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Abstract: In the last decade, E-voting has received great attention due to its advantages in efficiency
and accuracy. Fan et al. presented a novel E-voting system named HSE-Voting by utilizing homo-
morphic signcryption. The HSE-Voting system was claimed to gain a provable security goal under
the standard proof. In this paper, we illustrate that their scheme may suffer from some potential
security issues. On the one hand, the voting information could be recovered by the authentication
center (AC). On the other hand, any malicious voter could disrupt the voting system undetected
by locally modifying his ballot. In order to increase the resilience of the voting system to risks, an
improvement of the HSE-Voting system is developed. Our improved system fixes the above security
weaknesses but increases the computation cost on the AC side by a small amount. In addition, the
proposed scheme satisfies voter anonymity, ballot privacy, and verifiability of election results.

Keywords: e-voting; homomorphic encryption; privacy-preserving; efficiency

1. Introduction

E-voting refers to voting that allows voters to cast their votes through the internet.
Compared with traditional elections, E-voting not only saves a lot of ballot printing, trans-
portation, and manual counting costs but also improves voting efficiency and convenience.
For example, the 2020 US presidential election coincides with the national public health
security problem. If the traditional voting method is adopted, it will inevitably cause a
large number of people to gather, while electronic voting can solve this problem well. Many
countries, including India and Brazil, have used electronic voting technology in many
different electoral fields [1].

In 2020, Fan et al. [2] proposed a homomorphic signcryption scheme to construct an
E-voting system named HSE-Voting in order to improve the efficiency of E-voting. Due to
the integrated design of signcryption, its efficiency has been greatly optimized compared
with Yang et al.’s system [3] on the agency side. Furthermore, it gives a comparative
security analysis. However, there are some security issues in Fan et al.’s system, such as
voter privacy being leaked, and the E-voting system may not properly being completed.

In this paper, we propose two cryptanalytic attacks on Fan et al.’s system [2]. In the
first attack algorithm, we show that an honest-but-curious authentication center (AC) can
recover the voter’s voting information from the corresponding ballot. In the second attack
algorithm, we reveal that malicious voters can disrupt the election process by sending
special incorrect ballots. Moreover, in order to enhance the security of the HSE-Voting
system, we propose an improved HSE-Voting system by combining the signature and the
proof of partial-knowledge protocol (PPK). While avoiding the above security risks, our
system also reduces the computation cost on the agency-side compared to the existing work.

1.1. Related Work

Electronic voting [4–6] has been one of the key areas of focus for researchers. Over
the past decade, many E-voting schemes have been proposed [7–10]. Most efficient E-
voting protocols can be categorized by their approaches into the following types: blind
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signature [11–13], mix-nets [14], and homomorphic encryption [3,11,12,14–17]. In this
subsection, we focus on the homomorphic encryption-based E-voting system.

Homomorphic encryption has been utilized in E-voting systems. The benefit of its
homomorphic property is that ballots can be tallied without accessing the content of any bal-
lot [18]. The ElGamal scheme [19] is one of the most widely used homomorphic encryption
schemes in electronic voting. For instance, Refs. [3,11,12,14–16] exploit ElGamal to encrypt
the ballots, thereby constructing an E-voting system with some existing cryptography tools,
such as the proof of zero-knowledge [20] and the proof of partial knowledge [21].

In [14], Adida proposed a web-based E-voting system named Helios, which achieved
open-audit voting using ElGamal encryption. Helios has strong security. Assuming that
there are enough auditors, even if all the authorities collaborate to corrupt the system,
there is a high probability of being exposed. Nevertheless, the security of Helios is closely
related to the shuffling mechanism. It follows that if the Helios server is corrupted, then
the submitted votes may be shuffled incorrectly, or the encrypted votes may be decrypted
incorrectly. Furthermore, the performance results reported in [14] demonstrate that there
is a large time overhead in the actual application. In an election with only two options in
each vote and 500 voters, the Helios program takes more than 8 h.

In [12], the Helios system made several dramatic improvements to form the Helios
2.0 program, which was applied to support a real-world election. Specifically, Helios 2.0
updated the open audit mechanism. However, the key generation and decryption codes of
Helios 2.0 are required to be completed by several trusted election committees. In fact, it is
difficult to guarantee that the trustees are trusted in real environments. In addition, Helios
2.0 does not optimize its efficiency.

In [3], Yang et al. proposed a ranked choice E-voting system based on homomorphic
encryption. Compared with the similar previous work, this system greatly improves the
computation efficiency on the voter side. However, in this system, signature and encryption
exist independently; the computation cost of the election agency increases rapidly as the
number of voters grows. In addition, it also lacks the standardized proof of security.

Yuan et al. proposed an E-Voting scheme [7] based on Paillier homomorphic encryp-
tion and decentralization. The scheme utilizes signatures and double-encrypted technolo-
gies to secure the ballot information during transmission. In addition, the decentralization
character avoids the risks associated with the corruption of a single institution and increases
the openness and transparency of the system.

Qu et al. proposed an electronic voting protocol [8] based on the homomorphic sign-
cryption. This protocol utilizes blockchain to make the election procedure public. Benefiting
from the decentralized nature of blockchain, their protocol eliminates the requirement for
trusted institutions.

In addition, Sheela et al. [9] and Saproo et al. [10] developed E-voting software
based on homomorphic encryption, which further promotes the application of E-voting
technology in practice.

E-voting represents a complex practical application scenario that necessitates the
comprehensive consideration of multiple factors. Beyond safeguarding the privacy of
voters’ ballot information as a fundamental requirement, it is imperative to ensure eligibility,
accuracy, non-repeatability, reliability, verifiability and so on. Consequently, existing
schemes enrich the functionality of the voting system to align with practical demands. On
the other hand, there is a need to strike a balance between functionality and efficiency to
ensure the practicality of the voting system.

1.2. Organization

Sections 2 and 3 describe cryptographic tools and Fan et al.’s HSE-Voting system,
respectively. Section 4 presents the cryptanalytic algorithm, and Section 5 proposes our
improved HSE-Voting system. Section 6 provides the characteristic analysis of our system.
The performance analysis is shown in Section 7. Section 8 concludes this paper.
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2. Preliminaries

In this section, we introduce the notations and the basics of cryptography used in this
paper. In the content described, the Diffie–Hellman problem is the intractability problem
on which the security of the improvement scheme is based. We use the ElGamal scheme to
protect ballot privacy and use its additive homomorphism to count ballot information. The
proof of partial knowledge and proof of zero-knowledge (PZK) are adopted to provide the
verifiability of election results. These concepts are important in enhancing the security of
the HSE-Voting system.

2.1. Diffie–Hellman Problem

The Diffie–Hellman problem is a difficult problem of cryptography proposed by
Whitfield Diffie and Martin Hellman in [22].

Definition 1 (Computational Diffie–Hellman Assumption, CDH). Considering G is a cyclic
group of order q, g is a generator of G and two elements a, b ← Zq. Given ga and gb, it is
computationally intractable to compute the value gab.

Definition 2 (Decisional Diffie–Hellman Assumption, DDH). Considering G is a cyclic group
of order q, g is a generator of G, three elements a, b, c ← Zq. The DDH tuple

D =
(

g, ga, gb, gab
)

and random tuple R =
(

g, ga, gb, gc
)

are computationally indistinguishable.

2.2. Elgamal Cryptography

ElGamal cryptography [19] is a well-known homomorphic encryption scheme. We
select a safe-prime p of the form p = 2q + 1, where q is also a prime. In the remainder of
this paper, we consider G is a cyclic group of quadratic residues modulo p. The ElGamal
scheme consists of the following three algorithms.

KeyGen: Let g be a generator of G. Randomly choose x ← Zq, then compute y = gx.
Output the key pair (SK, PK) as follows.

(SK, PK) = (x, y).

Enc: Given a message m ∈ Zq, randomly choose element r ← Zq, and encrypt m
as follows.

Enc(m) = c = (c0, c1) = (gr, gmyr).

Dec: Given the ciphertext c, decrypt the ciphertext as follows.

Dec(c) = c1/cx
0 = gm,

where m can be revealed by computing a discrete algorithm.
Homomorphism: We show that the multiplication of Enc(m1) and Enc(m2) is a cipher-

text corresponding to m1 + m2. Note that

Enc(m1) · Enc(m2) = (gr1 , gm1 yr1) · (gr2 , gm2 yr2)

=
(

gr1+r2 , gm1+m2 yr1+r2
)

= Enc(m1 + m2).

2.3. Proof of Partial Knowledge

In an ElGamal cryptography system, there is a cyclic group of quadratic residues G of
order q with a generator g, the public key y = gx, and the secret key is x. Randomly select
two plaintexts m1, m2 ∈ Zq, compute Enc(m1) = (c0, c1) = (gr, gm1 yr). Then, we describe
the process of proof of partial knowledge based on the ElGamal scheme [21], in which the
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prover P can prove to the verifier V that the provided ciphertext is one of Enc(m1) and
Enc(m2), but the verifier V cannot determine which plaintext corresponds to the ciphertext.

Firstly, the prover P generates the PPK parameters PPK as Algorithm 1.

Algorithm 1 Generating the PPK verification parameters

Input: c0, c1, m1, m2, y
Output: PPK = (c0, c1, T0, T1, T2, v1, v2, s1, s2)
1: Prover P:
2: Generate e, v2 ← Zq.
3: Compute s2 = r · v2 + e mod q.
4: Compute T0 = ge.
5: Compute T1 = ye.
6: Compute T2 = (gm2v2 ys2)/cv2

1 .
7: Compute v = hash(T0||T1||T2||c0||c1).
8: Compute v1 = v2 ⊕ v.
9: Compute s1 = r · v1 + e mod q.

10: PPK = (c0, c1, T0, T1, T2, v1, v2, s1, s2)
11: return PPK

Then, the prover P sends PPK to the verifier V. After that, the verifier V verifies the
correctness of the PPK parameters as Algorithm 2.

If Algorithm 2 outputs true, verifier V believes that the ciphertext is either Enc(m1) or
Enc(m2), but the exact value of the plaintext cannot be determined. If the m2 is chosen to
be encrypted, let step 6 in Algorithm 1 be T2 =

(
gm1v2 ys2 /cv2

1
)
, and set m1 = m2, m2 = m1

for Algorithm 2. More details can be seen in [21].

Algorithm 2 Verifying the PPK parameters

Input: PPK, m1, m2
Output: true or false
1: Verifier V:
2: Verify v1 ⊕ v2 = hash(T0∥T1∥T2∥c0∥c1).
3: Verify gs1 = T0 · cv1

0 .
4: Verify gs2 = T0 · cv2

0 .
5: Verify ys1 = T1 · (c1/gm1)v1 .
6: Verify ys2 = T2 · (c1/gm2)v2 .
7: If all equations hold, return true; otherwise, return false.

2.4. Proof of Zero-Knowledge

This subsection introduces the preliminary knowledge related to proof of zero-
knowledge [20]. As in the previous subsection, this part is still based on the ElGamal
cryptography system definition. The process of PZK [20] is described as follows in which
the prover P can prove to the verifier V that the return value t and the prover’s public key
h = gx have the same exponentiation, i.e., x. However, the verifier V cannot obtain any
information about the prover’s secret key sk = x.

Firstly, the verifier V generates and discloses a random parameter a← Zq. Then, the
prover P generates the PZK parameters as Algorithm 3.
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Algorithm 3 Generating the verification parameters

Input: a, h, x
Output: PZK = (t, s, v, T0, T1)
1: Prover P:
2: Generate e← Zq.
3: Compute t = ax.
4: Compute T0 = ge.
5: Compute T1 = ae.
6: Compute v = hash(t||a||T0||T1).
7: Compute s = x · v + e mod q.
8: PZK = (t, s, v, T0, T1)
9: return PZK

After that, the prover P sends PZK parameters PZK to the verifier V. Then, the verifier
V verifies the correctness of the PZK protocol with the parameters.

If Algorithm 4 outputs true, the verifier V trusts the statement of the prover P.

Algorithm 4 Verifying the PZK parameters

Input: a, PZK
Output: true or false
1: Verifier V:
2: Verify v = hash(t||a||T0||T1).
3: Verify gs = T0 · hv.
4: Verify as = T1 · tv.
5: If all equations hold, return true; otherwise, return false.

3. HSE-Voting System Overview

In this section, we briefly introduce the entities and election processes included in the
HSE-Voting system [2].

3.1. Entities in the HSE-Voting System

Here, we list all entities involved in the HSE-Voting system.

1. Voters: People who are authorized to vote.
2. Authentication Center: AC takes responsibility for verifying the identification of

voters, tallying and other related work in an election. Especially, AC is honest-but-
curious.

3. Bulletin Board (B Board): An insert-only bulletin board, which displays all information
about the election.

4. Auditors: Auditors are responsible for supervising the voting process and verifying
the election result. Furthermore, the auditors are credible.

3.2. Initialization and Registration

In the initialization phase, AC applies the safe parameter λ to generate the pa-
rameters params = (G, g, q) and a key pair (SK, PK), where SK = (x0, x1, x2) ← Z3

q,
PK = (y0, y1, y2) = (gx0 , gx1 , gx2), then publishes params and PK on the B Board.

In order to register with the HSE-Voting system, every voter has to provide valid
identification. Once a voter’s identity has been verified, AC sends a random ID number
to them through a secure channel. In the subsequent election process, the HSE-Voting
system requires voters to identify themselves using an ID number. Obviously, AC can
easily determine the voter identity corresponding to the allocated ID number.

3.3. Ballot Generation

The voter Vi generates plaintext votes bi,j ∈ {0, 1} for each candidate, where
i ∈ {1, . . . , Nv}, j ∈ {1, . . . , Nc} (1 means support the candidate, 0 means do not sup-
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port the candidate). The voter Vi computes the signcryption of plaintext vote bi,j, the
corresponding PPK parameters PPKi and their public key pki as Algorithm 5, and sends ci,
PPKi, IDi as well as pki to AC.

Algorithm 5 Computing Signcrypt and PPK

Input: bi,1, . . . , bi,Nc , PK, params,
Output: Vi’s signcryption ballots: ci = (ci,1, . . . , ci,Nc)

Corresponding PPK: PPKi = (PPKi,1, . . . , PPKi,Nc)
1: Set ski = wi ← Zq, pki = gwi .
2: while j = 1, . . . , Nc do
3: Signcrypt:
4: Set ri,j ← Zq.
5: Compute: ci,j =

(
ci,j,0, ci,j,1, ci,j,2

)
=
(

gri,j , gbi,j y0
ri , y1

wi y
bi,j
1 y2

ri
)

6: PPK:
7: Set ti,j, a1

i,j, d1
i,j ← Zq.

8: Set b′i,j ∈ {0, 1} and b′i,j ̸= bi,j.

9: Compute P0
i,j = gti,j

.
10: Compute P1

i,j = y0
ti,j

.

11: Compute P2
i,j = gb′i,j ·a1

i,j
· y0

d1
i,j

/ci,j,1
a1

i,j
.

12: Set Pi,j =
(

P0
i,j, P1

i,j, P2
i,j
)

.

13: Compute ai,j = hash
(

ci,j,0||ci,j,1||P0
i,j||P1

i,j||P2
i,j
)

.

14: Compute a0
i,j = a1

i,j ⊕ ai,j.
15: Compute di,j

0 = ri,j · a0
i,j + ti,j.

16: Set PPKi,j =
(

ci,j, Pi,j, a0
i,j, a1

i,j, d0
i,j, d1

i,j
)

.
17: end while
18: Set PPKi = (PPKi,1, . . . , PPKi,Nc).
19: Set ci = (ci,1, . . . , ci,Nc).
20: return ci and PPKi

3.4. Vote Tallying

AC performs the verifications as follows.

1. Verifying the legitimacy of each IDi.
2. Verifying the eligibility of each ballot ci through PPKi.

AC tallies all eligibility ballots (i.e., f lagi = 1) as follows.

Cj =
(
Cj,0, Cj,1, Cj,2

)
=

(
Nv

∏
i=1

ci,j,0,
Nv

∏
i=1

ci,j,1,
Nv

∏
i=1

ci,j,2

)
.

Then, AC decrypts the tallied ballot and computes the voters’ joint public key as follows.

bj = logg
Cj,1

Cx0
j,0

, pk =
Nv

∏
i=1

pki.

After that, AC verifies whether the following equation holds.

Cj,2 = pkx1 y
bj
1 Cx2

j,0.

If the above equation holds, AC publishes the election results B = (b1, . . . , bNc), where
bj is the total number of votes received by the j-candidate.
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3.5. Vote Audit

The auditor firstly asks the AC for secret key x0 and then verifies

1. gx0 = y0,
2. Cj,1 = Cj,0

x0 · gbj , j ∈ {1, . . . , Nc}.
If both equations hold, the auditor believes that the election result is fair, impartial,

and credible.

4. Cryptanalysis of the HSE-Voting System

In this section, we describe our attack algorithms about recovering electoral preference
from the ballot and sabotaging the election with the wrong signcryption in detail.

4.1. Recovering Electoral Preference from the Ballot

Theorem 1. In the HSE-Voting system, the AC can recover every voter’s electoral preference
from his ballot.

Proof. As shown in the Section 3.1, the AC generates (PK, SK), and the voters send their
ballots to the AC. Through the components of the ballots, the AC can resume the electoral
preference in two ways. The first method is as follows.

1. The AC computes CTi,j = pkx1
i cx2

i,j,0 = yωi
1 y

ri,j
2 .

2. With the voter’s ballot ci,j =
(
ci,j,0, ci,j,1, ci,j,2

)
, the AC computes CT′i,j = ci,j,2/CTi,j = y

bi,j
1 .

3. If CT′i,j = 1, the plaintext vote is 0; otherwise, the plaintext vote is 1.

In the second method, since all ballots are posted on the B Board, the adversary can
obtain the signcryption and corresponding PPK of the voter Vi. According to the generation
method of PPKi,j, the parameters a1

i,j and d1
i,j are two random elements in Zq. Therefore,

the probability of the following equation is 1
q .

gd1
i,j
= P0

i,j · ci,j,0
ai,j

1 .

According to the verification equations in Algorithm 6, there is

gd0
i,j
= P0

i,j · ci,j,0
ai,j

0 .

As a consequence, the adversary can easily distinguish between d0
i,j and d1

i,j. Obvi-
ously, the vote bi,j satisfies the following equation.

yd0
i,j

0 = P1
i,j · (ci,j,1/gbi,j)ai,j

0 .

Because of bi,j ∈ {0, 1}, we can retrieve the voting preference easily.
As voters register with the AC, the AC can confirm the real identity of the voter by

IDi. In summary, the AC can recover every voter’s electoral preference from his ballot. The
reason for this security risk is that the AC has all the private keys SK = (x0, x1, x2). One
potential solution is to encrypt the ballot using a collaborative public key approach, thereby
circumventing the issue where the AC could decrypt a single ballot.
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Algorithm 6 Verifying PPK

Input: c1, . . . , cNv , PPK1, . . . , PPKNv , PK, params
Output: f lagi = 0 or 1
1: Set f lagi = 1.
2: while j = 1, . . . , Nc do
3: if a0

i,j ⊕ a1
i,j ̸= hash

(
ci,j,0||ci,j,1||P0

i,j||P1
i,j||P2

i,j
)

then
4: Set f lagi = f lagi × 0.
5: end if
6: if gd0

i,j ̸= P0
i,j · ci,j,0

ai,j
0 then

7: Set f lagi = f lagi × 0.
8: end if
9: if yd0

i,j

0 ̸= P1
i,j · (ci,j,1/gm0)ai,j

0 then
10: Set f lagi = f lagi × 0.
11: end if
12: if yd1

i,j

0 ̸= P2
i,j · (ci,j,1/gm1)ai,j

1 then
13: Set f lagi = f lagi × 0.
14: end if
15: end while
16: return f lagi

4.2. Sabotaging the Election with the Wrong Signcryption

Theorem 2. Malicious voters can disrupt the election process by sending the wrong signcryption.

Proof. In the phase of ballot generation, the adversary can choose a random element
R← Zq and generate a partially incorrect signcryption for ballot bi,j.

c′i,j = (c′i,j,0, c′i,j,1, c′i,j,2) =
(

gri , gbi,j y0
ri , R

)
.

After that, the adversary generates a PPK′i,j corresponding to c′i,j and sends the sign-
cryption c′i,j, the PPK parameters PPK′i,j, the identity number IDi, and pki to the AC.
According to the validation rules in the phase of vote tallying, the adversary’s identity
number IDi is legitimate, and the verification of PPK′i does not involve R. Therefore, the
erroneous ballot can pass the verification.

Therefore, the tallied ballot is

C′j =
(

C′j,0, C′j,1, C′j,2
)

=

(
Nv

∏
t=1

c′t,j,0,
Nv

∏
t=1

c′t,j,1, R ·
i−1

∏
t=1

c′t,j,2 ·
Nv

∏
t=i+1

c′t,j,2

)
.

The AC computes the voters’ joint public key and the election result as follows.

pk =
Nv

∏
i=1

pki, b′ j = logg
C′ j,1
C′x0

j,0
.

At this point, it is clear that the following inequality holds.

C′ j,2 ̸= pkx1 y
b′ j
1 C′x2

j,0.

In this case, even if the election process is restarted, the adversary can still cause the
election process to fail in the same way. This means that the adversary can achieve the
purpose of disrupting the election process through the above steps. This occurred because
the voting system was unable to precisely identify the questionable ballots, necessitating a
re-initiation of the election. Furthermore, the verification procedure omits the involvement
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of the third component from the ciphertext. To address this limitation, it would be advisable
to enhance the system’s verifiability.

5. Improved HSE-Voting System

This section describes the details of our improved HSE-Voting system, which applies
the same entities as in [2] but makes some minor changes to their specific functions. While
retaining the advantages of the HSE-Voting system, we solve the security problem described
in Section 4.

5.1. Entities of Our System

In our system, we modify the functions of entities AC and auditor as follows and leave
the definitions of the other unchanged entities.

1. Authentication Center: As a voting institution, the AC is still responsible for verifying
the identification of voters, tallying, and other related work. However, voters no
longer only use the AC’s public key to encrypt their ballots. Similarly, we assume that
the AC is honest-but-curious.

2. Auditor: As a voting institution, the auditor is added with a new function to generate
a part of the election public key. In our system, the auditor is no longer credible.

5.2. Initialization of Election

At the beginning of an election, the AC generates the election public parameters
params and its public key PKa. Then, the AC posts the params and PKa on the B Board.
Then, the auditor creates its own key pair (PKr, SKr) and uploads its public key on the
B Board.

1. The AC generates public params (G, g, q).
2. The AC uses params to generate its key pair (PKa, SKa), where SKa = (x0, x1)← Zq,

PKa = (y0, y1) = (gx0 , gx1).
3. The auditor generates its own key pair, where SKr = x2 ← Zq, PKr = y2 = gx2 .
4. The AC and auditor calculate the joint public key PK = y = yx2

0 = yx0
2 = gx0x2 and

make it public.

5.3. Registration of Voters

In the registration phase, each voter Vi should generate an ElGamal key pair
(pkvi , skvi ) = (gwi , wi). Then, every voter provides the AC with his real valid identifi-
cation (e.g., identification card) and public key pkvi . Once a voter’s identity has been
verified, its corresponding voter public key will be added to the registration list, which will
be posted on the B Board.

5.4. Generate Ballot

The voter Vi generates the binary plaintext votes bi = (bi,1, . . . , bi,Nc) (where bi,j = 0
or 1) for all candidates. Then, Vi computes his own encrypted vote as Algorithm 7.

Algorithm 7 Generating an encrypted vote

Input: bi,1, . . . , bi,Nc , PK, params
Output: ci = (ci,1, ci,2, . . . , ci,Nc)
1: while j = 1, . . . , Nc do
2: Set ri,j ← Zq.

3: Compute ci,j =
(
ci,j,0, ci,j,1

)
=
(

gri,j , gbi,j yri,j
)

.
4: end while
5: Set ci = (ci,1, ci,2, . . . , ci,Nc).
6: return ci
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After obtaining the encrypted vote ci, Vi generates the PPK parameters PPKi corre-
sponding to the ci using his secret key skvi , the random parameters r1, . . . rNc , the AC’s
public key PKa, and the auditor’s public key PKr. The details are described in Algorithm 8.

Algorithm 8 Generating a PPK of an encrypted vote

Input: bi,1, . . . , bi,Nc , ri,1, . . . , ri,Nc , ci, PKa, PKr, PK, skvi , params
Output: PPKi = (PPKi,1, PPKi,2, . . . , PPKi,Nc)
1: Set sigi = yωi

1
2: while j = 1, . . . , Nc do
3: Set ai,j ← {0, 1} and ai,j ̸= bi,j.
4: Set ei,j, ui,j,2 ← Zq.
5: Compute li,j,2 = ri,j · ui,j,2 + ei,j mod q.
6: Compute Ti,j,0 = gei,j .
7: Compute Li,j,1 = yei,j .

8: Compute Li,j,2 =
[

gai,jui,j,2 yli,j,2
]
/(ci,j,1)

ui,j,2 .
9: if bi,j = 0 then

10: Set (Ti,j,1, Ti,j,2) = (Li,j,1, Li,j,2).
11: else
12: Set (Ti,j,1, Ti,j,2) = (Li,j,2, Li,j,1).
13: end if
14: Compute ui,j = hash

(
Ti,j,0||Ti,j,1||Ti,j,2||ci,j,0||ci,j,1

)
.

15: Compute ui,j,1 = ui,j,2 ⊕ ui,j.
16: Compute li,j,1 = ri,j · ui,j,1 + ei,j mod q.
17: if bi,j = 0 then
18: Set (si,j,1, si,j,2) = (li,j,1, li,j,2).
19: Set (vi,j,1, vi,j,2) = (ui,j,1, ui,j,2).
20: else
21: Set (si,j,1, si,j,2) = (li,j,2, li,j,1).
22: Set (vi,j,1, vi,j,2) = (ui,j,2, ui,j,1).
23: end if
24: Compute Vi,j,1 = vi,j,1 ⊕ sigi .
25: Compute Vi,j,2 = vi,j,2 ⊕ sigi.
26: Set PPKi,j =

(
Ti,j,0, Ti,j,1, Ti,j,2, Vi,j,1, Vi,j,2, si,j,1, si,j,2

)
.

27: end while
28: Set PPKi = (PPKi,1, PPKi,2, . . . , PPKi,Nc).
29: return PPKi

The voter Vi posts ci, PPKi, and pkvi on the B Board as their ballot.

5.5. Verifications of Each Submission

As shown in the previous subsection, the contents of all ballots are posted on the B
Board, including the encrypted votes, the PPK parameters, and the public key of voters.
However, in order to avoid tallying any illegal ballots to the final result, the verification
of each submission is an essential and crucial part of the election process. It contains the
following three verification steps.

1. Verifying whether the sender is authorized: in order to prevent unauthorized people
from illegally voting, each voter is required to send a ballot with their public key
pkvi . The pkvi of each authorized voter is added to the registration list once they
successfully register, and the AC posts a registration list on the B Board. Thus, anyone
can verify whether a subsequent submission is sent by an authorized voter or not. For
example, if pkvi belongs to the registration list, the sender is an authorized person.
Otherwise, the submission will be discarded.

2. Verifying whether the public key has not been accepted: in order to prevent unau-
thorized people from using authorized voters’ information posted on the B Board
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and prevent authorized voters from repeating voting, the AC is required to check
whether it has accepted another submission that contains the same public key. If not,
this submission is legal. Otherwise, the submission will be discarded.

3. Verifying the eligibility of the encrypted ballot: our system stipulates that each vote of
a valid submitted encrypted ballot must be either Enc(1) or Enc(0). The proof of each
voter’s submission is based on the well-known PPK protocol [21]. Specific details are
described in Algorithm 9.

Algorithm 9 Verifying the eligibility of encrypted ballot ci

Input: ci, PPKi, PKa, SKa, PKr, pkvi , params
Output: Flagvi =1 (means true) or 0 (means false).
1: Set Flagvi = 1, m0 = 0, m1 = 1, sigi = pkx1

vi .
2: Compute vi,j,1 = Vi,j,1 ⊕ pkx1

vi .
3: Compute vi,j,2 = Vi,j,1 ⊕ pkx1

vi .
4: while j = 1, . . . , Nc do
5: if vi,j,1 ⊕ vi,j,2 ̸= hash

(
Ti,j,0||Ti,j,1||Ti,j,2||ci,j,0||ci,j,1

)
then

6: Set f lagvi,1 = f lagvi × 0.
7: end if
8: if gsi,j,1 ̸= Ti,j,0 · C

vi,j,1
i,j,0 then

9: Set f lagvi,1 = f lagvi × 0.
10: end if
11: if gsi,j,2 ̸= Ti,j,0 · C

vi,j,2
i,j,0 then

12: Set f lagvi,1 = f lagvi × 0.
13: end if
14: if ysi,j,1 ̸= Ti,j,1 · (Ci,j,1/gm0)vi,j,1 then
15: Set f lagvi,1 = f lagvi × 0.
16: end if
17: if ysi,j,2 ̸= Ti,j,2 · (Ci,j,1/gm1)vi,j,2 then
18: Set f lagvi,1 = f lagvi × 0.
19: end if
20: end while
21: return Flagvi

If Flagvi = 1, the ballot meets the eligibility criteria. Otherwise, the submission is
discarded. The submissions that pass all the verification processes will be posted on the B
Board. Then, the AC accepts these ballots as valid ballots.

5.6. Tallying All Valid Ballots and Decryption

After the voting process, the AC counts all valid ballots c1, . . . , cNv , which is described
in Algorithm 10.

Algorithm 10 Tallying all valid ballots

Input: c1, . . . , cNv , params
Output: TC = (TC1, TC2, . . . , TCNc)
1: while j = 1, . . . , Nc do
2: Compute TCj,0 = ∏Nv

i=1 ci,j,0.
3: Compute TCj,1 = ∏Nv

i=1 ci,j,1.
4: Set TCj =

(
TCj,0, TCj,1

)
5: end while
6: Set TC = (TC1, TC2, . . . , TCNc).
7: return TC

Then, the AC announces the valid ballot-ciphertext TC and the secret key x1 on the B
Board. After that, every entity can verify the legitimacy of each ballot.
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Afterward, the auditor generates the intermediate parameter key and its corresponding
PZK parameters PZK as Algorithm 11.

Algorithm 11 Generating intermediate parameter and PZK

Input: TC, skr, params
Output: Intermediate parameter: key = (key1, . . . , keyNc)

PZK of key: PZK = (PZK1, . . . , PZKNc)
1: while j = 1, . . . , Nc do
2: Compute keyj = TCx2

j,0.
3: Set ezj ← Zq.
4: Compute TZj,0 = gezj .

5: Compute TZj,1 = TC
ezj
j,0 .

6: Compute vzj = hash
(
TZj,0||TZj,1||TCj,0

)
.

7: Compute szj = x2 · vzj + ezj mod q.
8: Set PZKj =

(
TZj,0, TZj,1, vzj, szj

)
.

9: end while
10: Set key = (key1, . . . , keyNc).
11: Set PZK = (PZK1, . . . , PZKNc).
12: return key and PZK

AC verifies the correctness of intermediate parameter key through the PZK parameters
PZK as Algorithm 12.

Algorithm 12 Verifying the PZK of TC

Input: key, TC, PKr, PZK, params
Output: FlagZ = 1 (means true) or 0 (means false)
1: Set FlagZ = 1.
2: while j = 1, . . . , Nc do
3: if vzj ̸= hash

(
TZj,0||TZj,1||TCj,1

)
then

4: Set FlagZ = FlagZj × 0.
5: end if
6: if gszj ̸= TZj,0 · y2

vzj then
7: Set FlagZ = FlagZj × 0.
8: end if
9: if TC

szj
j,0 ̸= TZj,1 · keyj

vzj then
10: Set FlagZ = FlagZj × 0.
11: end if
12: end while
13: return FlagZ

After that, AC decrypts the valid ballot-ciphertext TC using its secret key SKa and
intermediate parameter key as Algorithm 13. Finally, the AC publishes the election results
on the B Board.

Algorithm 13 Decrypting the valid ballot-ciphertext

Input: TC, SKa, key, params
Output: Final result: B = (B1, B2, . . . , BNc)
1: while j = 1, . . . , Nc do
2: Compute bj = logg(TCj,1/keyx0

j ).
3: end while
4: Set B = (B1, B2, . . . , BNc)
5: return B
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5.7. Results Auditing

During the results auditing phase, the auditor (or any voter) verifies the correctness of
the final result as follows.

1. The AC computes and publishes TCx0
j,0 and its corresponding PZK parameters.

2. The auditor verifies the PZK parameters (the details are omitted here since the proce-
dure is similar to Algorithm 12) and verifies the following equation.

TCj,1 = (TCx0
j,0)

x2 · gbj .

If the verifications pass, the election result is believed to be credible. The auditor
accepts the result and posts it on the B Board.

6. Characteristic Analysis

This section is devoted to giving a detailed security analysis of our improved HSE-
Voting system, including the privacy of voters, the correctness of the final election result,
and the voting verifiability.

6.1. Privacy of Voters

It is very necessary to protect the voters’ voting preferences. We argue for voter privacy
from the following two points: (i) any probabilistic polynomial time adversary cannot
distinguish whether a ballot is encrypted by 0 or 1 based on the information on the B Board;
(ii) when using the PPK protocol, voters’ voting preferences of ballots will not be revealed
during ballot verification.

Theorem 3. If the ElGamal cryptosystem is semantically secure, any probabilistic polynomial time
adversary cannot obtain the voters’ voting preferences from the B Board.

Proof. Every cast ballot has been encrypted using the ElGamal cryptosystem (cf. Section 2.2)
before submitting. ElGamal has homomorphic properties and semantic security. Thus,
in our system, there is no probabilistic polynomial time adversary that can distinguish
whether a ballot-ciphertext is Enc(0) or Enc(1) from the information published on the B
Board. As mentioned above, the voting preferences of ballots remain secure.

Theorem 4. When using the PPK protocol and PZK protocol, the voting preferences and the
information of the auditor’s secret key will not be revealed during verification.

Proof. The PPK parameters PPKi,j are generated by using the PPK protocol, which consists
of Ti,j,0, Ti,j,1, Ti,j,2, Vi,j,1, Vi,j,2, si,j,1, and si,j,2, where vi,j,2 and si,j,1 are random integers, Ti,j,0,
Ti,j,1, Ti,j,2, vi,j,1 are computed by using random numbers vi,j,2, si,j,2, ei,j, and Vi,j,1, Vi,j,2 are
computes by sigi,j, vi,j,1, as well as vi,j,2. The parameter sigi,j is the Diffie–Hellman signature
between the AC and the voter Vi. The PPK protocol is given in [21], which shows the
details of proof that PPK will not reveal the original message. By using the PPK protocol,
the verifier can verify all the elements without decryption. The verifier could only know
whether an element is encrypted by 0 or 1, but cannot determine the exact value of plaintext.

The PZK parameters PZKj are computed by the PZK protocol, which consists of TZj,0,
TZj,1, vzj, and szj, where vzj is a random number, TZj,0, TZj,1 are computed by random
number ei,j, and szj is computed by random numbers ei,j as well as vzj. The PZK protocol
is given in [20], which shows the PZK protocol has zero-knowledge and will not reveal any
additional information.

Based on the security of the PPK and PZK protocols, the relevant parameters are not
considered to readily reveal private information about voters’ electoral preferences.
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6.2. Correctness of the Election Result

In this subsection, we analyze the correctness of the election results from two aspects:
the correctness of ballot delivery and the correctness of ballot integration and decryption.

Theorem 5. Only authorized voters can vote, and no one can vote repeatedly.

Proof. Suppose an unauthorized adversary attempts to use the i-th voter’s public key pkvi

to participate in the election. For the PPK parameter Vi,j,1 = vi,j,1 ⊕ yωi
1 in PPKi,j, due to

Definition 1, the difficulty of the CDH problem shows the probability of the adversary
successfully forging yωi

1 = gωi ·x1 when they only know g, gωi and gx1 is negligible. There-
fore, the probability of the adversary successfully forging a valid PPK parameter V′i,j,1 that
satisfies V′i,j,1 = vi,j,1 ⊕ yωi

1 is negligible. In addition, our system ensures that each voter
can vote only once by verifying whether their public key is included in other accepted
ballots.

Theorem 6. The election process during ballot tallying and valid ballot-ciphertext decrypting
is correct.

Proof. In Section 2.2, we introduced the additive homomorphism of the ElGamal scheme.
Therefore, the AC can count all the ballots on the B Board according to the correct steps.

TCj,0 =
Nv

∏
i=1

Ci,j,0 =
Nv

∏
i=1

gri,j = g∑Nv
i=1 ri,j ,

TCj,1 =
Nv

∏
i=1

Ci,j,1 =
Nv

∏
i=1

gbi,j yri,j = g∑Nv
i=1 bi,j gx0x2 ∑Nv

i=1 ri,j .

Then, the AC uploads all accepted ballots to the B Board. At this time, everyone can check
if their ballot is lost. In the end, the AC and auditors jointly decrypt valid ballot-ciphertext
to obtain the election result.

Auditors compute

keyj = TCx2
j,0 = gx2 ∑Nv

i=1 ri,j .

Then, the AC computes

logg(TCj,1/keyx0
j ) = logg(g∑Nv

i=1 bi,j y∑Nv
i=1 ri,j /(gx2 ∑Nv

i=1 ri,j)x0) = logg(g∑Nv
i=1 bi,j) =

Nv

∑
i=1

bi,j = bj.

Since bi,j ∈ {0, 1}, bj = ∑Nv
i=1 bi,j ≤ Nv is small in practice. It is feasible to compute the

discrete logarithm logg(gbj). Therefore, the election process of ballot tallying and valid
ballot-ciphertext decryption is correct.

Theorem 7. The AC can check PPK and PZK in order to ensure the legality of the contents.

Proof. According to the properties of PPK outlined in Section 2.3, the AC can utilize the
voter’s public key pkvi to ascertain whether the plaintext corresponding to an encrypted
ballot represents 0 or 1, thereby confirming the legitimacy and validity of this ballot.
Similarly, in accordance with the PZK properties delineated in Section 2.4, the AC can
confirm that the auditor has provided the correct decryption information key, thus ensuring
the accurate decryption of the election results.

6.3. Voting Verifiability

In this section, we divide the verifiability requirements into two parts: universal
verifiability and individual verifiability.
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Universal verifiability: the B Board in our E-voting system is public, so everyone can
check the accepted ballots and the election result on the B Board. In addition, since all
accepted ballots are disclosed, voters can check the correctness of their ballots and prevent
their ballots from being forged or tampered with.

Individual verifiability: the auditor (as well as each voter) can verify the final result of
the election. The legality of verification is proved in Theorem 8.

Theorem 8. The auditor (or each voter) can correctly verify the final election result.

Proof. The auditor first verifies the PZK to prove that the correctness of TCx0
j,0. Then, he

checks the correctness of the final election result by verifying the equation. The correctness
of the verification equation is as follows.

(TCx0
j,0)

x2 · g∑Nv
i=1 bi,j = gx0x2 ∑Nv

i=1 ri,j · g∑Nv
i=1 bi,j = TCj,1.

6.4. Comparison of Characteristics with Related Work

In order to provide a clearer indication of the contribution of the proposed scheme,
we compared the characteristics of the proposed scheme with related work, and the results
are shown in Table 1. In Yuan et al.’s scheme [7], the RSA signature scheme is employed
to guarantee the integrity of ballots. However, there is no consideration of validating the
legality of the ballot, i.e., the ciphertext is Enc(0) or Enc(1). In Qu et al.’s scheme [8], the
smart contract with the decryption key is able to decrypt the ciphertext of each ballot
and verify its legality. Therefore, this scheme lacks the public verifiability. In Fan et al.’s
HSE-Voting system [2], only the trusted auditor can verify the election results.

Table 1. Characteristic comparison.

System Eligibility Uniqueness Single Ballot Privacy Public Verification of
Ballot Legality

Public Verification of
Electoral Correctness

Yuan et al.’s system [7] ✓ ✓ ✓ × ✓
Qu et al.’s system [8] ✓ ✓ × × ×

Yang et al.’s system [3] ✓ ✓ ✓ ✓ ✓
HSE-Voting system [2] ✓ ✓ × ✓ ×

Our system ✓ ✓ ✓ ✓ ✓

The symbol ✓ represents that the characteristic is supported by the system and the symbol × indicates that it is
not supported.

7. Performance Analysis

This section presents the performance analysis of our improved HSE-Voting system.
We use costt to denote the computation time of one exponentiation. Meanwhile, we
separately analyze the computation cost on the voter side and the AC side. Due to the small
computation cost and little use of the auditor side, no detailed analysis is performed here.
Furthermore, the comparison of our improved HSE-Voting system with the HSE-Voting
system [2] and Yang et al.’s system [3] is given below.

7.1. Performance of the Voter Side

On the voter side, every voter should generate their ballot and submit it to AC.
According to Section 5.4, the total computation cost for a voter can be present as the sum of
the time of computing the encrypted vote ci and the corresponding PPKs, which can be
expressed as follows.

2× costt × Nc + 5× costt × Nc + costt.

See Table 2 for a detailed comparison.
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Table 2. Performance comparison.

System Computational Cost of Voter Computational Cost of AC

Yang et al.’s system [3] 7× costt × Nc + 3× costt 8× costt × Nc × Nv + 6× costt × Nv + costt × Nc

HSE-Voting system [2] 9× costt × Nc 6× costt × Nc × Nv + 4× costt

Our system 7× costt × Nc + costt 8× costt × Nc × Nv + 5× costt × Nc + Nv × costt

7.2. Performance of the AC Side

The performance of the AC side can be summarized in three parts: verifying the
PPKs of ballots, checking the PZKs of intermediate parameters, and decrypting the valid
ballot-ciphertext. The total computation time of the AC side is as follows; see Table 2 for a
detailed comparison.

8× costt × Nc × Nv + costt × Nv + 4× costt × Nc + costt × Nc.

7.3. Experimental Simulation

In this subsection, all tests were performed on a laptop with the following specifica-
tions: 2.4 GHz quad-core Intel Core i7 with 16 GB of 1600 MHz DDR3L onboard memory.
We used a high-performance implementation from libgmp via the gmpy2 Python module
(https://gmpy2.readthedocs.io/en/latest/ (accessed on 4 January 2024)).

As depicted in Figure 1 and based on our experimental findings, it appears that our
scheme may exhibit some efficiency benefits over the HSE-Voting system [2] in ballot
casting, while the computational overhead seems to align closely with that of Yang et al.’s
scheme [3].

As shown in Figure 2, the computational overhead for the AC side in our enhanced
scheme is slightly higher than that of the HSE-Voting system [2]. This increase can be
attributed to the integration of additional computational components aimed at bolstering
security. In addition, the computational overhead of our AC side is slightly smaller than
Yang et al.’s scheme [3], which is one of the design goals of the HSE system.

Combining the comparison results of characteristics and efficiency, the contribution of
our scheme is to support the public verification of the ballot legality as well as the validity
of election results, and the overall efficiency is slightly higher than Yang et al.’s scheme [3].

Figure 1. Estimate total time comparison for a voter of the three systems.

https://gmpy2.readthedocs.io/en/latest/
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, , , ,,  

Voter

Figure 2. Estimate total time comparison for AC of 5 candidates.

8. Conclusions

In this paper, we indicated two potential security threats to the HSE-Voting system
and proposed a security-enhanced system based on Fan et al.’s scheme. Firstly, we pointed
out that the content of each voter’s ballot could be obtained by the AC. Then, we discovered
that malicious voters could create illegitimate ballots to disrupt the election process without
being detected. Further, we proposed an improved scheme to avoid the above security
risks. In addition, we showed a detailed analysis and demonstration of the characteristics
of the improved HSE-Voting system. Comparison results of theoretical analyses and
experimental tests suggest that our proposed scheme might offer some insights or benefits
when compared to related schemes.
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Notations
Notations used in the rest of this paper:

Z The integer ring
Zq Zq = {0, 1, 2, . . . , q− 1}
← Uniform and random select
hash(·) Hash function
⊕ XOR
PPK The parameters of proof of partial knowledge
PZK The parameters of proof of zero-knowledge
Nv The number of voters
Vi i-th Voter, where i ∈ {1, 2, . . . , Nv}
Nc The number of candidates
Canj j-th candidate, where j ∈ {1, 2, . . . , Nc}
bi,j The ballot belonging to Vi for Canj
bi The ballot belonging to Vi
sigi The Diffie–Hellman signature
PK The public key
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SK The secret key
pkvi The public key of Vi
skvi The secret key of Vi
ci,j A ballot-ciphertext of bi,j
ci A ballot-ciphertext of bi
TCj A valid ballot-ciphertext of bj
key Intermediate parameter for TC
B The final result of election
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