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Abstract: The cybersecurity landscape presents daunting challenges, particularly in the face of
Denial of Service (DoS) attacks such as DoS Http Unbearable Load King (HULK) attacks and DoS
GoldenEye attacks. These malicious tactics are designed to disrupt critical services by overwhelming
web servers with malicious requests. In contrast to DoS attacks, there exists nefarious Operating
System (OS) scanning, which exploits vulnerabilities in target systems. To provide further context, it
is essential to clarify that NMAP, a widely utilized tool for identifying host OSes and vulnerabilities,
is not inherently malicious but a dual-use tool with legitimate applications, such as asset inventory
services in company networks. Additionally, Domain Name System (DNS) botnets can be incredibly
damaging as they harness numerous compromised devices to inundate a target with malicious DNS
traffic. This can disrupt online services, leading to downtime, financial losses, and reputational
damage. Furthermore, DNS botnets can be used for other malicious activities like data exfiltration,
spreading malware, or launching other cyberattacks, making them a versatile tool for cybercriminals.
As attackers continually adapt and modify specific attributes to evade detection, our paper introduces
an automated detection method that requires no expert input. This innovative approach identifies
the distinct characteristics of DNS botnet attacks, DoS HULK attacks, DoS GoldenEye attacks, and
OS-Scanning, explicitly using the NMAP tool, even when attackers alter their tactics. By harnessing
a representative dataset, our proposed method ensures robust detection of such attacks against
varying attack parameters or behavioral shifts. This heightened resilience significantly raises the bar
for attackers attempting to conceal their malicious activities. Significantly, our approach delivered
outstanding outcomes, with a mid 95% accuracy in categorizing NMAP OS scanning and DNS botnet
attacks, and 100% for DoS HULK attacks and DoS GoldenEye attacks, proficiently discerning between
malevolent and harmless network packets. Our code and the dataset are made publicly available.

Keywords: network traffic analysis; incident classification; automated incident detection; network
security; traffic pattern recognition; cybersecurity; machine learning in networking; protocol analysis;
network forensics

1. Introduction

Over the past few years, Denial of Service (DoS), Operating System (OS) fingerprinting,
and Domain Name System (DNS) botnet techniques have undergone significant advance-
ments, becoming increasingly complex and challenging to identify [1–8]. While these
activities may not always constitute an attack in the traditional sense, they encompass a
spectrum of activities, including reconnaissance and denial of services. The distinction lies
in the intent and context of such actions.

Among all the types of cyber attacks, DoS attacks are considered the most harmful,
as they can entirely disconnect an organization from the Internet or severely impede net-
work links, resulting in a significant disruption of packet delivery [8–10]. Similarly, OS
fingerprinting attacks are crucial for cybercriminals to identify the OS of a target system,
which can be exploited to launch further attacks or gain unauthorized access to the system.
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Unlike DoS attacks, which aim to disrupt the target system, OS fingerprinting is a crucial
component of reconnaissance rather than a standalone attack. In this stage, attackers gather
crucial data about the target system regarding any potential security weaknesses that
could be exploited, such as its network layout, interdependencies of services, and OSes in
use [11,12]. While OS fingerprinting is not typically considered an attack, it plays a signifi-
cant role in the broader context of cyber activities. It may be part of an attack described
within the cyber kill chain framework. A widespread tool most commonly used for recon-
naissance is NMAP. The output of NMAP provides information such as device type, OS
family and generation, Common Platform Enumeration (CPE) representation, OS details,
uptime guess, network distance, details of the operating system, estimation of uptime,
network distance, prediction of Transmission Control Protocol (TCP) sequences, and gen-
eration of Internet Protocol (IP) Identifier (ID) sequences [13]. To perform fingerprinting,
NMAP sends out a series of probes, analyzes the responses received, and compares them
against a database of known OS characteristics. By carefully analyzing network traffic,
NMAP is widely used for attempting to determine the OS running on the target device [14].
However, it is worth noting that the accuracy of NMAP’s OS identification in real-world
networks and on the Internet remains a topic of debate, and there is limited research
available on this subject to serve as a reference [15].

Denial of Service (DoS) attacks have been increasingly disruptive and pose a signifi-
cant challenge to the stability and security of networked systems. These attacks have been
utilized for political purposes, encompassing cyberwarfare, hacktivist actions, and acts
of terrorism [16]. Over time, the landscape of cyber threats has evolved, and the preva-
lence and impact of DoS and Distributed DoS (DDoS) attacks have continued to escalate.
As such, these attacks now stand as formidable adversaries that security systems must
confront [8,17,18]. The DoS GoldenEye and Http Unbearable Load King (HULK) attacks
are malicious techniques aimed at overwhelming a target web server’s resources, rendering
it inaccessible to legitimate users. In the case of GoldenEye, it operates by bombarding
the target server with an extensive barrage of HyperText Transfer Protocol (HTTP) GET
or POST requests, exploiting the HTTP protocol’s statelessness. This incessant flood of
requests forces the server to allocate resources to each incoming request, leading to resource
exhaustion and rendering the server unable to handle legitimate traffic. Similarly, the HULK
attack generates numerous HTTP requests rapidly, aiming to exhaust the web server’s
resources, especially its network bandwidth and computing capacity. Both attacks share
the goal of causing service unavailability, but they employ different methods to achieve
this disruptive outcome, making them potent tools in the arsenal of cyber attackers [8,19].
Attackers are adopting more intricate strategies, utilizing botnets composed of compro-
mised devices to launch DDoS attacks. These botnets can execute coordinated, large-scale
attacks, making detection and mitigation more challenging. Attack vectors and techniques
are also diversifying, including reflection and amplification attacks that exploit vulner-
able servers to magnify the assault’s impact. Moreover, attackers increasingly leverage
encryption to obfuscate their activities and make attribution more complex. In response
to these advancements, defenders are developing more resilient mitigation measures and
leveraging machine learning, Artificial Intelligence (AI), and advanced traffic analysis to
detect and thwart attacks in real-time. As the arms race between attackers and defenders
continues, the evolution of DoS attacks remains critical in cybersecurity [20–22].

Amidst this ever-evolving landscape, a particular threat has gained prominence as
well. As an insidious strain of malware, DNS botnets have significantly intensified their
presence on the digital landscape and caused several negative economic impacts [7]. Their
operational methods are remarkably disruptive, utilizing an extensive network of compro-
mised devices to coordinate and execute synchronized attacks. The primary impact of DNS
botnets is their potential to overwhelm and flood their target with malicious DNS traffic,
rendering the targeted system virtually inaccessible. This assault can paralyze essential
online services and disrupt business operations, thereby incurring significant economic
losses. These economic disruptions can affect organizations ranging from corporations
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and financial institutions to e-commerce platforms, healthcare, and governmental agencies.
As a result, DNS botnets have emerged as a formidable threat in the cybersecurity arena.
The harm inflicted by DNS botnets goes beyond mere financial losses. The consequences of
these attacks extend to an erosion of trust and reputation for the targeted entities. Down-
time resulting from a DNS botnet assault can leave a lasting impact on the user experience,
potentially driving customers away and causing long-term damage to an organization’s
brand [6,7,23,24]. Additionally, service disruptions can result in significant data loss, posing
a severe threat to the confidentiality and integrity of sensitive information. The conse-
quences become dangerous when these attacks are directed towards vital infrastructure.
They can potentially disrupt essential services such as healthcare, transportation, and emer-
gency response systems, as noted in various studies [25,26]. It is worth highlighting that
the increasing integration of Internet of Things (IoT) devices into critical infrastructure
renders them particularly susceptible to exploitation. These connected devices often lack
robust security measures, making them attractive targets for malicious actors seeking to
amplify the impact of their attacks [27,28].

This paper aims to develop an automated methodology for detecting and distinguish-
ing attacks from benign traffic in network data. We propose a distinctive approach to
attack detection that leverages genetic algorithms (GA) and machine learning to extract
unique features from the data and establish correlations with attack behaviors. We analyze
packet headers and extract unique features associated with each TCP/IP stack and appli-
cation layer, resulting in nearly 100% accuracy. As mentioned in our prior work [29–31],
employing a GA for selectively identifying the most distinctive features in datasets offers
numerous benefits.

With the help of GA and machine learning, our methodology eliminates noise and
uncovers subtle attack signatures that could easily go unnoticed by other methods. Unlike
conventional detection techniques, our approach does not hand-select features, but rather
analyzes all features in the data and dynamically selects only the most relevant features to
maximize accuracy. This level of flexibility ensures that our approach can quickly adapt to
changes in attack behavior, provided that a suitable dataset is available.

By fundamentally selecting a subset of the most contributing features at the packet
level, our approach enables faster detection and, therefore, prevents attacks before they can
inflict significant damage. Our approach also is independent of the specific protocol(s) for
performing classification. It can analyze a variety of packet headers, not limited to TCP/IP.
This research has significant implications for developing more advanced and effective
attack-prevention strategies. Some of the prominent passive fingerprinting tools, such as
p0f, ettercap, and siphon, perform a perfect match in their signatures when classifying
hosts [32–34]. In some cases, partial matching can still provide a reliable classification,
which allows further flexibility. Our approach allows for the classification of packets
utilizing a portion of the fingerprints generated by the machine learning model when a
suitable model, such as a Decision Trees, is selected. Many approaches utilize existing
fingerprinting databases when performing fingerprinting. Our approach does not rely
on any existing tools, nor utilizes their fingerprinting databases, but instead generates its
own fingerprints. However, our approach heavily depends on how representative the
dataset is in extracting behavior-specific information. The performance and selection of
features are proportional to the dataset. We employed various machine-learning algorithms
for the classification of malicious and benign packets. Some of the algorithms include
Decision Trees (DTs), Random Forest (RF), Gaussian Naive Bayes (GNB), and Multi-layer
Perceptron (MLP). In this study, we employed these algorithms to identify and classify
attacks accurately. By analyzing the classification accuracy of each algorithm, we identified
the one that performed the best in each scenario. Additionally, we compared the results
obtained with and without the use of GA. We made our dataset and tool publicly available
at https://netml.github.io (accessed on 5 January 2024).

https://netml.github.io
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The rest of the paper is organized as follows: Section 2 summarizes the related work.
Section 3 explains our methodology. Section 4 presents the identification performance of
our approach, and Section 5 concludes the paper.

2. Related Work

Numerous research papers have emphasized the usage of semi-supervised incident
classification and feature mapping to identify attacks. These studies demonstrate the
application of different machine learning algorithms in identifying and classifying various
incidents based on their severity and impact on systems. The papers utilize diverse datasets
and techniques such as feature selection, pre-processing, and model optimization to achieve
a high classification accuracy. They also highlight the need for further research to improve
incident classification by incorporating more data sources and addressing the challenge of
imbalanced datasets. Table 1 lists recent papers that specifically explore feature selection or
enhancement methods such as Recursive Feature Elimination (RFE), Autoencoders, Genetic
Algorithms (GA), and more. These papers are elaborated upon in the upcoming sections.

Table 1. Feature selection/enhancement in network attack classification.

Paper Dataset Approach Performance

Ustebay et al. [35] CICIDS2017 [36]
Recursive Feature

Elimination (RFE) via
Random Forest

91.0%

Pran et al. [21] CICIDS2017 [36]

Hybrid Genetic Algorithm
and Particle Swarm

Optimization Technique
(GPSO)

98.6%

Aksoy et al. [31] Internet of Things (IoT)
identification Dataset [37] Genetic Algorithms (GA) 95.0%

Thalji et al. [38] SQL Injection Dataset [39] Neural Network
Autoencoder 92.0%

Awad et al. [40] UNSW-NB15 [41]
Recursive Feature

Elimination (RFE) using
Decision Tree (DT) models

95.0%

Liu et al. [42] Bot-IoT [43] Genetic Algorithms (GA) 94.4%

2.1. Network Scanning Incident Classification

In [44], the authors present a passive Operating System (OS) fingerprinting approach
to detect unauthorized OSes in an enterprise network. They use Transmission Control
Protocol (TCP) fields such as Time to live (TTL), total length, and window size to detect the
OSes generating the packets. Their methodology involves analyzing network traffic and
comparing it to a database of known OS fingerprints. The results show a high accuracy in
identifying and detecting unauthorized OSes. Another paper aims to do something similar,
but instead looks at the popular network scanning tool NMAP https://netml.github.io
(accessed on 5 January 2024) [11,12]. Their paper discusses the importance of detecting
NMAP scanning behavior to protect hosts from malicious attacks. They discuss that
traditional defense methods like firewalls are less effective at detecting NMAP scanning.
However, Intrusion Detection Systems (IDS) can monitor network security events and alert
when abnormalities appear. The authors propose a Comprehensive NMAP Detection Rules
(CNDR) set based on the Suricata system and consider IDS evasion. The CNDR achieves a
detection rate of 100% for regular NMAP scanning and 91.7% for the detection accuracy of
NMAP with IDS evasion on the authors’ designed dataset.

https://netml.github.io
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2.2. DDoS Attack Incident Classification

Considerable efforts have been dedicated to classifying and detecting Denial of Service
(DoS) attacks. Many papers employ similar approaches, which aim to detect and classify
DoS attacks [45–49]. The Distributed Reflection Denial-of-Service attack (DRDoS) is covered
extensively in [45]. Their study examines and identifies the differences between TCP-based
and User Datagram Protocol (UDP)-based DRDoS attacks. They examine the DRDoS attack,
and find that it exploits vulnerabilities in the UDP protocol to flood a target with traffic; they
explain that the UDP protocol is vulnerable because it allows the amplification of responses
and does not verify the source Internet Protocol (IP) addresses. A proposed solution is
IEWA, which combines increased expenses and weak authentication to protect the Network
Time Protocol (NTP). Another paper in which DRDoS is examined is [46]. The authors
evaluate the susceptibility of popular UDP-based protocols to DRDoS attacks, finding
14 protocols vulnerable, with traffic multiplied up to a factor of 4670. They further identify
millions of potential amplifiers for six vulnerable protocols, and evaluate countermeasures
against DRDoS attacks, showing that poorly designed rate-limiting solutions are evaded by
some attacks, and packet-based filtering techniques are also evaded. They propose a threat
model that analyzes P2P botnets that use amplification attacks to understand the potential
severity of such attacks. The key focus is that an attacker aims to consume all available
bandwidth of a victim by using systems that reflect the attack traffic to the victim. Another
work allows sharing attack data and anomaly profiles with other parties without disclosing
data [47]. Recent works have explored FL methods on the CIC-DDoS2019 [50] dataset,
including LwResnet, FLDDoS, and FIDS. However, some solutions rely on the vanilla
FEDAVG algorithm, which can increase the convergence time on unbalanced non-i.i.d.
attack data and may jeopardize clients’ privacy with data-sharing mechanisms [47]. In
response to these challenges, the authors suggest an adaptive Federated Learning (FL)
approach named FLAD. FLAD facilitates the collaborative training of deep learning models
using distributed profiles of cyber threats while preserving the confidentiality of training
data. The proposed solution manages the FL process by dynamically allocating additional
computation resources to members with more intricate attack profiles, all without the
need to share test data. The study showcases that FLAD surpasses the performance of the
original FL algorithm in terms of convergence time and accuracy across various unbalanced
datasets featuring heterogeneous Distributed Denial of Service (DDoS) attacks. Meanwhile,
other approaches aim to more closely fingerprint at the packet level [48]. The authors
use an approach to classify traffic patterns based on their statistical properties, including
packet length, packet inter-arrival time, and time-to-live. The proposed system generates
application fingerprints based on transport layer packet-level and flow-level features. These
fingerprints identify Distributed Denial of Service (DDoS) attacks by analyzing statistical
information collected at the flow level. Paper [49] discusses how easily DoS attacks can be
launched, but detection and response are often manual and slow. Present methods relying
on packet headers are also vulnerable to spoofing. The framework relies on header content,
transient ramp-up behavior, and spectral analysis, making it more challenging to spoof.
By evaluating a regional Internet Service Provider (ISP)’s access links, they could detect
80 live attacks. The framework has several applications, including aiding in the rapid
response to attacks, developing realistic models of DoS traffic, and estimating the level of
DoS activity on the Internet.

2.3. Automated Attack Classification and Intrusion Detection

Several studies have been conducted on classifying and detecting network attacks us-
ing machine learning algorithms. The following papers [51–57] all have similarities in their
methodology, but differ in which dataset and problem they tackle. Bayu Adhi et al. discuss
using deep neural networks (DNNs) for classifying attacks in the transportation layer of In-
ternet of Things (IoT) networks in their paper [51]. They discuss how anomaly detection is
considered one of the most demanding tasks in intrusion detection systems (IDSs), and the
authors propose a robust DNN classifier model that can intelligently detect different kinds



Electronics 2024, 13, 293 6 of 25

of attacks. The proposed method is evaluated on three benchmark datasets (UNSW-NB15,
CIDDS-001, and GPRS) in wired and wireless network environments. The authors use a
grid search strategy to obtain the best parameter settings for each dataset, and their ex-
perimental results show that the DNN approach is practical regarding accuracy, precision,
recall, and false alarm rate. Another recent paper looked into preventing and detecting
cyber attacks on IoT devices [52]. They evaluate various machine learning techniques,
including k-nearest neighbor, support vector machine, decision tree, naive Bayes, random
forest, artificial neural network, and logistic regression, for both binary and multi-class
classification. The authors use the Bot-IoT dataset to compare and evaluate the algorithms
based on accuracy, precision, recall, accuracy, and log loss metrics. Their results demon-
strate that random forest outperforms other algorithms compared to binary classification,
while k-nearest neighbor (kNN) performs best in multi-class classification. The paper
also provides an overview of the increasing number of IoT devices, the associated risks of
cyber-attacks, and the limitations of traditional intrusion detection systems in detecting
these attacks. The authors of [53] provide a method of identifying DDoS attacks using a
semi-supervised machine learning approach. The approach involves obtaining clusters
of network traffic data using unsupervised methods and then labeling them through a
voting method to mark normal, DDoS, and suspicious traffic. The dataset used consists of
three features extracted using Principal Component Analysis (PCA), and three machine
learning algorithms are applied—kNN, Support Vector Machine (SVM), and Random
Forest (RF)—to classify the labeled traffic data. The emergence of Software-Defined Net-
working (SDN) has given rise to a new form of networking, bringing about new types of
attacks [54]. Ahuja et al. propose a machine learning-based solution to classify benign
traffic from DDoS attack traffic by using novel features for DDoS attack detection. They
create a dataset of SDN traffic logs and use a hybrid machine learning model of Support
Vector Classifier with Random Forest (SVC-RF) to classify traffic. The authors highlight the
security issues of SDN and explain how DDoS attacks can occur at different architectural
planes. To achieve this, the authors create a dataset of SDN traffic logs with novel features
for DDoS detection, using a hybrid machine learning model to classify traffic and evaluate
the model’s accuracy. The authors used a hybrid model of Support Vector Classifier with
Random Forest (SVC-RF) to classify the SDN traffic logs. Regarding threat classification,
two papers provide an excellent framework [56,57]. The two papers use a similar approach
of proposing a new method to detect anomalies. The [56] paper proposes an algorithm that
involves three steps: identifying related packets/flow records, deriving metrics related to
the anomaly, and classifying the anomaly using a signature-based approach. In contrast,
ref. [57] proposes developing machine-learning models to classify HyperText Transfer
Protocol (HTTP) requests as normal or malicious to detect web application attacks. They
both validate their proposed methods on datasets while highlighting the importance of
automated classification.

2.4. DNS-Based Botnet Detection

There have also been many studies in the field of Domain Name System (DNS) bot-
net detection. Singh et al. discuss the limitations of existing surveys, which either need
more in-depth comparisons or cover the full spectrum of DNS-based botnet detection
techniques. This work aims to tackle this problem; the research focuses on botnet detec-
tion methods, specifically those using the DNS Protocol. The contributions of the study
include categorizing DNS-based botnet detection techniques, providing an analysis of each
technique within these categories, and proposing essential attributes for an innovative
DNS-based botnet detection system [6,7]. Similarly, in a related context, the following work
discusses a proposed system called “Notos” for dynamic DNS reputation scoring, which
has shown promise in identifying malicious domains with high accuracy and low false
positives in an extensive ISP’s network [23]. Another more active approach was introduced
by Ma et al., who proposed an active probing approach by looking at DNS query charac-
teristics, such as leveraging the Time to live (TTL)-based caching mechanism of R-DNS
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servers. By probing the cache of these servers, the monitoring system can observe cache
behavior and, in turn, estimate DNS query activities. This approach significantly reduces
management costs and privacy concerns [24]. Other research also leverages DNS query
data to detect malicious DNS traffic [6,58–60]. Another study has adopted a comparable
methodology in a published paper, employing Genetic Algorithms (GA) to enhance the
feature selection capabilities of an Intrusion Detection System (IDS). This approach aims to
optimize the system’s performance within resource-constrained environments such as the
Internet of Things (IoT) [42]. This study showcases an 85% reduction in required features
while upholding a commendable 94% accuracy rate. In contrast to our methodology, this
research does not delve into the importance of the selected features or endeavor to establish
correlations with other studies to substantiate the significance of Genetic Algorithm (GA)
elected features. This omission allows for future work. The collective body of research in
DNS botnet detection highlights the diverse strategies employed to address this critical
cybersecurity concern, from passive monitoring to active probing, all with the common
aim of enhancing network security and safeguarding against malicious DNS traffic.

2.5. Feature Selection Approaches: Recursive Feature Elimination (RFE) and Autoencoder Analysis

While our approach only covers using Genetic Algorithms (GA) to find the most
prominent features in packet header data, there are other approaches which aim to do the
same thing. Such approaches are Recursive Feature Selection (RFE) and Autoencoders.
There have been studies which focus on using Recursive Feature Selection (RFE) to perform
intrusion detection [35,40,61]. The Recursive Feature Elimination (RFE) algorithm system-
atically removes features, initially evaluating classifier performance with the entire feature
set and progressively generating subsets by eliminating features. This iterative process
determines the most effective subset [35]. Awad et al. combine cross-validation with fea-
ture elimination, further refining the feature count and enhancing model performance [40].
Similarly other methodologies such as Autoencoders are also viable for feature selection.
The authors from [62] introduce a novel approach leveraging Autoencoder (AE) technol-
ogy to discern behavioral patterns in IoT attacks. Their method innovatively constructs
features by autonomously learning semantic similarities between command-derived data,
providing improved clustering and a deeper understanding of attack behavioral patterns
compared to traditional approaches. Another approach looks specifically at SQL injection
attacks. Thalji et al. proposed leveraging an Autoencoder network (AE-Net) to automati-
cally engineer features for detecting SQL injection attacks. By extracting deep features from
SQL textual data, the AE-Net facilitates the creation of a more efficient data representation.
Their method, integrated with the extreme gradient boosting classifier, achieved a k-fold
accuracy score of 0.99, surpassing existing approaches. Employing techniques like hyper-
parameter tuning and validation via k-fold cross-validation ensured robust performance
evaluation [38].

3. Automated Attack Identification from Network Traffic

We employ a systematic methodology leveraging network packet headers to address
the challenge of automated attack identification. Our strategy involves utilizing Genetic
Algorithms (GA) and machine learning to discern behaviors indicative of infected hosts.
Evaluating each packet’s accuracy, measured through feature extraction across Network,
Transport, and Application Layers, is a critical indicator. This analysis not only aids in
accurate incident classification, but also assesses the layer-specific contribution of features.
We propose a generalized approach to enhance our strategy’s applicability beyond this
specific dataset. Initially utilizing GA for feature selection and subsequently integrating
these features into classification models, our methodology aims for broader adaptability
across various datasets. Details regarding the specific dataset and experiments are provided
in the experiment section for comprehensive understanding and validation.
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3.1. Data Preparation

For the NMAP Operating System (OS) scan dataset, we analyzed the Kitsune Network
Attack dataset [63] to determine the protocols associated with malicious and benign packets.
The OS Scanning dataset had Internet Protocol (IP) and Transmission Control Protocol (TCP)
protocols comprising 65,700 malicious and 1,022,501 benign packets. We created our dataset
to analyze the Denial of Service (DoS) GoldenEye and Http Unbearable Load King (HULK)
attacks, and published it [64]. Similar to the NMAP OS Scan, malicious and benign Packet
Captures (PCAPs) were captured from them, and we extracted the HyperText Transfer
Protocol (HTTP), TCP, and IP protocols. For the malicious PCAP, we have 179,906 for
GoldenEye and 241,991 for HULK. For the benign traffic, we captured a total of 1604 packets.
For the analysis of the Domain Name System (DNS) botnet, we utilized the dataset from [65].
This dataset comprises two sets of traffic captures: one encompasses malicious DNS data
related to nine different botnets, and the other encompasses benign DNS data associated
with 19 widely recognized software applications. The protocols we extracted include IP,
User Datagram Protocol (UDP), and DNS. Regarding the capture sizes, the malicious dataset
comprises 182,720 packets, whereas the benign dataset encompasses 495,522 packets.

The initial attack from the Kitsune dataset we analyzed was the OS fingerprinting
reconnaissance attack [63]. This attack employs the NMAP tool to scan the network using
probes to determine the Operating System (OS) employed by the scanned targets based
on the characteristics of the return traffic [13]. While OS scanning reconnaissance can
potentially provide attackers with information to identify vulnerabilities [11], it is essential
to note that scanning itself may not always be inherently dangerous. Exploiting system
weaknesses can be attempted without prior scanning, and in some cases, such scans are
conducted to minimize the ‘noise’ associated with blind exploitation attempts. Passive
reconnaissance services like Shodan.io can also gather information similar to internet-facing
systems. However, the context can change when considering internal hosts, especially
if they are standard workstations. In such cases, unauthorized OS scanning can pose
a security risk and may warrant attention. Regardless of the scenario, it is essential to
emphasize the importance of strong security practices, including regular system patching
and network monitoring, to detect and respond to any potential threats effectively.

The second type of attacks we analyzed were the DoS attacks, specifically the DoS
GoldenEye and DoS HULK attacks [64]. These attacks are designed to overwhelm target
systems, such as web servers, with a flood of requests, ultimately causing service disruption
or degradation. Both attacks employ various obfuscation techniques to make each request
appear unique and circumvent security measures. They both randomize user agents,
introduce variability in request parameters, and utilize obfuscation methods to disrupt
server responses and bypass security measures. GoldenEye appends a suffix to Uniform
Resource Locator (URLs) to bypass Content Delivery Networks (CDNs) and employs real-
time parameter randomization. At the same time, the HULK attack uses reference forgery,
Keep-Alive with variable time windows for stickiness, and “no-cache” requests to ensure
unique server responses. However, HULK attacks demand significant client-side resources,
potentially requiring multiple nodes for high attack rates. This can overwhelm servers and
leave legitimate requests unanswered when concurrent connection limits are reached. These
tactics underscore the challenges in defending against such disruptive attacks [8,66,67].
Detecting these attacks allows organizations to protect their online services, maintain server
availability, and ensure a consistent user experience. Timely detection and response are
vital in thwarting malicious actors who employ such tactics to compromise the stability and
functionality of web-based systems, ultimately safeguarding the integrity and availability
of digital resources [2,4]. Just like the NMAP OS Scan, these tools can be employed for
load testing or vulnerability testing on web servers without the intent of launching a
malicious attack.

The final attack we analyzed was the DNS Botnet dataset. The botnet dataset comprises
complete DNS packets from nine exploit kits gathered within a virtual setting. Each bot
was installed within a Windows XP virtual machine, running for several consecutive days.
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This virtual environment underwent comprehensive monitoring from the DNS server to
the router [68]. The selection of this dataset was based on the diversity and utility present
in their PCAP captures. Protecting against DNS-based botnets is imperative, due to their
growing prevalence and sophisticated nature in cybercrimes. Botnets, such as DNS, have
become the weapon of choice for cyber attackers, offering them remote control over vast
networks of infected hosts. Initially designed for legitimate purposes, the DNS has been
exploited as a communication channel for botnet command and control, making it a crucial
component of malicious activities. The use of DNS by botnets not only enables them
to hide their identities, but also poses a severe challenge to detection. Researchers have
recognized this escalating threat and developed detection frameworks, machine learning
classifiers, and proactive techniques for analyzing DNS query patterns. As the number of
infected machines continues to rise, addressing DNS-based botnets becomes paramount in
protecting organizations and individuals from economic damage and security threats in
today’s evolving cyberspace [6,7,24,68].

The pre-processing applied to the respective datasets is described in Algorithm 1.
After determining the protocols used in each dataset, we categorized the packets based
on their topmost protocol layers. For instance, we collected all IP and UDP headers when
examining a dataset employing the UDP protocol for the attack. This categorization was
achieved using the tshark/pyshark libraries, which provided parsed packet dictionaries,
enabling us to extract packet headers from the specified protocol. These libraries, on aver-
age, furnish hundreds of key-value pairs for each examined header, with some reaching 60
or more for HTTP and 300 or more for DNS [69]. These categorized packets were denoted
as Pi (line 1). We split the packets of each protocol i into two categories: malicious and
benign, as Pm

i and Pb
i , respectively (lines 5–10). We then split malicious and benign packets,

Pm
i and Pb

i , into three equivalent-sized files, resulting in a total of six files for each protocol
i. Finally, for each protocol i, we created three batches of packets Pbatch1

i , Pbatch2
i , and Pbatch3

i ,
where each of them contains one-third of malicious and benign packets (lines 11–17). The
reason for splitting is to ensure a k-fold cross-validation, k being 3 in this case. K-fold
cross-validation helps reduce bias in model evaluation, allows more reliable performance
estimation, and generalizes the machine learning model generated for its applicability to
newer data. We will discuss the reason behind this splitting in depth in Section 3.2. We
will also describe the use of GA for feature selection and processing of the three batch files
during this phase.

Algorithm 1 Data Pre-processing Procedure

1: Initialize a set P containing n subsets: P = {P1, P2, . . . , Pn}
2: for each subset Pi in P do
3: Initialize Pi with k elements: Pi = {p1, p2, . . . , pk}
4: end for
5: for each subset Pi in P do
6: Define Pm

i with l elements: Pm
i = {pm

1 , pm
2 , . . . , pm

l }
7: Split Pm

i into three equal parts
8: Define Pb

i with r elements: Pb
i = {pb

1, pb
2, . . . , pb

r}
9: Split Pb

i into three equal parts
10: end for
11: for each subset Pi in P do
12: for j = 1 to 3 do

13: Initialize batch j of Pi: P
batchj
i

14: Include the j-th third of Pm
i in P

batchj
i

15: Include the j-th third of Pb
i in P

batchj
i

16: end for
17: end for
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3.2. Genetic Algorithms for Feature Subset Selection

We utilize a Genetic Algorithm (GA) to automate the process of identifying a subset of
features that play a significant role in classifying network packets. GA allows us to detect
the most contributing features without any expert input. It also helps increase classification
accuracy by eliminating features causing noise in the dataset. In our previous work [70],
we compared the classification accuracy of various feature selection algorithms such as
filter methods, wrapper methods, hybrid methods, and search optimization techniques
such as GA, Artificial Bee Colony (ABC), and Ant Colony Optimization (ACO) for IoT
fingerprinting utilizing TCP/IP packets. We observed that search optimization algorithms
yield higher classification accuracy. Therefore, we utilized the GA to benefit the most in the
accuracy of our classification.

As seen in Algorithm 2, we initially populate randomly generated binary-encoded
solutions called chromosomes (line 1). Each solution in the population represents a poten-
tial solution, indicating which features to select and which to ignore. Unless the algorithm
converges to the optimal solution, or the current generation is less than the maximum gener-
ation allowed, the GA continues exploring potential solutions (line 5). The maxGenerations
in our case was set to 100. We wanted to ensure the GA does not enter a potential loop while
allowing enough iterations for a better solution. The fitness of each solution is evaluated
using a fitness function, which calculates the contribution of the potential solution to the
classification of the dataset (line 6). The fitness function is explained in depth in Section 3.3.
In (line 7), parents are selected for reproduction based on their fitness scores. In our
implementation, we employed a roulette wheel selection method with elitism. In other
words, we ensured that a portion of the best solutions obtained from previous iterations is
retained in the subsequent generation. We also performed a uniform crossover operation
where offspring are created by combining the genetic information of two parent solutions.
The crossover rate determines the probability of each gene being swapped. We utilized
the value of 0.5 for the crossoverRate. We then applied a mutation to the offspring with
a predefined mutation rate of 0.015. GA creates a new population of solutions in each
generation through selection, crossover, and mutation processes.

Algorithm 2 Genetic Algorithm (GA) Setup

1: population← INITIALIZEPOPULATION(populationSize, solutionSize)
2: bestSolution← None
3: bestFitness← −∞
4: generation← 0
5: while generation < maxGenerations and not converged do
6: f itnessScores← EVALUATEFITNESS(population)
7: parents← SELECTPARENTS(population, f itnessScores)
8: newPopulation← empty list
9: while size of newPopulation < populationSize do

10: Select parent1, parent2 from parents
11: child← UNIFORMCROSSOVER(parent1, parent2, crossoverRate)
12: child← MUTATE(child, mutationRate)
13: Append child to newPopulation
14: end while
15: population← newPopulation
16: Update bestSolution and bestFitness if a better solution is found
17: generation← generation + 1
18: end while
19: return bestSolution, bestFitness

3.3. Fitness Function Implementation

For each potential solution generated by the GA, which is called a chromosome,
it is essential to determine the quality of the solution. The quality of solutions is used
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to determine the most information-gaining solutions in each iteration. The quality of a
given solution is determined by the fitness function, which is problem-specific. In our
case, we implemented a fitness function that attempts to increase the accuracy of the
machine-learning classification of incidents while reducing the number of features used.
This approach enables not only a higher accuracy, but also more efficiency.

The dataset was divided into batch1, batch2, and batch3 for training, validation, and test-
ing, using a random splitting approach as discussed in Section 3.1. We analyzed to assess
our machine learning model’s robustness and generalizability. This analysis included
examining the number of packets per label in each split and investigating whether there
were malicious packets in the testing set that had feature vectors identical to those in the
training set on a one-to-one basis. Identifying many malicious packets in the testing set
with identical feature vectors in the training set could suggest overfitting, unless such
features and values are inherently specific to the attacks being analyzed and cannot be
generalized. After GA comes across a potential solution, we iterate through the bits in the
binary string that we use to represent the potential solution to determine which features
are to be removed and which features are to be retained. The value 0 indicates that the
corresponding feature in the dataset is to be removed, and the value 1 indicates that the
corresponding feature is to be retained. After classifying the features, we remove them
from batch1 and batch2 files and generate a reduced dataset. We use a machine learning
algorithm to train batch1, test it on batch2, and record the accuracy. In order to avoid
any potential bias in our results, we train our model using batch2 and test it on batch1 as
well. We then take the average of both accuracy. Now that we know how well the current
solution performs, we also determine its contribution to reducing the number of features
used. Then, we calculate the fitness value that embodies both the accuracy and the rate of
the number of features used to determine the quality of a potential solution.

Let F be the fitness function, s be the potential solution of length n, where si = 1 if
the i feature is to be selected, and si = 0 if the i feature is to be removed, k be the number
of features selected, Fa(s) be the average machine learning classification accuracy on the
reduced dataset, and Ff (s) be the measure of the number of features selected in the potential
solution s, such that:

Ff (s) = 1− (
k− 1
n− 1

) (1)

Then, the fitness function F(s) can be defined as a weighted sum of Fa(s) and Ff (s):

F(s) = 0.7 ∗ Fa(s) + 0.3 ∗ Ff (s) (2)

After testing several combinations of weights for the fitness function, we observed that
the values presented in Equation (2), as demonstrated in Table 2, were the best-performing
set of values for the classification. If we increase the weight for the term in Equation (1), GA
ends up sacrificing the accuracy in favor of reducing the number of features. Conversely,
if we reduce the weight, GA tends to get stuck with a solution that contains more features
than necessary.

Table 2. Parameter optimization.

Weight Num. of Features Accuracy

1.0, 0.0 25 94.5%
0.9, 0.1 7 93.7%
0.8, 0.2 5 94.7%
0.7, 0.3 4 95.5%
0.6, 0.4 3 94.1%

Each iteration of the GA involves using a population of individuals, where each
individual is responsible for evaluating a potential solution. The population size, denoted
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as population_size, is set to 50 in our experiments. Additionally, the GA requires specifying
the number of generations (or iterations) to determine when to terminate. Our previous
work [29] observed that using n_generations = 10 yields high classification accuracy. It
is important to note that n_generations represents the number of GA iterations, not to be
confused with n used earlier to represent the length of the solution vector. We stopped the
GA when we observed ten consecutive iterations with the same solution and accuracy to
ensure termination criteria. Key parameters, such as crossover and mutation probabilities,
were set to 0.5 and 0.015, respectively.

3.4. Machine Learning Classification

As discussed in Section 3.2, the GA runs the fitness function, which performs ma-
chine learning classification on the network packet headers with the subset of features
determined in the chromosome of the solution at hand to determine the contribution of
each potential solution. We used several machine learning algorithms and compared their
results. In our previous work [29–31,71], we observed that rule-based algorithms generate
a high classification accuracy. Therefore, we used four rule-based algorithms: Decision
Trees (DT), Random Forest (RF), Gaussian Naive Bayes (GNB), and Multi-layer Perceptron
(MLP), and compared our results. To set up the machine learning algorithms, we utilized
the default settings of Python’s scikit-learn library. For DT, the criterion parameter was set
to ‘gini’, min_samples_lea f was set to 1, min_samples_split was set to 2, and n_estimators
was set to 100. For MLP, hidden_layer_sizes was set to (100, 50), and max_iter was set to
2000. In order to avoid any potential bias, we obtained results for all three combinations
of batches and recorded their average, see Figure 1. The results presented in Section 4 are
based on these average results.

Train GA with
batch1 and batch2

Test GA on batch3

Record batch3 accuracy

Train system with
batch1 and batch3

Test system on batch2

Record batch2 accuracy

Train system with
batch2 and batch3

Test system on batch1

Record batch1 accuracy

average batch accuracy

Figure 1. Training and testing process.

4. Experimental Results

This section showcases the peak performances attained for each protocol within the
datasets. In this examination, we focus on the use of protocol headers in the classification
of incidents. We then subject the features selected by the Genetic Algorithm (GA) to
assessment using four distinct machine learning classifiers, namely Decision Tree (DT),
Random Forest (RF), Gaussian Naive Bayes (GNB), and Multi-Layer Perceptron (MLP).
The aim was to gauge their effectiveness in classifying data by applying a GA feature
selection methodology. The key metrics of interest are the maximum accuracy achieved
with selected features using GA and the maximum accuracy achieved using all features
without GA. For the computational need of our research, we used the Chameleon cloud
servers [72]. In all the following instances where accuracy is addressed, it pertains to the
F1 score. Table 3 illustrates how our research compares to other studies employing a form
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of feature selection/reduction, specifically focusing on papers that have tested on similar
attack types.

Table 3. Comparison between other studies utilizing feature engineering.

Paper Method Classifier Attack Performance

Ustebay et al. [35]
Recursive Feature

Elimination (RFE) via
Random Forest

Deep Multilayer Perceptron
(DMLP)

Distributed Denial of
Service (DDoS) 91.0%

Pran et al. [21]

Hybrid Genetic Algorithm
and Particle Swarm

Optimization Technique
(GPSO)

Adaptive Artificial Neural
Network (AANN)

Denial of Service (DoS)
Golden Eye 98.7%

Awad et al. [40] Recursive Feature
Elimination (RFE) Decision Tree (DT) UNSW-NB15 [41] 95.0%

Liu et al. [42] Genetic Algorithms (GA) Random Forest (RF) Internet of Things (IoT)
Botnet 94.4%

Proposed Work
Genetic

Algorithms
(GA)

Decision Tree (DT) Denial of Service (DoS)
Golden Eye 100%

Random Forest (RF) Domain Name System
(DNS) Botnet 94.8%

4.1. OS Scanning Identification

The Operating System (OS) Scanning dataset was generated by utilizing the widely-
used NMAP tool to conduct network scans, enabling the identification of hosts and their
respective OS. To mitigate any potential bias stemming from Internet Protocol (IP) addresses,
port numbers, IP Identifiers, and checksums, we began by filtering out such features from
the dataset. This elimination process enables the algorithms to more effectively identify
distinct characteristics relevant to the attacks rather than the hosts from which the data
were collected. We aimed to ascertain which combination of packet headers would yield
the highest accuracy. Hence, we categorized our findings based on IP, Transmission Control
Protocol (TCP), and IP and TCP protocols.

Figure 2 showcases the accuracy achieved by employing packet headers of various
protocols. The results depict the accuracy of each algorithm in our analysis. For IP-only
feature selection, Decision Trees (DT) attained an average accuracy of 47% with GA-selected
features and 67% when using all features. The Random Forest (RF) classifier achieved
an average accuracy of 41% with the assistance of GA while obtaining the same level
of accuracy without GA. Gaussian Naive Bayes (GNB) achieved 47% accuracy with GA-
selected features and 71% with all features. Multi-Layer Perceptron (MLP) reached an
average accuracy of 41% with GA and 39% without GA. Although classification accuracy
using all features surpasses the GA-selected features, the results among the batches are
inconsistent, indicating the non-reliability of IP protocol for the classification of NMAP.
This outcome is attributed to the possibility that there is insufficient attack or software
fingerprinting information within this header to provide a significant advantage over the
other algorithms. In the case of MLP, we observe similar accuracy with and without GA,
which can be linked to GA’s capability to reduce noise and enhance the model’s accuracy,
as discussed in prior studies [29,73,74].

When focusing on TCP features, we observed higher accuracy across all algorithms.
For the Decision Trees (DT) classifier, we observed an accuracy of 78% with GA-selected
features and 89% when using all features. Similarly, in the case of the Random Forest (RF)
classifier, the accuracy increased to 67% with GA-selected features and 91% when utilizing
all features without GA. Gaussian Naive Bayes (GNB) exhibited enhanced accuracy using
GA with 94% and 87% using all features, showcasing the flexibility of GA in feature
selection. Lastly, for the MLP classifier, the utilization of GA-selected features led to an
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accuracy enhancement of 86% when compared to 80% using all features. These results
indicate that the GNB is the most suitable classifier for the TCP protocol. It is also worth
noting that GA employed only up to 7 of the 275 available features. In contrast to feature
selection, the results for IP were similar, where GA utilized at most 2 out of 138 features.
These findings suggest that the uniqueness of the attack lies predominantly within the TCP
features, as achieving close to 90% accuracy is attainable solely through TCP analysis for
most algorithms. Consistent with our findings, the TCP header is the primary focus for
conducting OS scanning, as indicated by previous studies [11,12]. This emphasis on the TCP
header explains why higher accuracy is achieved when analyzing this specific component.

DT RF GNB MLP0
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100 IP

DT RF GNB MLP0
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80

100 TCP

DT RF GNB MLP0
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40

60
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100 IP & TCP

Figure 2. OS scanning identification.

Combining both protocols yields the highest accuracy. The Decision Tree (DT) classifier,
including GA-selected features, resulted in a maximum accuracy of approximately 91%,
while opting for all features without GA yielded a slightly higher maximum accuracy of
about 94%. Similarly, the Random Forest (RF) classifier exhibited a maximum accuracy of
approximately 90% with GA-selected features, which is slightly less than when all features
were used, where it reached about 94%. In contrast, the Gaussian Naive Bayes (GNB)
classifier demonstrated enhanced accuracy, with a maximum accuracy of roughly 94%
with GA-selected features, compared to approximately 93% without GA. Surprisingly,
the MLP classifier showcased consistent maximum accuracy of approximately 92% for both
GA-selected features and 94% for all features. These findings emphasize the diverse impact
of GA-based feature selection on classifier performance, highlighting the need for a tailored
approach based on the specific classifier and dataset, which we achieve by automating such
a process.

Table 4 illustrates the features the genetic algorithm (GA) selects across all proto-
cols. We observe the prominent selection of the tcp.analysis parameter. Additionally,
certain features, like the tcp.window_size_value, suggest its importance as a distinguish-
ing factor in NMAP’s OS fingerprinting methodology, as supported by previous stud-
ies [12,44,75]. Unlike features such as the data payload, which attackers can readily mod-
ify, the tcp.window_size is less susceptible to alteration unless modifications are made to
NMAP’s source code [12]. When considering the tcp.analysis feature, it is crucial to em-
phasize that this is a feature uniquely given by Wireshark that is used to see and follow
TCP flags. The features of tcp. f lags.ack and tcp. f lags. f in combined with other features are
intrinsic features of NMAP [44,76]. Similarly, the tcp.hdr_len fields can be utilized to iden-
tify unauthorized OS scanning activities within a network [12]; however, the tcp.hdr_len
will change when the payload or header size changes, as previously indicated in the stud-
ies [12,77]. Lastly, the ip. f lags.d f is the only prominent IP-specific field picked by the two
algorithms. Other work shows this feature to be used by NMAP and any other tool to
better avoid detection [78,79]. These findings emphasize the potential utility of specific
features in identifying NMAP OS scanning activities. Simultaneously, our approach can
automatically detect features from a given dataset that align with the accumulated scientific
knowledge base.
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Table 4. OS scan selected features.

Features DT RF GNB MLP

tcp.analysis ✓ ✓ ✓ ✓
tcp.window_size_value ✓ ✓ ✓ ✓
tcp.flags ✓ ✓ ✓ ✓
tcp.flags.ack ✓ ✓ ✓
tcp.flags.fin ✓ ✓ ✓
tcp.hdr_len ✓ ✓ ✓
ip.flags.df ✓ ✓

Σ (features) 7 6 4 6

4.2. DoS GoldenEye

In Figure 3, we demonstrate the accuracy achieved using our approach in classifying
the DoS GoldenEye attack. When utilizing the IP protocol, the Decision Tree (DT) classifier
achieved a maximum accuracy of 52% with and without GA-selected features. The Random
Forest (RF) classifier also attained a maximum accuracy of 52% with both GA-selected
features and all features. Gaussian Naive Bayes (GNB) displayed the most significant
improvement, achieving a maximum accuracy of 72%, notably higher than the accuracy of
DT and RF. Multi-Layer Perceptron (MLP) achieved a maximum accuracy of 44% with both
GA-selected features and all features, yielding the lowest accuracy among all algorithms.
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Figure 3. DoS GoldenEye identification.

When considering the TCP protocol headers, in the case of the Decision Tree (DT)
and Random Forest (RF) classifiers, the maximum accuracy of 99% with selected features
closely approached the maximum accuracy of 100% obtained with all features. Similarly,
the Multi-Layer Perceptron (MLP) classifier yielded a maximum accuracy of 99% with
selected features and all features. Conversely, the Gaussian Naive Bayes (GNB) classifier
exhibited a high accuracy of 99% with GA-selected features, while the accuracy when using
all features was notably lower at 76%.

For the HyperText Transfer Protocol (HTTP)-only header classification, we observed
that the maximum accuracy of 100% with selected features was identical to the maximum
accuracy of 100% obtained with all features using all the algorithms except for MLP. As for
MLP, we have the lowest out of all other algorithms with an accuracy of 49% for both the
use of GA and without. The reason we achieve 100% is because the benign packets have
the http.cache_control field set to null, whereas the malicious ones do not. Although this
behavior could indicate an overfitting, we observed another case using the MLP classifier
where the http.accept field was selected to perform classification at high accuracy as well.
Such results indicate that GA can find uniqueness based on the dataset provided. Even if
the newer data to be trained with includes non-null values for http.cache_control field, GA
will automatically look for any other combination of fields that yield as high an accuracy as
possible, as long as the labels in the dataset are distinguishable. Similar research endeavors
have identified these specific markers as distinct fingerprints for these attacks. Further
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elaboration on this aspect can be found in Section 4. There are, however, certain cases
where it is impossible to perform classification, regardless of which feature combination
is used, due to highly similar, if not identical, behavior. For example, we observed in our
previous work that the classification accuracy between Microsoft Windows 7 and 8 OSes is
50% because they use the same network libraries [30].

Notably, DT and RF did not experience substantial improvements in accuracy with
the application of GA feature selection, as their performance remained consistent when
using all features. In contrast, GNB exhibited significant benefits, showcasing a remarkable
accuracy boost when GA-selected features were employed for TCP-only classification.
In the context of IP-specific classification, although it is not featured in Table 5 due to
its relatively low accuracy, it is worth noting that ip.len emerged as the sole consistently
selected feature across all algorithms. Previous research has explored the potential use of
this feature for device fingerprinting purposes, as indicated by references [13,80]. How-
ever, it is crucial to highlight that while ip.len may serve as a valuable component for
device fingerprinting, its standalone utilization needs to be improved for classifying our
attack data. Moving to TCP, specific features took center stage across the classifiers in the
feature selection process. Notably, tcp.window_size, tcp. f lags, tcp. f lags.ack, tcp. f lags.syn,
and tcp. f lags.push were the most frequently chosen features, indicating their crucial roles
in shaping the classification outcomes. The tcp.window_size was picked predominantly
more than other features for TCP header classification. Similar to ip.len, this feature is a
prominent feature for fingerprinting devices [46,47,50]. TCP flags, such as tcp. f lags.ack,
tcp. f lags.syn, and tcp. f lags.push, are reliable features used to identify the DoS Golden-
Eye attack [8,81,82]. Specifically, tcp. f lags.push and tcp. f lags.ack are used for rapid re-
source depletion [8]. In the context of HTTP analysis, the features http.cache_control,
http.accept_encoding, and http.connection were the most preferred by GA. Looking first at
http.cache_control and http.connection, which are specific application layer features used
in the DoS GoldenEye attack, these headers are used to persist connections until all the
available sockets on the target server are exhausted, causing a denial of service to the web
server [22,83,84]. An interesting finding is how GA could pick on the http.accept_encoding
feature because the specific program used to generate the attack data [64] has a function
that randomizes between five specific encoding schemes. While comprehensive studies
specifically addressing http.content_length_header and http.request_version remain limited,
it can be inferred that the selection of http.content_length_header is influenced by a combi-
nation of factors, including the presence of http.cache_control, http.connection, and other
header-related features. This collective influence highlights http.content_length_header as
a distinctive and noteworthy feature in the classification process, which our approach
was able to catch. For http.request_version, some work shows this feature’s usefulness in
performing fingerprinting [85].

Table 5. DoS GoldenEye selected features.

Features DT RF GNB MLP

http.cache_control ✓ ✓ ✓ ✓
tcp.window_size ✓ ✓ ✓ ✓
http.accept_encoding ✓ ✓
http.connection ✓ ✓
http.request.version ✓ ✓
tcp.flags.push ✓
http.content_length_header ✓
tcp.options.sack_perm ✓
tcp.flags.syn ✓
tcp.analysis.duplicate_ack_num ✓

Σ (features) 3 4 6 6
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4.3. DoS HULK

Figure 4 showcases the accuracy achieved using our approach in classifying the DoS
HULK attack. Starting with the IP-only headers, we observe certain resemblances between
the two HTTP denial-of-service attacks and some minor distinctions. For the DT classifier,
the selected features and all features resulted in the same maximum accuracy of 46%.
Similarly, the RF classifier achieved a maximum accuracy of 49% for both selected and all
features. In the case of the GNB classifier, both selected features and all features led to a
maximum accuracy of 75%. On the other hand, the MLP classifier obtained a maximum
accuracy of 34% for both selected and all features, as seen in Table 6.
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Figure 4. DoS HULK identification.

Table 6. DoS HULK selected features.

Features DT RF GNB MLP

ip.len ✓ ✓ ✓ ✓
tcp.len ✓ ✓ ✓ ✓
tcp.analysis.flags ✓ ✓ ✓ ✓
http.connection ✓ ✓ ✓ ✓
http.accept_encoding ✓ ✓ ✓ ✓
http.accept ✓ ✓
http.cache_control ✓

Σ (features) 6 6 5 6

Looking at the TCP-only headers, the DT classifier reached the maximum accuracy of
85% with selected features, while the accuracy of all features was 71%. The features selected
with this classifier were consistent across multiple runs. Similarly, the RF classifier achieved
a maximum accuracy of 85% with selected features and 72% when using all features.
The accuracy was consistently high. In the case of the GNB classifier, the maximum
accuracy with selected features was 66%, whereas it was 49% for all features. On the other
hand, the MLP classifier achieved a maximum accuracy of 64% with selected features and
86% with all features. This classifier’s accuracy varied notably between the two feature
sets. We observe a significant increase in classification accuracy across three algorithms,
indicating the contribution of GA in selecting features that increase efficiency and accuracy
by eliminating noisy data.

The HTTP-only header classification showed a consistent 100% accuracy for the DT,
RF, and GNB classifiers, with the selected and all features indicating consistency across
multiple runs. In contrast, the MLP classifier achieved a maximum accuracy of 100% with
selected features, but the accuracy dropped to 33% when using all features. The MLP
classifier exhibited a significant variation in accuracy between selected and all features.
Across all classifiers, the most common theme was the high accuracy, with three classifiers
consistently achieving a perfect accuracy of 100%.

A significant overlap exists between the features selected by our algorithms in Table 5
and those chosen for the DoS Http Unbearable Load King (HULK) attack, as depicted
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in Table 6. This outcome is expected, since both DoS HULK and DoS GoldenEye have
the same objective regarding the attack. In the exclusive IP header-only classification,
the sole feature, ip.len, was consistently chosen among all features. Although there is
limited existing research highlighting a correlation that establishes the importance of this
feature in the classification of DoS HULK attacks, relying solely on this feature did not yield
significant results. In the TCP header-only classification, we observe improved accuracy,
notably for certain algorithms such as DT and RF, utilizing Genetic Algorithms (GA), which
contributed to narrowing the gap. In the case of GNB, employing GA led to enhanced
accuracy. Another feature picked, such as tcp.analysis. f lags from Wireshark’s website, is
a field that analyzes the metrics of the flags being used [69]. Exploring the information
associated with this particular feature reveals the presence of the following indication:
“Expert Info (Warning/Sequence): Previous segment(s) not captured (common at capture
start)”. This warning is triggered when Wireshark detects an acknowledgment for a packet
it did not capture, potentially indicating packet loss [69]. The manifestation of this feature
in the data after a certain duration of the attack suggests it could serve as additional
evidence supporting the possibility of packet loss. Much like ip.len, there is a lack of
dedicated research linking this flag directly to a Denial-of-Service attack. Given that this
is a Wireshark-specific feature, it may go unnoticed by other packet-capturing software,
such as tcpdump. A characteristic, namely tcp.len, was identified by GA but was absent in
DoS GoldenEye. This feature, recognized unanimously by all algorithms, is considered
distinctive. Some studies, such as those by Sanchez et al. [86] and Maliha et al. [87], examine
packet.length as a relevant feature in the detection of incidents involving DoS HULK, Low
Orbit Ion Cannon (LOIC), and GoldenEye. While not identical to tcp.len, packet.length
computes segment size, potentially establishing similarities with other features chosen in
GoldenEye, such as tcp.window_size. We observe multiple HTTP features overlapping in
their selection due to their high accuracy, mirroring the pattern in the DoS GoldenEye HTTP
features. The http.cache_control feature is implemented to bypass a server’s caching engine,
as detailed by Mahjabin et al. [18]. Despite limited research attributing http.connection
and http.accept_encoding to DoS HULK, the inclusion of these features is justified by the
existence of a similar attack and studies illustrating the correlation between these attributes
and DoS GoldenEye [22,83,84].

4.4. DNS Botnet

Starting with IP header-only analysis, utilizing the Decision Tree (DT) classifier,
the maximum accuracy of selected features reached 53%, while considering all features
yielded a maximum accuracy of 59%. Similarly, the Random Forest (RF) classifier achieved
a maximum accuracy of 38% for selected features and 37% for all features. Gaussian Naive
Bayes (GNB) demonstrated a maximum accuracy of 31% for selected features and 29% for
all features. Multi-layer Perceptron (MLP) showcased a maximum accuracy of 50% for
selected features and 34% for all features. Across all classifiers, a consistent pattern emerged
with varying features being recurrently selected, reflecting the distinctive preferences of
each algorithm.

Looking specifically at the UDP protocol, DT achieved a maximum accuracy of 37%
with selected features and 35% with all features. Similarly, the RF classifier obtained
a maximum accuracy of 37% with selected features and 34% with all features. GNB
demonstrated a maximum accuracy of 39% for both selected and all features. The MLP
exhibited a maximum accuracy of 40% for both selected and all features. As seen in Figure 5,
IP, UDP, and their union yielded the lowest sets of accuracy results, indicating their lack of
contribution to the classification of DNS Botnet attack.
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Figure 5. DNS botnet identification.

In DNS classification, however, we observed higher accuracy results. DT achieved a
maximum accuracy of 94% for selected features and 94% for all features. The RF classifier
demonstrated a maximum accuracy of 93% for selected features and 93% for all features.
GNB exhibited a maximum accuracy of 59% for selected features and 55% for all features.
The MLP showcased a maximum accuracy of 74% for selected features and 73% for all
features. Across all classifiers, the most prominent accuracy rates were achieved by the DT
for selected features and RF for all features.

Similar to our analysis of other cyber attacks using our methodology, we observe that
ip.len is again identified as the predominant feature by all algorithms, as depicted in Table 7.
Such coherence arises because the IP length also contains the DNS length, which is the
driving force in classifying DNS Botnet attacks. Regarding the significant role of udp.length
in detecting DNS botnets, existing research, such as the study by Khaing et al. [88], indicates
that the UDP packet size can serve as a means to identify DNS botnets within IoT due to its
inclusion of DNS header length. Additionally, related studies have utilized it with other
features to identify hybrid botnets, as highlighted in [89]. Examining the DNS component
of our findings, we observe a pattern similar to other attacks, where the most pronounced
impact and the highest achieved accuracy correlate with selecting the most significant
number of features. We begin by looking at the most widely researched DNS botnet features:
dns.qry.name and dns.resp.primaryname. Numerous works, including those by Manmeet
Singh et al., delve into the intricacies of DNS queries employed by botnets [6]. Kamal
Alieyan et al., for instance, emphasize the exclusive use of the DNS feature dns.qry.name for
anomaly detection [7]. This observation aligns with broader research efforts, such as those
led by Manos Antonakakis et al., where an anomaly-based detection system is developed,
focusing on query names and leveraging passive DNS query data [23]. Furthermore,
the UCSD research by Xiaobo Ma et al. contributes valuable insights into DNS query
characteristics through active probing on a large scale [24]. Similarly, Xiaobo Ma et al.
actively probe DNS query characteristics by assessing DNS cache activities [24]. In line
with the theme of monitoring DNS activities, Xuan Dau Hoang and Quynh Chi Nguyen
underscore the importance of monitoring DNS query data to unveil malicious activities [58].
Examining outbound DNS queries, Yong Jin et al. identify potential anomalies [59]. At the
same time, the research by Kamal Alieyan et al. proposes an approach based on DNS query
and response behaviors for detecting abnormal activities [7]. We have also demonstrated the
contribution of DNS protocol in identifying Fast-flux attacks in our previous research [31].
These collective efforts underscore the significance of understanding the behavior within
these features to distinguish malicious botnet activity from benign network behavior.
The dns.rrsig.signature is a component of DNS security and, as of now, there are no studies
linking this feature to any form of malicious botnet activity. dns.soa.serial_number is a
feature that plays a crucial role in DNS zone transfers, as it is responsible for informing
the secondary nameserver about the need for an update in its version. In transferring
DNS record data from a primary to a secondary nameserver, the start of authority (SOA)
record containing the serial number is sent first. This serial number is crucial for the
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secondary server to determine if an update is required. T. Frosch et al. reference this feature,
noting that the frequency of SOA serial number changes is a distinctive characteristic
indicating the rate at which a DNS zone is updated. Their analysis suggests variations
in serial number changes between benign and malicious zones, leading them to employ
this metric as a distinguishing feature in their research [90]. The presence of the flag
dns. f lags.checkdisable in a query signals that the resolver sending the query finds non-
authenticated data acceptable. Despite being selected by most algorithms, except for
GNB, there need to be studies demonstrating a correlation between DNS Botnets and the
utilization of this feature. A specific feature in the DNS query field dns.qry.type is associated
with DNS Botnet activity as mentioned in papers [58,60]. Alieyan et al. mention that certain
domains exhibit illogical and unnatural structures featuring names that lack a sequential
pattern. Distinguishing between normal behavior in proper DNS transactions or queries
and abnormal ones becomes evident, especially when many queries are involved [60].
Considering that this feature was selected only by the two algorithms with lower accuracy,
it likely does not significantly impact DNS Botnet detection: the two remaining features,
namely dns.resp.name and dns.resp.ns, similar to the previously mentioned features, lack
substantial dedicated research demonstrating a clear correlation with DNS Botnets.

Table 7. DNS botnet selected features.

Features DT RF GNB MLP

ip.len ✓ ✓ ✓ ✓
udp.length ✓ ✓ ✓ ✓
dns.qry.name ✓ ✓ ✓ ✓
dns.rrsig.signature ✓ ✓ ✓ ✓
dns.soa.serial_number ✓ ✓ ✓
dns.flags.checkdisable ✓ ✓ ✓
dns.resp.ns ✓ ✓ ✓
dns.resp.primaryname ✓ ✓
dns.resp.name ✓ ✓
dns.qry.type ✓ ✓

Σ (features) 7 6 8 10

5. Conclusions

This study underscores the effective integration of machine learning algorithms such
as Decision Tree (DT), Random Forest (RF), Gaussian Naive Bayes (GNB), and Multi-layer
Perceptron (MLP) with genetic algorithms (GA) for discerning distinctive features associ-
ated with specific programs or attacks. By gaining insights into these unique characteristics,
we enhance our understanding of the nature of attacks, mainly focusing on Operating
System (OS) scanning, Domain Name System (DNS) Botnet, Denial of Service (DoS) Http
Unbearable Load King (HULK), and DoS GoldenEye. GA plays a crucial role in automat-
ically selecting a subset of features, significantly improving the precision of classifying
benign and malicious packets. Feature selection is essential for filtering out irrelevant
elements that may introduce noise during data classification. Notably, our observations
indicate that, in certain instances, utilizing GA results in higher accuracy than using all
features collectively. Furthermore, the elimination of noise facilitates quicker data import,
accelerating the classification process and enabling a focus solely on the features relevant
to the attack. Based on our discoveries, the features selected by GA for OS scanning in
Internet Protocol (IP) and Transmission Control Protocol (TCP) headers achieved a high ac-
curacy of 94%. For DoS GoldenEye, utilizing only the HyperText Transfer Protocol (HTTP)
header resulted in a perfect 100% accuracy, as did DoS HULK with the HTTP header alone.
Similarly, for DNS Botnet, employing only the DNS header yielded an accuracy of 94%.
These outcomes were achieved by employing a minimal subset of features, varying from
3 to 10, out of over 60 potential features for HTTP, over 300 for DNS, and over 300 for
combined IP and TCP headers.
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The consistency between features selected by GA and their contribution to identifying
attacks underscores the effectiveness of this approach. In our future analysis, we aim to
delve into the statistical features of each header field of various protocols to enhance our
classification accuracy. While packet rate and timing are known to improve the detection of
specific attacks, we aim to refine our understanding of these features for better identification
and differentiation of attack types. Additionally, a more thorough examination of packet
contents could unveil further attack patterns concealed within the packet features. We also
want to compare our classification results with other search optimization algorithms to
observe any potential increase in the accuracy and performance of our approach.
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