr2

ij (zjn − zin) + αε in
Transform vinto− as follows:
Generate rsid randomly based on uniform distribution U(0, 1)

zin =

{
1 rsid > T(vin)
0 otherwise

End For
Else

Step 2.2: Fly according to particle swarm’s pattern to attempt to increase diversity
For n ∈ {1, 2, . . . , N}

Apply Strategy DEi to create the n-th dimension of trial vector vin
Transform each element of the trial vector to one or zero

zin ← CS(vin)
End For

End If
End For

End For
Update the global best Gz
t← t + 1
End While

4. Results

The hybrid algorithms and the method to allocate cost savings developed in the previ-
ous section were tested to compare the effectiveness of different hybridization strategies as
well as the proposed cost-saving allocation method. The examples for testing the hybrid
algorithms are available for download via the following link:
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https://drive.google.com/drive/folders/1DRzq7XubK105XrnSpjVpQGLubj73id5K?
usp=sharing (accessed on 29 November 2023).

4.1. Comparison of Hybrid Algorithms

The results presented in this section include the discrete version of the Firefly Algo-
rithm, the PSO algorithm, the Differential Evolution algorithms with the six well-known
mutation strategies and the hybrid algorithms developed in this paper. The hybrid al-
gorithm developed by applying the Firefly Algorithm and Differential Evolution with
Mutation Strategy i is denoted by FDEi. The hybrid algorithm developed by applying Fire-
fly Algorithm and PSO is denoted by FPSO. The discrete version of Differential Evolution
with Mutation Strategy i is denoted by DEi.

The parameters used in the tests are shown in Tables 5 and 6.

Table 5. Parameters used in all DE, PSO and Firefly algorithms.

DE1 DE2 DE3 DE4 DE5 DE6 PSO FA

CR = 0.5 CR = 0.5 CR = 0.5 CR = 0.5 CR = 0.5 CR = 0.5 ω = 0.4 β0 = 1.0
Fi : generated
from Gaussian
distribution
η(0, 1)

Fi : generated
from Gaussian
distribution
η(0, 1)

Fi : generated
from Gaussian
distribution
η(0, 1)

Fi : generated
from Gaussian
distribution
η(0, 1)

Fi : generated
from Gaussian
distribution
η(0, 1)

Fi : generated
from Gaussian
distribution
η(0, 1)

c1 = 0.4
c2 = 0.6

γ = 0.2
α = 0.2

MAX_GEN =
50,000

MAX_GEN =
50,000

MAX_GEN =
50,000

MAX_GEN =
50,000

MAX_GEN =
50,000

MAX_GEN =
50,000

MAX_GEN =
50,000

MAX_GEN =
50,000

Vmax = 4 Vmax = 4 Vmax = 4 Vmax = 4 Vmax = 4 Vmax = 4 Vmax = 4 Vmax = 4
NP = 10/30 NP = 10/30 NP = 10/30 NP = 10/30 NP = 10/30 NP = 10/30 NP = 10/30 NP = 10/30

Table 6. Parameters used in all hybrid algorithms.

FDE1 FDE2 FDE3 FDE4 FDE5 FDE6 FPSO

Parameters are
the same as
DE1 and FA

Parameters are
the same as
DE2 and FA

Parameters are
the same as
DE3 and FA

Parameters are
the same as
DE4 and FA

Parameters are
the same as
DE5 and FA

Parameters are
the same as
DE6 and FA

Parameters are
the same as
PSO and FA

Based on the parameters, all the algorithms mentioned above were applied to find the
solutions for the test cases. We ran each algorithm ten times, and the results were recorded.
The average fitness function values and the average generations of the best solutions found
by each algorithm were calculated and summarized in Tables 7 and 8 for population size
NP = 10.

Table 7. Average fitness function values and average generations for hybrid FDEi algorithms, where
I ∈ {1, 2, ..., 6} and FPSO algorithm with population size NP = 10.

Case D P FDE1 FDE2 FDE3 FDE4 FDE5 FDE6 FPSO

1 1 4 8.495/1.8 8.495/2.3 8.495/2.2 8.495/2.6 8.495/2.6 8.495/3.1 8.495/1.9
2 3 10 43.8523/211.7 43.8523/377.5 44.7/348.8 44.7/329 43.8523/305.3 44.7/404.4 44.7/77.6
3 3 10 32.998/220.4 32.998/294.7 32.998/322.9 32.998/168.8 32.998/176.4 32.998/229.3 32.998/46.2
4 5 11 67.992/807 66.533/891.2 69.451/789 66.3698/445.8 65.4771/1022.6 68.7215/644.3 70.91/692.9
5 5 12 40.7687/1512 41.2418/1999.4444 41.2418/1049.8888 40.7687/1103.5555 41.2418/1535.2222 40.7687/1090.7777 41.715/187.3333
6 6 12 50.2144/807.4444 50.4383/2702 49.3616/1407.5555 49.5855/1697.888 48.5088/1681.7777 51.11/256.1111 51.11/171.5555

Table 8. Average fitness function values and average generations for native discrete DE algorithms
and PSO with population size NP = 10.

Case D P DE1 DE2 DE3 DE4 DE5 DE6 PSO FA

1 1 4 8.495/3.4 8.495/2.5 8.495/3.1 8.495/2.7 8.495/8.6 8.495/1.9 8.495/4.4 8.495/2.7
2 3 10 43.006/71.5 40.1207/205.1 43.8523/733.6 40.9684/181.5 43.8523/439.7 43.8523/94.9 44.7/255 27.8061/115.3
3 3 10 32.4747/87.4 31.9514/166.7 32.4747/70.7 28.553/741.8 28.8135/122.2 32.998/508.5 32.998/313 25.4751/375.4
4 5 11 58.6415/1345.9 59.6974/693.8 32.4747/70.7 59.9814/1034.5 58.3949/1068.4 66.1931/446.6 70.91/875 30.5676/423
5 5 12 37.3519/368.4 37.5104/924.6 38.1275/243.9 38.0337/1160.4 38.5859/1510.6 40.0552/435.1 41.715/1716.1111 29.6832/684.6666
6 6 12 40.2843/2179.9 33.7963/1558.2 39.865/413.9 44.4525/2078.6 38.5798/1052.7 45.6008/1107.9 51.11/657 45.2088/1084.4444

https://drive.google.com/drive/folders/1DRzq7XubK105XrnSpjVpQGLubj73id5K?usp=sharing
https://drive.google.com/drive/folders/1DRzq7XubK105XrnSpjVpQGLubj73id5K?usp=sharing
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The results in Tables 7 and 8 show that the average fitness function values achieved
by FPSO are the same as the ones found by the PSO for all test cases for NP = 10. But the
average generations for which FPSO found the best solutions are much smaller than those
of PSO for all test cases. This indicates that FPSO is superior to PSO in terms of convergence
rate. In addition, FPSO outperforms FA in average fitness function values and average
generations for most test cases. This indicates that FPSO improves the performance and
convergence rate of FA.

The results in Tables 7 and 8 show that the average fitness function values achieved by
FDEi are greater than those found by the DEi and FA for most of the test cases for NP = 10.
However, the average generations for which FDEi found the best solutions are not always
smaller than those of DEi for all test cases. This means that FDEi improves the performance
but not the convergence rate of FA for NP = 10.

The results in Tables 7 and 8 show that the average fitness function values achieved
by FPSO are greater than those found by the FDEi for most of the test cases for NP = 10.
In addition, the average generations for which FPSO found the best solutions are smaller
lower than those of FDEi for most test cases. This indicates that FPSO outperforms FDEi in
terms of performance and convergence rate for NP = 10.

Figures 3–8 show the average fitness function values and (b) average generations for
Case 1 through Case 6 with population size NP = 10.
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Figure 3. (a) Average fitness function values; (b) average generations for Case 1 with population size
NP = 10.
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Figure 4. (a) Average fitness function values; (b) average generations for Case 2 with population size
NP = 10.
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Figure 5. (a) Average fitness function values; (b) average generations for Case 3 with population size
NP = 10.
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Figure 6. (a) Average fitness function values; (b) average generations for Case 4 with population size
NP = 10.
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Figure 7. (a) Average fitness function values; (b) average generations for Case 5 with population size
NP = 10.
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Figure 8. (a) Average fitness function values; (b) average generations for Case 6 with population size
NP = 10.

Figure 4 shows the average fitness function values and (b) average generations for
Case 2 with population size NP = 10.

The average fitness function values and the average generations for which each
algorithm found the best solutions were calculated and summarized in Tables 9 and 10,
respectively, for population size NP = 30.

Table 9. Average fitness function values and average generations for hybrid FDEi algorithms, where
i ∈ {1, 2, ..., 6} and FPSO algorithm with population size NP = 30.

Case D P FDE1 FDE2 FDE3 FDE4 FDE5 FDE6 FPSO

1 1 4 8.495/1.4 8.495/1.6 8.495/1.2 8.495/1.6 8.495/1.6 8.495/1.5 8.495/2
2 3 10 44.7/214.6 44.7/92.7 44.7/125.9 44.7/93.9 44.7/193.6 44.7/157.6 44.7/6.3
3 3 10 32.998/93.6 32.998/117 32.998/83.3 32.998/115.7 32.998/131 32.998/130.6 32.998/9.8
4 5 11 70.91/1141.7 70.91/829.9 70.91/773.6 70.91/773.8 70.91/870 70.91/864.7 70.91/133.6
5 5 12 41.715/753.4 41.715/899.3 41.715/552.1 41.715/697.7 41.715/840.6 41.715/1106.2 41.715/154.9
6 6 12 51.11/1288.6 51.11/155.3 51.11/1083.2 51.11/1392.7 51.11/1076.1 51.11/755.5 51.11/68.1

Table 10. Average fitness function values and average generations for native discrete DE algorithms
and PSO with population size NP = 30.

Case D P DE1 DE2 DE3 DE4 DE5 DE6 PSO FA

1 1 4 8.495/1.5 8.495/1.1 8.495/1.5 8.495/1.5 8.495/1.4 8.495/1.8 8.495/2.3 8.495/2
2 3 10 44.7/29.4 43.0046/150.7 44.7/39.6 43.8523/33.5 44.7/50.7 44.7/29.6 44.7/87 44.7/99.5
3 3 10 32.998/37.7 30.6441/440.9 32.998/17 32.4747/177.9 31.5101/37.4 32.998/46.6 32.998/80.2 32.998/100.5
4 5 11 69.451/464.2 68.7215/1584.3 70.91/117.9 68.5448/63.3 66.3563/1052.9 70.91/163.2 70.91/418.6 70.91/529.9
5 5 12 41.715/128.5 40.2464/181.2 41.2892/151.5 41.2892/1557 40.2464/1172.8 41.098/312.2 41.715/654.8 41.715/1291.4
6 6 12 51.11/185.7 48.1973/465 49.3735/303.9 50.3425/211.3 49.3735/1049.2 46.9785/101 51.11/560.2 35.177/492.5

The results in Tables 9 and 10 show that the average fitness function values achieved
by FPSO are the same as the ones found by the PSO for all test cases for NP = 30. But
the average generations for which FPSO found the best solutions are much smaller than
those of PSO for all test cases. This indicates that FPSO is superior to PSO in terms of
convergence rate.

The results in Tables 9 and 10 show that the average fitness function values achieved
by FDEi are greater than or equal to those found by the DEi for all the test cases for NP = 30.
However, the average generations for which FDEi found the best solutions are not and can
be much larger than those of DEi for many test cases for NP = 30. This means that FDEi
improves the performance but not the convergence rate of DEi for NP = 30.
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The results in Tables 9 and 10 show that the average fitness function values achieved by
FPSO are the same as those found by the FDEi for all the test cases for NP = 30. In addition,
the average generations for which FPSO found the best solutions are much smaller than
those of FDEi for most test cases, with the exception of Case 1. The average generations
for which FPSO found the best solutions are either no greater than or much smaller than
those of standard PSO and FA for all test cases. This indicates that FPSO improves the
performance and convergence rate of PSO and FA.

Figures 9–14 show the (a) average fitness function values and (b) average generations
for Case 1 through Case 6 with population size NP = 30.

In summary, the average fitness function values obtained by the FDEi algorithms tend
to increase as the population size NP changes from 10 to 30. By contrast, the average fitness
function values obtained by the FPSO algorithm are the same as the population size NP
changes from 10 to 30. This indicates that the performance of the FPSO algorithm is less
sensitive to population size. The results of our experiments indicate that in case one firefly
fails to find another better firefly to update its position, allowing the firefly to attempt to
fly by following the behavior of PSO to create a trial solution can improve efficiency in
searching the solutions. However, in case one firefly fails to find another better firefly to
update its position, allowing the firefly to attempt to fly by following the behavior of DE to
create a trial solution cannot improve efficiency in searching the solutions.
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Figure 9. (a) Average fitness function values; (b) average generations for Case 1 with population size
NP = 30.
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Figure 10. (a) Average fitness function values; (b) average generations for Case 2 with population
size NP = 30.
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Figure 11. (a) Average fitness function values; (b) average generations for Case 3 with population
size NP = 30.
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Figure 12. (a) Average fitness function values; (b) average generations for Case 4 with population
size NP = 30.
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Figure 13. (a) Average fitness function values; (b) average generations for Case 5 with population
size NP = 30.
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Figure 14. (a) Average fitness function values; (b) average generations for Case 6 with population
size NP = 30.

4.2. Comparison of the Proposed Allocation Method with Existing Methods

Besides the optimization of cost savings in ridesharing systems, a new allocation
method was proposed in this study to improve the number of acceptable shared rides
and the number of ridesharing participants. In this subsection, we compare the proposed
cost-saving allocation method with existing methods, including the FF, LP and GP methods
in the literature. The proposed cost-saving allocation method is a parameterized method
with the parameters α and δ. For all the experiments, α is set to 0.05. The meaning of
the parameter δ is the ratio of the cost savings allocated to all winning passengers to the
cost savings allocated to all winning passengers and all winning drivers. The results of
this section include two situations called DGPGP1 and DGPGP2 by setting the parameter
δ in the allocation method. In DGPGP1, the parameter δ is set to 0.5, and in DGPGP2,
the parameter δ is the ratio of the overall original cost of the winning passengers to the
overall original cost of the winning passengers and winning drivers. Several scenarios
were created to test the performance of DGPGP1 and DGPGP2. The results indicate that
either DGPGP1 or DGPGP2 is the best-performing method in comparison with the existing
methods, FF, LP and GP, in these experiments.

The results in Table 11 show the number of acceptable rides and the number of rideshar-
ing participants of the proposed allocation method DGPGP1 with δ = 0.5. Figures 15 and 16
show the bar charts of the number of acceptable rides and the number of ridesharing partic-
ipants for all cases, respectively. The results indicate that DGPGP1 is the best-performing
method compared with FF, LP and GP.

Table 11. Comparison of the number of acceptable rides and the number of ridesharing participants
of the proposed allocation method with those of existing methods for rD ̸= rP and population size
NP = 30, where M/N in each cell of the table denotes the number of acceptable rides (M) and the
number of ridesharing participants (N).

Case D P DGPGP1 DGPGP2 FF LP GP rD rP

1 1 4 1/2 0/0 1/2 0/0 0/0 0.05 0.3
2 3 10 3/6 0/0 2/4 1/2 0/0 0.12 0.5
3 3 10 3/6 0/0 2/4 0/0 0/0 0.1 0.2
4 5 11 3/6 0/0 2/4 1/2 0/0 0.1 0.3
5 5 12 3/5 0/0 2/4 0/0 0/0 0.12 0.3
6 6 12 4/8 0/0 3/6 0/0 0/0 0.11 0.3
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Figure 16. Comparison of participants on acceptable rides of DGPGP1 with FF, LP and GP for
NP = 30.

The results in Table 12 show the number of acceptable rides and the number of rideshar-
ing participants of the proposed allocation method DGPGP2. Figures 17 and 18 show the
bar charts of the number of acceptable rides and the number of ridesharing participants for
all cases, respectively. The results indicate that DGPGP2 is the best-performing method
compared with FF, LP and GP.
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Table 12. Comparison of the number of acceptable rides and the number of ridesharing participants
of the proposed allocation method with those of existing methods for rD = rP and population size
NP = 30, where M/N in each cell of the table denotes the number of acceptable rides (M) and the
number of ridesharing participants (N).

Case D P DGPGP1 DGPGP2 FF LP GP rD rP

1 1 4 0/0 1/2 0/0 1/2 1/2 0.1 0.1
2 3 10 0/0 3/6 2/4 1/2 3/6 0.2 0.2
3 3 10 0/0 3/6 0/0 2/4 3/6 0.15 0.15
4 5 11 0/0 3/6 1/2 2/4 3/6 0.2 0.2
5 5 12 0/0 3/6 1/2 0/0 3/6 0.15 0.15
6 6 12 0/0 3/6 0/0 1/2 3/6 0.2 0.2
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5. Discussion

We conducted experiments by applying the seven hybrid Firefly metaheuristic algo-
rithms developed in this study to solve the ridesharing cost-saving optimization problems
and compare their effectiveness. The results of the experiments indicate that combining the
Firefly Algorithm with PSO or DE approaches can improve the performance of the original
Firefly Algorithm. This is due to the ability to improve the search in the solution space by
applying other diversified strategies to create potential candidates in case an individual
cannot find another one to improve the solution quality using to the Firefly Algorithm.
Therefore, the results of the experiments are consistent with our expectations. Another find-
ing of this study is that the efficiency of a hybrid Firefly metaheuristic algorithm depends
on the strategy used in the hybridization mechanism. The results of the experiments indi-
cate that the FPSO algorithm, which was developed by hybridizing the Firefly Algorithm
with PSO, is more efficient than the FDEi algorithm, which was developed by hybridizing
the Firefly Algorithm with Dei. The average generations for which FPSO found the best
solutions are smaller than those of the Firefly Algorithm. This indicates that FPSO is more
efficient than the Firefly Algorithm. In addition, the average generations for which FDEi
found the best solutions are not smaller than those of the Firefly Algorithm. This implies
that the FDEi algorithm may not be more efficient than the Firefly Algorithm. In summary,
arbitrarily combining two metaheuristic approaches may not always lead to an efficient
hybrid metaheuristic algorithm.

As ridesharing or shared mobility systems require efficient decision support methods,
several computationally efficient methods to allocate transport cost savings have been
proposed in the literature. These methods include the Local Proportional Method, the
Fifty–Fifty Method and the Global Proportional Method. These methods were proposed
based on the idea of the proportional concept. As the cost-saving allocation method
used in ridesharing or shared mobility systems directly influences the financial benefits
of the users and the acceptability of ridesharing mode, several studies have started to
probe into the performance issue of the cost-saving allocation method in recent years. In
this paper, we proposed a new proportional method to allocate transport cost savings.
The proposed proportional method to allocate transport cost savings depends on the
parameter δ. In the experiments performed in this study, we considered two special cases
of the new proportional allocation method called DGPGP1 and DGPGP2. DGPGP1 is
obtained by setting δ to 0.5, and DGPGP2 is obtained by setting δ to the ratio of the
overall original cost of the winning passengers to the overall original cost of the winning
passengers and winning drivers. The results of experiments indicated that both DGPGP1
and DGPGP2 outperform the three existing proportional allocation methods, including the
Local Proportional Method, the Fifty–Fifty Method and the Global Proportional Method,
in terms of the performance metrics of the number of acceptable rides and the number of
ridesharing participants on acceptable rides in ridesharing systems. This indicates that the
new proportional allocation method is an effective allocation method.

6. Conclusions

The optimization of transportation cost savings and allocation of cost savings among
stakeholders are two issues in ridesharing systems. In this study, we addressed these two
issues based on the development of several hybrid metaheuristic algorithms and a new allo-
cation method. As ridesharing problems are typically formulated as discrete optimization
problems with constraints, they belong to the category of nonconvex constrained discrete
optimization problems. Hybrid metaheuristic approaches are adopted in this study to
develop solution algorithms for solving the ridesharing problems. Although the hybridiza-
tion of different metaheuristic approaches may provide a potentially effective method to
improve the performance and/or efficiency of the solution-finding processes in solving
optimization problems, the effectiveness of hybridization depends on the metaheuristic
approaches used in hybridization and the optimization problems to be solved. Therefore,
it is necessary to study the effectiveness of applying the hybridization approach to each
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specific problem in terms of performance and efficiency. The rationale for hybridization to
work is due to the increased diversity through properly combining different metaheuris-
tic approaches in the solution processes to provide more diversified search directions in
the solution space. However, the capability to effectively increase the diversified search
directions in the solution space is dependent on the metaheuristic approaches selected
for hybridization and is unknown a priori. Experiments need to be conducted to know
whether an algorithm based on the hybridization of different metaheuristic approaches is
able to increase the diversified search directions in the solution space to improve candi-
date solutions. In this paper, we developed several hybrid metaheuristic algorithms for
ridesharing problems by combining the Firefly Algorithm with the PSO approach or DE
approach. These hybrid metaheuristic algorithms include Firefly PSO (FPSO), Firefly DE1
(FDE1), Firefly DE2 (FDE2), Firefly DE3 (FDE3), Firefly DE4 (FDE4), Firefly DE5 (FDE5) and
Firefly DE6 (FDE6). To study the effectiveness of these hybrid metaheuristic algorithms,
we conducted experiments for two different population size parameters. A population
size of 10 is used in the first series of experiments to study whether these hybrid meta-
heuristic algorithms can work effectively in small population sizes. A population size of 30
is used in the second series of experiments to study whether these hybrid metaheuristic
algorithms can work effectively in moderate population sizes. The results of the first series
of experiments indicate that FPSO either outperforms or performs as well as FDE1, FDE2,
FDE3, FDE4, FDE5 and FDE6 in terms of average fitness function values and average
generations for most test cases. The results of the second series of experiments indicate that
the average fitness function values achieved by FPSO are the same as those found by the
FDEi for all the test cases for a population size of 30. In addition, the average generations
for which FPSO found the best solutions are much smaller than those of FDEi for most
test cases with a population size of 30. The average generations for which FPSO found
the best solutions are much smaller than those of standard PSO and FA for all test cases
for a population size of 30. This indicates that FPSO improves the efficiency of PSO and
FA through hybridization. In summary, hybridizing FA with PSO creates a more efficient
algorithm, whereas hybridizing FA with DE does not lead to a more efficient algorithm
for the ridesharing recommendation problem. Hybridizing FA with PSO or DE is very
similar to marriages in the real world. An interesting finding of this study is very similar to
what happens in the real world: “Not all marriages have happy endings.” It is necessary to
carefully select the different metaheuristic approaches to be hybridized.

Besides the optimization of cost savings, a new allocation method was proposed in
this study to improve the number of acceptable shared rides and the number of ridesharing
participants. The new allocation method can be applied to deal with the different minimal
expectations of drivers and passengers by setting a parameter δ. We define two special
cases based on the new allocation methods called DGPGP1 and DGPGP2 by setting the
parameter δ to 0.5 and the ratio of the overall original cost of the winning passengers to the
overall original cost of the winning passengers and winning drivers, respectively. Several
scenarios were created to test the performance of DGPGP1 and DGPGP2. The results
indicate that either DGPGP1 or DGPGP2 is the best-performing method for these scenarios
compared with the existing methods, FF, LP and GP, in the literature. One of our future
research directions is to develop new methods that are computationally efficient and can
be effectively applied in ridesharing recommendation systems. Another future research
direction is to study the effectiveness of other hybridization methods for ridesharing
recommendation systems.
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