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Abstract: Integrating Explainable Artificial Intelligence (XAI) into marine cyberdefense systems can
address the lack of trustworthiness and low interpretability inherent in complex black-box Network
Intrusion Detection Systems (NIDS) models. XAI has emerged as a pivotal focus in achieving a
zero-trust cybersecurity strategy within marine communication networks. This article presents the
development of a zero-trust NIDS framework designed to detect contemporary marine cyberattacks,
utilizing two modern datasets (2023 Edge-IIoTset and 2023 CICIoT). The zero-trust NIDS model
achieves an optimal Matthews Correlation Coefficient (MCC) score of 97.33% and an F1-score of
99% in a multi-class experiment. The XAI approach leverages visual and quantitative XAI methods,
specifically SHapley Additive exPlanations (SHAP) and the Local Interpretable Model-agnostic Expla-
nations (LIME) algorithms, to enhance explainability and interpretability. The research results indicate
that current black-box NIDS models deployed for marine cyberdefense can be made more reliable
and interpretable, thereby improving the overall cybersecurity posture of marine organizations.

Keywords: cybersecurity; zero-trust security; marine cybersecurity; Explainable Artificial Intelligence
(XAI); SHAP; LIME; network intrusion detection; deep learning; IoT; IoUT; communications

1. Introduction

Approximately 71% of the Earth’s surface is subaqueous, significantly influencing
the territorial, geographical, and economic landscapes of nation-states. In the current era
of cyberwarfare [1], maritime organizations bear the crucial responsibility of establishing,
managing, and securing marine networks to mitigate the risks of breaches and vulnera-
bilities. The frequency of cyber incidents in the maritime sector has witnessed a notable
increase in recent years, exemplified by the 2020 ransomware attack on industry giants such
as MAERSK. This attack resulted in substantial financial losses, estimated to be between 200
and 300 million USD. Additionally, intranet breaches targeting the International Maritime
Organization (IMO) have raised security and reputational concerns [2]. The genesis of
major marine cyberattacks often stems from vulnerabilities in Internet of Things (IoT) and
Internet of Underwater Things (IoUT) sensors, which malicious actors exploit to initiate
and perpetuate intrusions into maritime systems [3].

To strengthen marine cyberdefense systems, previous research has investigated the use
of Artificial Intelligence (AI) frameworks to improve maritime Network Intrusion Detection
Systems (NIDS) [4], thus guaranteeing faster and more reliable detection of cyberattacks
such as Distributed Denial of Service (DDoS) attacks, ransomware, phishing, and backdoor
attacks. Strong learning algorithms, such as deep neural networks, have been used to
guarantee highly accurate predictions in marine NIDS, due to their ability to capture the
spatial relations of IoT/IoUT network traffic data and detect malicious threats [5].
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Major challenges within the introduction of AI in marine NIDS are outlined below:

(i) The prevalence of false alarm rates, fake distress calls, and especially the lack of expla-
nations regarding the black-box AI algorithms used to predict marine cyberattacks [6].
Meanwhile, marine cyberdefense systems now require Explainable AI (XAI) frame-
works and human-in-the-loop interactions for security experts to provide reliable and
trustworthy predictions of marine cyberthreats.

(ii) Most XAI interpretation methods reported in the current literature focus majorly on
visual explanations and still lack quantitative XAI metrics that can aid expert decisions
or methods.

To overcome the above-highlighted challenges, visual, quantitative, and human-in-
the-loop XAI can be employed to salvage the challenges of reliability and transparency in
marine NIDS. A current cyberdefense paradigm, Zero-trust Architecture (ZTA), as proposed
by the United States Department of Defence (DoD) in 2022, highlights a holistic approach
that embodies real-time network traffic monitoring, strong authentication, and continuous
evaluation of the confidence levels of AI-based NIDS models to address transparency
and reliability in cybersecurity issues. ZTA adopts the “trust no one, verify everything”
principle, thus providing NIDS experts with better understanding, reliability, and authen-
tication of network users and mitigation of security threats just-in-time [7]. Within this
strategy, explainable NIDS are layered to understand and prevent the stealthy advances
of attackers whose aim is to tamper with the confidentiality, integrity, and availability of
marine cyberspace.

For example, a marine cybersecurity expert might wish to investigate the following
question: “How certain is this NIDS model’s prediction of a normal or DDoS attack, and
what training features led to the NIDS prediction?” To address the lack of transparency
and model trustworthiness of most NIDS models, the growing area of XAI aims to address
the major reasons for model distrust and provide security experts with insight-driven
feedback for the improved security posture of their organizations [8]. Although recent
works have begun studying XAI, only a few of them have addressed cybersecurity concerns
related to marine cyberdefense. Other works have not provided quantitative and secure
methods that help to differentiate malicious alerts and improve expert decisions and model
trustworthiness [9].

Motivation—Previous research on cyber-resilience for marine networks using AI
algorithms has not considered explainable methods that can provide transparency for
predicting marine threats. By ignoring model explainability, a lack of better validation of
classification results may be missing and thus can be linked to the growing rate of false
alarms and attacks in marine networks.

Contribution—This paper’s contributions are two-fold:

(I) We employ a hybrid neural network architecture that combines two popular types of
neural network: a Convolutional Neural Network (CNN) and a Bidirectional Long
Short-term Memory (BiLSTM) NIDS model with proper feature selection using the
decision tree (filter) algorithm, capable of effectively detecting IoT marine cyberattacks.

(II) An exploration of the SHapley Additive exPlanations (SHAP) explainability method
and the Local Interpretable Model-agnostic Explanations (LIME) methods are em-
ployed to yield more visual and quantitative insights towards the predictions of the
marine NIDS model.

The rest of the paper is organized as follows: Section 2 provides a background study,
Section 3.1 summarizes the relevance of the proposed system, and Section 3 deals with the
methodology. The results of experimental findings are provided in Section 3, followed by
conclusions in Section 5.
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2. RelatedWorks
2.1. Cyberdefense in Marine Networks

The broad term “marine cyberdefense” represents the security of a broad range of
marine sectors, including vessels, offshore and onshore facilities, navigation and transport
systems, and cargo systems that rely on networked IoT and IoUT technologies that facilitate
day-to-day marine operations [10,11]. Each marine system, depending on the type of
application, is enabled with peripherals such as microphones, cameras, sound and image
processing units, GPS units, and a collaborative communication mechanism where sensor
nodes broadcast their data packets to neighboring nodes until data exchange is achieved.
Due to the tremendous amount of data generated from the integration of these multiple
marine systems, cybercriminals now leverage the vulnerabilities in IoT and IoUT commu-
nications to perpetuate marine cyberattacks [12]. Meanwhile, the surface attacks witnessed
in marine organizations may vary specifically from regular cyber scenarios in terms of the
underlying network infrastructure compromising of complexities in marine supply chain
systems, marine GPS vulnerabilities, and even marine communication jamming attacks,
which ordinary businesses do not usually witness [13].

Severe cyberattacks have been reported by shipping industries and the IMO [14] con-
cerning the prevalence of attackers (hacktivists, terrorists, digital pirates, and ransomware
groups) who disrupt marine networks in the form of DDoS attacks or steal confidential
information for financial gain [15]. As shown in Figures 1 and 2, there have been several
cyberattacks detected by leading marine cybersecurity experts in 2023 alone, showing
a continual increase in cyber incidents within marine environments (shipping, supply
chain, energy, yard, port, defense, marine organizations, and vessel operations) [16]. These
proliferated attacks can be linked to the fast-paced stealthiness of modern attackers, vul-
nerabilities of IoT and IoUT technologies, and most especially, lack of real-time defense
mechanisms such as NIDS [2].

As shown in Figure 3, marine networks employ automated IoT and IoUT systems that
foster ship-to-ship communication, which optimizes marine productivity while reducing
operational costs. Marine network communication is characterized by interoperable nodes
such as base stations, coastal units, and the Software-Defined Network (SDN) controller.
The network control center transmits and receives several different wireless technologies,
such as Long-term Evolution Advanced (LTE-A), Wireless Fidelity (Wi-Fi) networks, satel-
lites, and acoustic communications (buoys) [17,18]. All marine communication nodes are
geographically distributed among the different regions, including coastal, offshore, open-
sea, or underwater communication endpoints to facilitate continuous communications and
the running of the marine industry.

Figure 1. Cyberattack incidents within various marine sectors in 2023 where # signifies the cyber
incident count.
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Figure 2. Timeline of cyber incidents in yard marine industry 2023.

Figure 3. Illustration of marine network communications and cyberthreats.

However, stealthy hacker groups can leverage network system vulnerabilities to
perpetuate cyber incidents such as vessel engine failures, manipulation of control systems,
and jamming attacks [19]. Recovering from cyberattacks has become very expensive. In
January 2023 a hacker group ‘PLAY’ published the private data of four European Union
marine IT companies on the darkweb after December 2022’s ransomware infection. Within
the same year, another recognized advisor for the maritime industry, Det Norske Veritas
(a leading classification society and a recognized advisor for the maritime industry), was
reported as a fresh target, where hackers compromised the data of ship management
companies, which account for 21% of the total share of the marine industry [20].

2.2. NIDS for Cyberdefense in Marine Networks

To overcome marine cyber incidents in a very responsive manner, the use of network
intrusion detection systems has been employed by security organizations and in the domain
of marine security to detect and automate potential attacks, thus preserving marine security
postures and organizational reputation. NIDS methods, as explored by previous works [21],
can be categorized as follows: signature-based, anomaly-based, flow-based, and machine-
learning-enabled NIDS aimed at detecting anomalous network traffic while minimizing
the number of false-positive predictions.

Traditional machine-learning algorithms have been explored in the field of IoT-enabled
NIDS for secure marine network operations. In a study on IoT botnet attack detection,
Alqahtani, Mathkour, and Ismail (2020) proposed a method based on the optimized extreme
Light Gradient Boosting (LGB) algorithm for detecting and protecting IoT devices from
dangerous large-scale botnet attacks. Our previous work [22] also utilized the LGB due to
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its fast computation, which is vital for fast and cost-efficient computation in IoT networks.
The results of the multi-class results yielded a 95% accuracy while predicting 12 diverse
cyberattack types using the 2023 EdgeIIoT dataset.

Unlike traditional machine-learning classifiers, which are limited in their ability to
extract features from massive data, considering the extensive cyber traffic in real life, the
use of deep-learning algorithms for network traffic classification has been preferred in
modern research [5].

This work is an extension of our previous approach presented in [22]. Earlier work
addressed the gap in explainable NIDS models within the domain of marine cyberdefense.
Furthermore, this study was supplemented with an additional dataset, well-investigated
feature selection methods, visual XAI, and a significant quantitative XAI interpretation
of the proposed “black-box” neural network model. In comparison with the tree-based
algorithm used for the classification task in our prior work [22], neural network NIDS
models are inherently not easily interpretable [8].

Meanwhile, Hou et al. in [23], proposed an intrusion detection framework for hy-
drographic station network anomalies. The proposed approach utilized a hybrid CNN
and BiLSTM method using the NSL KDD dataset while obtaining an F1-score of 87.35%.
Although their approach was effective in identifying deep features, the low accuracy of
their results cannot be ignored, taking into consideration efficiency requirements and the
need for the low false-positive rates required for a zero-trust model in marine networks.

Xin et al. in [24], proposed a Generative Adversarial Network (GAN) approach to
process the imbalanced NSL-KDD dataset [25] for IDS in marine networks. Within their
method, a data generation module was initiated to improve minority class samples, using
the OPTICS denoising algorithm. The classification accuracy of the authors’ proposed
data augmentation method yielded a micro-average accuracy of 95% with five classes of
network traffic. A decentralized training method using a federated learning approach for
marine IDS was investigated by authors in [4]. Their federated learning technique was
designed to save computing and storage overhead, with an accuracy of 87%, 500 rounds of
training, and the use of the old NSL-KDD dataset. Dataset dimensionality in the domain
of NIDS availability, suitability, and dimensionality in the domain of NIDS has become a
bottleneck for the efficient and effective correlation of network traffic for improved model
accuracy. Therefore, the use of obsolete datasets such as NSL-KDD may not fit the current
demands of modern networks.

2.3. Zero-Trust Cyberdefense in IoT

The zero-trust security architecture, as recently published by the National Institute
of Standards and Technology (NIST), is a paradigm shift towards rethinking the network
security and protection of organizational assets. The strength of ZTA principles in IoT and
marine cyberdefense lies in its skepticism [26], i.e., “assume breach, verify explicitly, privi-
lege access only”, and not blind trust, thus supporting multi-level authorization/scrutiny to
achieve fine-grained security controls. ZTA embraces five core tenets, as shown in Figure 4,
namely:

i Resource segmentation;
ii Ubiquitous authentication;
iii Strong encryption;
iv Principle of least privilege;
v Intelligent real-time threat monitoring.

The US DoD released a ZTA framework for integrated threat intelligence and reme-
diation [27]. Therein, machine-learning analytics, real-time network traffic monitoring,
and orchestration capabilities were employed to enforce the DoD’s data/enterprise secu-
rity against cyberthreats. In addition, evaluating the confidence levels of the DoD’s ML
models, devices, users, and resources is routinely performed to ensure minimal security
vulnerabilities. Recent advancements towards the Industry 5.0 paradigm now require zero-
trust network-based access using AI for effective cybersecurity and real-time monitoring,
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controlling, and allocations of production sequences to prevent false rates and maximize
productivity [28].

Figure 4. A visual illustration of the zero-trust cybersecurity principles, governed by strong authenti-
cation, filtering, threat intelligence, and zero-trust policies.

Current academic research has also investigated the employment of the ZTA for
strong IoT security. Recent studies in [29] have proposed that the ZTA model will address
most of the security concerns in 5G networks, where security models can dynamically
detect/identify the malicious activities of users, devices, or applications. Proof-of-concept
experiments using blockchain have also been employed to satisfy security requirements in
edge computing networks [30]. The simulation results showed that ZTA in edge networks
can satisfy successful edge node authentication with good time constraints. A recent trend
towards adopting ZTA NIDS using deep learning has also yielded the increased security
of network devices by calculating the security scores/awareness of imminent security
threats [31], thus satisfying the ZTA demand for real-time monitoring and mitigation against
threats. Syed et al. [32] presented a comprehensive survey, highlighting the relevance of
AI-based NIDS for full ZTA realization in IoT-based networks. The survey, like previous
ZTA policies in [27], outline the need to evenly distribute the zero-trust principle within
machine–machine communications, IoT devices, security protocols, and even AI models.
The authors in [33] have also emphasized how AI-based NIDS methods can be employed
for resilient zero-trust IoT defense. Here, AI models can establish a probabilistic relation
between a Cyber–Physical System (CPS) hypothesis (i.e., likelihood of attacks) and the
supporting evidence (i.e., signs of attack activities); thus, even the slightest malicious
activities can still be detected in real-time, and with high confidence, as long as enough
evidence is accumulated. However, the development of AI algorithms requires scrutiny
and interpretability to ensure that they make predictions as required.

2.4. XAI for Cyberdefense

The development of trustworthy, transparent, and reliable algorithms has gained
tremendous momentum in modern AI development. Recently, in October 2023, President
Biden issued an executive order on safe, secure, and trustworthy AI, which requires that
developers provide interpretable and trustworthy models during training to satisfy the
safety/security of AI-enabled CPSs, software, and networks [34]. To address the potential
risks (bais, transparency, privacy) and challenges associated with the widespread adoption
of AI in IoT, there has been a huge interest in the field of XAI models by cybersecurity
experts and researchers in IoT-enabled CPSs. In the domain of NIDS, for example, diverse
questions such as “Why should we implicitly trust the predictions of NIDS?” [9] and “How
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certain is this model’s prediction of a cyberattack?”. These are the basic answers that an
explainable NIDS seeks to address.

Within the domain of XAI, two categories of XAI periods (time of model explana-
tion) post-hoc and ad-hoc, have been adopted for interpretable NIDS [8]. As illustrated in
Figure 5, the current XAI taxonomy can be classified within time, complexity, and scope
requirements. Concerning timely requirements, the ad-hoc explainability method provides
model explanations during its decision process, while the post-hoc methods offer explain-
ability information after model prediction in terms of intrinsic explanations, such as feature
contributions to the model output. Commonly used post-hoc explainability methods in
NIDS are SHAP and LIME. The SHAP and LIME explainers have become a favorite choice
for explainable NIDS due to their model-agnostic features, while providing explanations
to deep-learning-based NIDS models, which are fairly opaque in their decision-making
process. Meanwhile, the complexity of interpretation methods can be classified as either
extrinsic (model-agnostic) or intrinsic (model-specific). For example, tree-based (rule-based)
NIDS models are inherently interpretable depending on the dataset or complex nature of
training. As regards the scope of interpretations, XAI techniques can be categorized as
either global or local [8].

Figure 5. A summarized visual taxonomy of XAI methods.

Within current XAI frameworks for NIDS, the SHAP and LIME XAI methods possess
specific suitability and efficiency with network traffic data, and they are an alternative
to computer vision-based XAI methods such as Generalization of the Class Activation
mapping (Grad-CAM), Guided Grad-CAM, and axiom-based Grad-CAM, which may
be computationally expensive while converting network traffic (text) to images, given
the real-time demands for security, efficiency, and interpretability. The SHAP explainer
provides the marginal value of contributions made by a feature or subset of features within
a model’s prediction. Similarly, the LIME explainer can generate local surrogate models
to approximate the decision-making process of a complex model, providing interpretable
explanations for individual predictions by highlighting important model features [35].

Current research into various cyberattacks, such as phishing attacks, botnets, and
fraud, is gaining better insights, proper visualizations, and deeper forensics into the nature
of these attacks. Additionally, significant features for model training can be identified to
perform effective/trustworthy cyberdefense [8]. As depicted in Figure 6, NIDS approaches
in IoT CPSs can model explainability and trustworthiness to evaluate the credibility of the
predicted cyberattacks. Other layers of the zero-trust model cover areas such as physical
barriers or mechanisms, which can help marine organizations to prevent, monitor, or detect
unauthorized access to their assets through the use of locks, rails, CCTVs, badges, PC locks,
turnstiles, and alarms. Important perimeter defenses includes identity access, perimeter
security, compute, application security, and data integrity.
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Figure 6. Sequence diagram of the zero-trust perimeter defense strategy for marine networks, with
insight-driven feedback using an Explainable AI (XAI) Network Intrusion Detection (NIDS) model.

A malware detection method in [36] investigated an explainable malware detection
method to understand the “outstanding” performance of their proposed model in real-
world environments. One drawback in their approach was a lack of visual interpretations
or XAI methods, for better interpretability. A lack of visual explainability of the XAI frame-
works hinders the understanding, debugging, and decision-making within the proposed
system. To address the lack of XAI in NIDS, [37] presented an explainable ANN DL model
using the CICIDS 2017 dataset [38]. The authors utilized the oracle module, which also
showed limited explainability of the model results.

To provide additional insights and forensics into NIDS models, Shruti et al. [39] only
explored the visual LIME explainability using naturally transparent machine-learning
algorithms, such as decision trees, random forests, and SVM. Another approach [40]
using the SHAP explainer investigated a deep-learning approach named the trustworthy
explainable artificial intelligence and enhanced krill herd optimisation intrusion detection
system to detect breaches in IoT-enabled CPSs. Using the NSL KDD dataset [41] and the
CICIDS 2018 dataset [38], their explanations using SHAP yielded insights towards the
significant impact of training features in terms of the proposed NIDS model classification
accuracy. Mohammed [42] proposed packet-based efficient and explainable IoT botnet
detection using machine learning. The SHAP discussions using the Shapley additive
explanation also provided transparency to the classifier’s prediction process.

Zakaria et al. [9] designed a deep neural network XAI-based framework using the
SHAP, LIME, and RuleFit XAI methods to explain their proposed NIDS framework, which
was aimed at detecting IoT-related intrusions. However, the proposed system included a
non-informative and redundant network traffic feature—source IP address (‘srcip’)—which
is only meaningful within the dataset explored (NSL KDD). The ‘srcip’ would, by default,
gain a high weight, thus dominating the SHAP plot and the model’s predictions. This
dominance led to a false conclusion that the source IP address is the most critical feature
for the proposed NIDS, which may not be the case in a general scenario. The proposed
approach does not generalize to the robust defense, interpretation, and transparency of
NIDS models. A spoofing detection method in [43] provided both the LIME and SHAP
explainability results of cyberattacks in IoT networks. Their work still lacks state-of-the-
art evaluation metrics and a better discussion of the explainability results in terms of
quantitative decisions and confidence in model predictions. It is therefore expedient, as
required by modern defenses in the domain of NIDS, to provide XAI interpretations to
bolster the trust and reliability of NIDS prediction.
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3. Methodology

As shown in Figure 7, the proposed cross-silo marine NIDS framework comprises a
deep-learning-based NIDS model and XAI interpretations for classifying malicious traffic
within marine CPSs. First, marine network traffic from IoT/IoUT nodes, devices, data, and
application planes consisting of anomalous and normal traffic managed by the Software-
Defined Network (SDN) controller is parsed into a CSV format using traffic-capturing
tools. Next, the statistical features of the captured network traffic are extracted using
feature-extraction tools such as the CiCFlowmeter.

Figure 7. Proposed workflow of the zero-trust marine NIDS with insight-driven feedback using an
Explainable AI.

3.1. Relevance of Proposed System

This work builds from the existing body of knowledge that has laid strong emphasis
on the need for zero-trust cyberdefense in IoT-enabled marine communications. We design
a ZTA policy where marine security experts can employ proactive defense for marine
cyberattack detection. To start with, a proper feature selection method is employed for
model training and enhanced performance. Next, this work proposes a deep-learning-
based NIDS model that can detect network traffic patterns more effectively. Essentially,
a combination of quantitative and qualitative XAI interpretation of the NIDS model is
performed, enabling marine network experts to handle, visualize, and mitigate cyberthreats
more effectively. The overall cross-silo approach is conveyed in Figure 7.

3.2. Dataset Selection

This work employs the most recent cybersecurity datasets for the proposed NIDS
marine cyberdefense. The 202 EdgeIIoT dataset, published by Amine et al. [44], which
includes diverse forms of cyberattacks, such as DoS/DDoS attacks, information gathering,
man-in-the-middle attacks, injection attacks, and other malware attacks (15 classes), as
shown in Figure 8, along with a 7-layer test-bed for ML-based NIDS tasks, is employed for
our experiments. It comprises 64 features generated from a test-bed of the cloud computing
layer, network functions virtualization layer, blockchain network layer, fog computing layer,
software-defined networking layer, edge computing layer, and IoT and IIoT perception
layer, which satisfies the critical requirements of IoT communications.

3.3. Investigating Class In-Balance

Representative network traffic datasets for standard modern IoT network communica-
tions datasets come inherently unbalanced, with more significant volumes of benign traffic,
since it is unlikely that IoT networks are persistently under attack. Balancing network
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traffic data before training may pose the risk of oversimplifying the complexity of actual
network dynamics and cause sub-optimal model generalization. However, we equally
investigate an oversampling technique using the EdgeIIoT dataset [45] to evaluate more
realistic/generalized model performance with oversampling or without. This approach is
deemed suitable for our proposed ZTA framework and is attainable in real-world scenarios.
As depicted in Figure 9, this study addresses the issue of class imbalance in the EdgeIIoT
dataset by using the Synthetic Minority Over-sampling Technique (SMOTE) to oversample
the minority class in the training set, creating a balanced dataset for subsequent training.

Figure 8. Class distribution of the Edge IIoT 2023 dataset employed for experimental analysis.

Figure 9. Class distribution of the Edge IIoT 2023 dataset after oversampling using SMOTE.
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For further experimental evaluation, the significance of the proposed zero-trust NIDS
model is evaluated with the CICIoT2023 dataset [46], as shown in Figure 10. The CI-
CIoT2023 dataset was recently developed in a more extensive network of over 4 million
entries and 33 attack types and over 105 IoT devices, including DDoS attacks, network
traffic features of legacy industrial cyberattacks related to unauthorized commands, and
denial of service attacks widely witnessed in critical IoT infrastructures. The two recent
datasets, comprising the most closely representative real-world network traffic deliverables,
offer valuable resources for advancing experimentation in the domain of NIDS.

Figure 10. Class distribution of the CICIoT 2023 datasets employed for experimental analysis.

3.4. Feature Selection

To satisfy the requirements of an efficient NIDS model, the Feature Selection (FS)
method, comprising viable features from the Pearson Correlation Coefficient (PCC) and
Decision Tree (DT) filter algorithms, is adopted. The Filter FS method, in the domain of
network traffic classification, outperforms other methods such as wrapper and embedded
due to its computational efficiency and accuracy yielding [47]. Employing each filter FS
method, i.e., the PCC and DT in this work, exhibits a distinctive approach and classification
performance in terms of accuracy. By carefully measuring the natural cutoff points in the
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feature distributions, 0.8 is chosen as an appropriate threshold to select the top 30 traffic
features of the DT and PCC methods using the Scikit learn Min–Max Scaling function.

The PCC represented in Equation (1) calculates the congruence between network traffic
features, thereby removing the “uncorrelated" features within the set variance threshold of
K-highest scores (0 to 1), where 0 denotes no correlation and 1 is a positive linear correlation.

r =
N ∑ XY − (∑ X ∑ Y)√

[N ∑ x2 − (∑ x)2][N ∑ y2 − (∑ y)2]
, (1)

The DT feature importance is determined by using a decision tree classifier to reduce
the dimensionality of the input data and equalize the performance of ML models by
removing redundant features. The “entropy” criterion is used for splitting the tree until
it is pure (having only one class), ranking top features based on their information gain.
Equation (2) shows the Entropy criterion H used for impurity measurement.

H(Qm) = −∑
k
(pmk)log(pmk). (2)

where m is the terminal node, Qm represents the data at node m, and Pmk shows the arrays
of predicted probabilities for each class where the sum of probabilities for all classes is
1.0. The feature importances is computed to select the top 30 traffic features in a ranking
order. The PCC omits very important traffic features such as the flow duration, while the
DT includes important features dropped by the PCC. Evaluating each FS (PCC and DT)
method helps a security expert to select and measure the impact of viable traffic features
when performing a multi-class or binary classification task. Adopting only one FS method
may result in potential consequences, such as low detection accuracy, especially in different
types of network attacks that rely heavily on flow-based features [48].

3.5. Proposed Hybrid NIDS Model

This study employs state-of-the-art DL algorithms to tackle the proposed marine
NIDS classification task. This choice of DL method is predicated on its exceptional ability
to capture intricate traffic features within the NIDS domain, as substantiated in previ-
ous studies [5]. The models under consideration encompass a foundational deep neural
network (DNN) with four layers, a three-layered recurrent neural network (RNN), a 1D
Convolutional Neural Network, and Gated Recurrent Unit, followed by Fully Connected
Networks (1D CNNs-GRU-FCNs), CNN-LSTM, and CNN-BiLSTM models. These models
were employed in both the training and evaluation phases. Each model is trained on IoT
network traffic data that have been preprocessed, standardized, and encoded using one-hot
encoding.

The best performing NIDS model (CNN-BiLSTM) in terms of more accurate predic-
tions, as shown in Figure 11, distinctly detects diverse malicious from benign IoT traffic.
The NIDS model consists of a sequential neural network designed for classification tasks. It
begins with two 1D convolutional layers (64 filters, ReLU activation) for feature extraction.
The core element is a BiLSTM layer with 64 units, using ‘concat’ merge mode for sequential
pattern capturing. After flattening, there are two dense layers with ReLU activation, fol-
lowed by a softmax classification layer. This architecture effectively extracts and classifies
patterns in the input network traffic data. The model was trained using an Adam optimizer
(0.001) for 20 epochs to minimize the loss function while optimizing the weights and biases.

Equation (3) represents the NIDS model:

ŷ = σ(w T
l · Xi + bl). (3)

where a data sample, Xi, is passed to the lth layer, given as Xi ∈ R1×d, and d signifies the
number of features for the model prediction.
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Figure 11. Illustrates the CNN BiLSTM NIDS model for marine IoT traffic classification.

4. Result Discussion
4.1. Model Performance and Evaluation Metrics

The performance of the NIDS model is evaluated adequately to the degree of correct-
ness and model cost savings. The evaluation metrics within the experiment include the
Mathew correlation coefficient (MCC) score [49], a weighted F1-Score, accuracy, test-loss
value, and training time (computational resource requirements).

The MCC score is represented in Equation (4) and serves as an instinctive performance
evaluation metric for the classification task, which highlights the performance of base
classifiers on balanced or imbalanced datasets and is not as misleading as the normal
F1-Score or the accuracy, which fails to consider the ratio between positive and negative
elements. Accuracy, on the other hand, is the simple mean of model correctness obtained
from the difference in predictions from the labeled ground-truth data.

MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
, (4)

Accuracy =
TP + TN

TP + TN + FP + FN
, (5)

Recall =
TP

TP + FN
, (6)

Precision =
TP

TP + FP
, (7)

F1-Score is denoted as

F1 − Score =
2 × Precision × Recall

Precision + Recall
. (8)

Implementation Environment: The IDS framework was carried out using the sci-
kit learn library, which provides tree-based APIs. The experiment was run on a Jupyter
Notebook with an Intel(R) Core(TM) i3-7100 CPU @ 3.90 GHz, and RAM 8.00 GB.

4.2. Discussion and Analysis Conducted with the EdgeIIoT Dataset
4.2.1. Impact of FS Methods and Oversampling Using SMOTE with the CNN-BiLSTM
NIDS Model

As shown in Table 1, the quality FS of network traffic features yields an improved
detection accuracy. A comparison of the filter FS method with the CNN-BiLSTM model
is evaluated and demonstrates the performance of 30 features of the individual PCC and
DT-FS algorithms. The DT technique shows greater improvement than the PCC FS method
in more accurately predicting the 15 classes of cyberattacks, with an MCC score of 78.96,
minimal loss of 0.4796, and an F1-score of 80%, while yielding an accuracy, precision, and
recall of 80%, 80%, and 83%, respectively.
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Table 1. Evaluation of the PCC and DT-FS methods with oversampling, using the CNN-BiLSTM
NIDS model.

Feature
Selection

No. of
Classes

MCC
%

Loss
%

F1-Score
%

Accuracy
%

Precision
%

Recall
%

Train
Time

(s)

PCC 15 76.26 0.5535 77 78 80 78 1477

DT 15 78.96 0.4796 80 80 83 81 1834

DT
with

SMOTE
15 79.29 0.4707 80 81 83 81 1509

The result of the balanced dataset using SMOTE is equally evaluated in Table 1 using
the better performing DT-FS method. Comparatively, the analysis of model performance
between the balanced dataset using SMOTE yields very marginal MCC, loss, F1 score,
accuracy, precision, and recall values. The decision not to leverage SMOTE in the pro-
posed ZTA marine framework is justified by existing NIDS literature in [50,51] and the
acknowledgment of the intrinsic imbalances within network traffic data, inherently reflec-
tive of authentic network dynamics, which fosters a trustworthy and adaptable ML-enabled
NIDS solution.

4.2.2. CNN-BiLSTM NIDS Model with 15 Classes

A comparative analysis of the confusion matrix in Figures 12 and 13 summarizes the
performance of the DT-FS method while predicting 15 classes of cyberattacks (including
benign traffic). As shown, the DT-FS technique can identify more classes correctly than
the PCC method. The backdoor, DDoSHTTP, DDoSICMP, DDoSTCP, DDoSUDP, finger-
printing, MITM, Normal, password, port scanning, ransomware, SQL injection, Uploading,
vulnerability scanner, and XSS classes are well identified, with a good performance of
0.91%, 0.62%, 0.99%, 1.0%, 0.69%, 0.34%, 1.0%, 0.22%, 0.96%, 0.88%, 0.66%, 0.41%, 0.90%,
and 0.72%, respectively. There still exists some poorly identified classes in the multi-class
results. In general, most machine-learning algorithms assume data is equally distributed;
therefore, in the presence of a class imbalance the classifier tends to be more biased towards
the majority class, which is the reason for the poor classification of the minority class.

4.2.3. CNN-BiLSTM NIDS Model with 4 Classes

The EdgeIIoT dataset has been categorized into four main classes to address challenges
associated with the minority of the 15 classes. Notably, attacks such as Backdoor, password,
MITM, ransomware, Uploading, XSS (cross-site scripting), and SQL injection are grouped
under the umbrella of malware. Meanwhile, DDoSHTTP, DDoSICMP, DDoSTCP, and
DDoSUDP are collectively classified as DDoS attacks. The remaining traffic types, including
fingerprinting, enumeration, port scanning, and vulnerability scanner, are considered as
enumeration attacks. The normal class remains standalone, resulting in the four primary
categories: malware, DDoS, enumeration, and normal.

Table 2 presents the experimental results for the EdgeIIoT dataset with these four
classes. The CNN-BiLSTM model, employing the DT-FS method, outperforms the other
four models in terms of a higher MCC score and minimal loss. Achieving an impressive
MCC score of 88.38% and a minimal loss of 0.1991, the CNN-BiLSTM model demonstrates
its superiority in identifying all four classes of the predicted network traffic. The weighted
F1-score, accuracy, precision, and recall all stand at a consistent 92%. The yielded F1-score,
in the context of marine NIDS, highlights the mode’s ability to detect network anomalies
while maintaining a balance between false-positive and false-negative intrusion detection.
This is particularly important in ZTA marine cyberdefense, where the consequences of
missing a genuine threat or triggering false alarms could have significant implications
for maritime security and operations. In addition, the high precision results in Table 2
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indicate that the proposed marine cyberdefense model truly flags marine incidents, while
minimizing the number of false positives that could lead to unnecessary disruptions or
investigations. Additionally, the NIDS model recall, or sensitivity, reflects the NIDS model’s
ability to capture and correctly identify all instances of malicious or anomalous behavior
within the maritime network.

Figure 12. Confusion matrix showing the benchmarking of the 15 classes of the EdgeIIoT dataset
with the PCC FS methods.

Figure 13. Confusion matrix showing the benchmarking of the 15 classes of the EdgeIIoT dataset
with the DT-FS methods.
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Table 2. Performance of the evaluated methods on the EdgeIIoT dataset (4 classes).

Model Feature
Selection

MCC
% Loss

F1-
Score

%

Accuracy
%

Precision
%

Recall
%

Train
Time

(s)

DNN DT 78.96 0.2472 91 91 91 91 224

RNN DT 86.90 0.2606 91 91 92 91 270

1D-CNN-
GRU-FCN DT 88.30 0.2078 92 92 92 92 1458

CNN-LSTM DT 88.32 0.2008 92 92 92 92 1283

CNN-BiLSTM DT 88.38 0.1991 92 92 92 92 1841

In comparison, the other four models, including DNN, RNN, ID-CNN-GRU-FCN,
and CNN-LSTM, exhibit lower MCC scores than the CNN-BiLSTM model, with scores of
78.96%, 86.90%, 88.30%, and 88.32%, respectively. The MCC score proves to be a reliable
metric for evaluating the proposed zero-trust NIDS model, offering accurate predictions
and performance insights for each explored model.

The CNN-BiLSTM model significantly contributes to enhanced security by detecting
a broader range of attacks, despite having the longest training time (1841s). Designed to
detect various attack scenarios, including complex and evolving ones, the CNN-BiLSTM
model’s parameters demonstrate depth and intricacy, resulting in a more accurate model
for cyberattack detection. Meanwhile, other models with fewer parameters and lower MCC
scores lead to faster training times.

To gain a deeper understanding of the CNN-BiLSTM NIDS model’s performance in
multi-class classification (4 classes), the confusion matrices in Figure 14 provide valuable
insights into how the model classifies different categories. The model accurately identifies
DDoS, enumeration, malware, and normal attack types with percentages of 0.82%, 0.91%,
0.96%, and 1.0%, respectively. The high accuracy aligns with the principles of zero-trust
detection, emphasizing vigilance, continuous monitoring, optimal threat coverage, and
reduced false positives.

4.3. Extended Analysis with the CICIoT2023 Dataset
CNN-BiLSTM NIDS Model with 4 Classes

The CICIoT2023 dataset employed in the experiment contains 30 classes of cyber-
attacks (BackdoorMalware, BenignTraffic, BrowserHijacking, CommandInjection, DDoS-
ACKFragmentation, DDoS-HTTPFlood, DDoS-ICMPFlood, DDoS-ICMPFragmentation,
DDoS-PSHACKFlood, DDoS-RSTF-IN-Flood, DDoS-SYNFlood, DDoS-SlowLoris, DDoS-
Synonymous-IPFlood, DDoS-TCPFlood, DDoS-UDPFlood, DDoS-UDPFragmentation, DNS-
Spoofing, DictionaryBruteForce, DoS-HTTP-Flood, DoS-SYN-Flood, DoS-TCP-Flood, DoS-
UDP-Flood, MITM-ArpSpoof, Mirai-greeth-flood, Mirai-greip-flood, Mirai-udpplain, Recon-
HostDiscovery, Recon-OSScan, Recon-PingSweep, Recon-PortScan, SqlInjection, Uploading-
Attack, Vulnerability-Scan, and XSS).

Cyberattacks targeting IoT CPSs exhibit a common pattern and are thus categorizable
into five overarching types: benign attacks, Distributed Denial of Service (DDoS) attacks,
DoS attacks, and enumeration attacks. Table 3 presents a further analysis of the zero-
trust NIDS model using state-of-the-art deep-learning models and the CICIoT dataset.
Within the multi-class experiment, the CNN-BiLSTM NIDS model with the DT-FS method
outperforms other models (DNN, RNN, ID-CNN-GRU-FCN, and CNN-LSTM )in terms
of the highest MCC score and least loss value. The CNN-BiLSTM model attains an MCC
score of 97.33 and 0.0318 while yielding a weighted F1-score, accuracy, precision, and recall
of 99% respectively.
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Figure 14. Confusion matrix of the multi-class (4 classes) prediction with the 2023 EdgeIIoT dataset.

Table 3. Performance of the evaluated methods on the CICIoT 2023 dataset (5 classes).

Model Feature
Selection

MCC
% Loss

F1-
Score

%

Accuracy
%

Precision
%

Recall
%

Train
Time

(s)

CNN-LSTM DT 69.06 0.3155 86 87 87 87 182.74

DNN DT 71.34 0.3009 87 88 88 88 214.72

RNN DT 85.06 0.1596 93 93 93 93 471.73

1D-CNN-
GRU-FCN DT 97.00 0.0341 99 99 99 99 746.98

CNN
BiLSTM DT 97.33 0.0318 99 99 99 99 1021.9

The remarkable results of the CNN-BiLSTM model, particularly regarding MCC score
and other performance metrics, strongly suggest its potential utility within a zero-trust
marine NIDS framework. The confusion matrix in Figure 15 illustrates the performance of
the CNN-BiLSTM model. The NIDS model can identify all DDoS and DOS attacks very
accurately (1.0), followed by benign traffic (0.91), malware traffic (0.92), and enumeration
attacks (0.67).

The sustained optimal performance of the NIDS model across various standard
datasets underscores the essential requirement for robust threat detection in marine cy-
berdefense. While the model consistently demonstrates high efficacy, the imperative for
XAI methods becomes apparent, particularly in unraveling the intricacies of the black-
box NIDS model, such as the CNN-BiLSTM architecture (i.e., its certainty and intrinsic
model nature). This pursuit of transparency is crucial for enhancing marine cyberdefense
capabilities.
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Figure 15. Confusion matrix of the multi-class (5 classes) prediction with the 2023 CICIoT dataset.

4.4. Model Explainability

The SHAP explainer, as represented in Equation (9), provides the marginal value
of contributions made by a subset of features. The SHAP explainability method is a
cooperative game theory method introduced by authors in [52], which basically provides
the marginal value of contributions made by a feature or subset of features within a model’s
prediction. Since most models with large data are black-box in nature, the SHAP method
addresses the issue of clarity and reason for model predictions. SHAP values can be
calculated by the equation provided below:

i( f , x) = ∑
z′⊆x′

|z′!|(M − |z′| − 1)!
M!

[ fx(z′ − fx(z′)i)], (9)

where M is the total number of features, i denotes the shapely value for feature i in
model ( f ), with input data points (x), and z′, fx(z′)i represents the model output with and
without target features.

The LIME explainer generates local surrogate models to approximate the decision-
making process of a complex model, providing interpretable explanations for individual
predictions by highlighting important features. LIME explanatory values can be calculated
by Equation (10):

ξ(x) =argmin
g∈G L( f , g, πx) + σ(g), (10)

where ξ(x) represents the explanation, x is an input value, g is a simple interpretable model,
G is a class of potentially interpretable models, f is a complex (blackbox) model, πx is the
proximity, and σ(g) is a complexity measure.

To facilitate informed decision-making for marine security experts, a comprehensive
quantitative evaluation of the SHAP and LIME explainers is conducted. This assessment
employed decision and confidence impact ratios to provide deeper insight and foster
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confidence in the effectiveness of the XAI methods. XAI professionals can leverage the
decision impact ratio and confidence impact ratio to assess the significance of decisions
and the reliability (confidence) of an explanation method [53], thus enhancing the security
and trustworthiness of AI models.

Equation (11) evaluates a quantitative SHAP and LIME explanation of the CNN-
BiLSTM NIDS model using the following metrics:

Decision Impact Ratio (DIR): DIR refers to the rate of change in decisions owing to the
omission of critical network traffic features in the interpretation method.

DIR =
N

∑
i

1D(xi) ̸= D(xi − ci)

N
, (11)

where xi denotes the ith original sample and ci denotes the critical area marked by the
model for the ith sample.

Confidence impact ratio (CIR): CIR signifies the percentage decline in confidence
due to the omissions of critical network traffic features in the interpretation method, as in
Equation (12):

CIR =
N

∑
i

max(C(xi)− C(xi − ci), 0)
N

. (12)

An evaluation of the explainability methods helps obtain a subjective assessment of
the security expert’s trust and assessments of the CNN-BiLSTM model’s trustworthiness.

4.4.1. Visualization of XAI Results and Deductions

A visual XAI of NIDS models can create a more user-friendly interpretation, fostering
trust and understanding in the deployment of NIDS models in marine cybersecurity. By
incorporating visual XAI techniques in marine NIDS, cybersecurity professionals can
better understand and trust the decisions made by AI models, making the overall system
more effective and accountable. It also facilitates collaboration between AI systems and
human analysts, leading to improved network security. Understanding the explanations
provided by XAI tools in the context of NIDS can vary depending on the complexity of the
explanations and the technical background of the end-user. Such users must be familiar
with the fundamental concepts of cybersecurity, networking, machine learning, and critical
thinking. The visual XAI experiment in this study was carried out on the 2023 CICIoT
dataset since it has a higher volume of traffic samples than the 2023 EdgeIIoT dataset.

Visual XAI with SHAP:
This study employs the SHAP values to explain the predictions of a CNN-BiLSTM

NIDS model on 10 selected instances since calculating SHAP values for over 30,000 instances
can be computationally expensive. Next, the Kernel SHAP explainer is wrapped with the
predict-wrapper, which is used to estimate the Shapley values for the selected test data
samples. The SHAP XAI method is model-agnostic and is used by aggregating the results
obtained locally.

The SHAP visualization in Figure 16 provides insights into the influence of individual
training features on the model’s prediction of a malware (blue) and DoS (purple) attack. As
depicted, the descending order of IAT (≥0.4), UDP (≥0.1), Magnitude, Total size, protocol
type, etc., illustrates the significance of these network traffic features on the CNN-BiLSTM
NIDS model. The plot shows that the IAT feature, with the longest bar, had the greatest
influence on the model’s prediction of the malware and DoS attack. Leveraging on the
SHAP explanations, the marine NIDS expert can now make room for feature importance
prioritization and guidance for feature engineering in a case of low detection and can satisfy
the black-box question of “what training features dominated the NIDS model’s prediction?”

To gain a global behavior of the NIDS model, the feature importance plot in Figure 17
provides summary feature importance visualizations across instances in the selected test
sample. Each dot represents the aggregated impact of a feature. If precomputed SHAP
values are available and the goal is to provide a global summary of feature importance, the
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plot in Figure 17 becomes more suitable. This visualized interpretation also underscores
the essence of proper feature selection techniques before model training. The participating
features show reasonable/almost equal strength (0.4–0.7) on the model output. Overall,
the key highlight of the first snippet in Figure 16 shows the convenience of using precom-
puted SHAP values for global feature importance summaries, while the second snippet
in Figure 17 unveils the dynamic computation of SHAP values for a more detailed, instance-
specific analysis.

Figure 16. SHAP plot showing the feature contribution to the model’s output magnitude for 10 traffic
instances.

Visual XAI with LIME:
The LIME visual XAI explainer in Figure 18 provides local prediction probabilities

for a single instance of test data to justify the NIDS model reliability, i.e., “how certain is
the NIDS model’s prediction of an attack?” The visual plot can aid in modeling reliability,
transparency, and judgment of cyberattack instances from benign instances by marine
security experts.

A random visualized explanation in Figure 18 is investigated to interpret the NIDS
model’s prediction within a specific instance to ascertain if it is either a DDoS, DoS, malware,
or enumeration attack (multi-class). However, the visual explanations using the LIME
explainer reveal a strong prediction of an enumeration attack and less likelihood of a DDoS,
DoS, malware, or benign attack. The enumeration attack is strongly predicted, with a
high probability rate of 94%, while the DDoS, DoS, malware, and benign attacks have low
prediction probabilities of 0.04%, 0.00%, 0.00%, and 0.02%, respectively. The features and
corresponding values that led to the model’s prediction of an enumeration attack is also
highlighted, with different weighted feature values. The provided LIME XAI visualization
can aid a cybersecurity expert’s understanding of collaborative human-in-the-loop NIDS
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monitoring and explanation while preventing false alarm/distress calls and ambiguity in
addressing cyberattacks.

Figure 17. SHAP feature importance.

Figure 18. LIME probability prediction.
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Furthermore, another instance of sample data is selected to investigate the feature(s)
value’s contribution to a model’s prediction, within a single prediction. The plot in Figure 19
reveals the features that have positive values (green bars) and those with negative values
(red bars). The visualizations of strong features such as the fin-count, Rate, Duration,
Protocol Type can be valuable for understanding and validating the model’s behavior
in specific instances. This visualization enhances model interpretability and supports
decision-making in not only marine cyberdefense but also in real-world applications by
providing insights into why the model made specific predictions.

Figure 19. LIME for local feature contributions for an instance where the positive, and negative
contributions are represented with green and red colour respectively.

4.4.2. Quantitate Performance Evaluation of the XAI Models Using DIR and CIR

The CIR and DIR calculations in Table 4 provide quantitative explanations of the
explored XAI methods. Specifically, the CIR and DIR values provide more confidence
to a security expert on the potential use of either the SHAP or LIME XAI methods for
NIDS model interpretations [53]. As shown in Table 4, in the quantitative calculations of
each method the LIME yields higher DIR and CIR values than the SHAP explainer, within
a single subset of test data calculated. A high DIR by the LIME means that changes in
that feature have a substantial effect on the model’s prediction. A low DIR by the SHAP
suggests that variations in that feature have minimal impact on the prediction.

In terms of confidence impact by the SHAP and LIME explainer, the lower CIR by the
SHAP implies that the model is less certain than the LIME XAI, and its prediction may
be more uncertain or influenced by various factors such as model features or architecture.
The experimental results in this study revealed similar values of DIR/CIR within the
LIME XAI method, which suggests that there could be a strong relationship between some
network traffic feature(s), which reflects consistently on the confidence/decision impact of
the LIME explainer.

Table 4. Quantitative explainability of the CNN-BiLSTM NIDS model using the CIR/DIR.

Quantitative XAI Decision Impact Ratio (DIR) Confidence Impact
Ratio (CIR)

SHAP 0.696 0.129

LIME 1.476 1.476

4.5. Comparision with SOA Methods

Previous frameworks designed to address IoT marine cyberthreats have gained no-
table acceptance within the NIDS domain. However, contemporary research trends are
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increasingly oriented toward zero-trust defenses. This study introduces a novel framework
aspiring to establish a zero-trust marine NIDS by leveraging AI-enabled NIDS and XAI
methodologies.

As presented in Table 5, some researchers in the NIDS domain have utilized XAI
techniques to enhance model trustworthiness in IoT and marine cyberdefense domains.
However, our novel approach, detailed in Section 3.1, and the corresponding experimental
results discussed in Section 4, incorporating both quantitative and visual XAI methods,
hold significant potential for the development of a robust zero-trust marine NIDS.

Table 5. Comparison with existing studies.

Authors Model Dataset No. of
Classes Accuracy % Visual

XAI
Quantitative

XAI

[54] MAGRU EdgeIIoT - 99 X X

[24] CVAE-GAN NSL-KDD 5 95 X X

[9] DNN
NSL-KDD

UNSW-BB15 2
88,
99 Y X

Ours CNN-BiLSTM
2023 EdgeIIoT
2023 CICIoT

4,
5

92,
99 Y Y

5. Conclusions

This study identified the fast-growing concerns of cyberattacks in marine communica-
tions and the need for adopting a zero-trust security paradigm—“trust but verify all”—for
enhanced NIDS model security against marine cyberthreats. By employing a deep-learning-
based NIDS model (CNN-BiLSTM) with a proper feature selection, the proposed method
was capable of identifying diverse cyberthreat patterns in marine networks using recent
cybersecurity datasets. Next, the employment of XAI methods was investigated to satisfy
model debugging and trustworthy predictions of cyberattacks to prevent false alarms.
Specifically, a visual and quantitative XAI approach using the SHAP and LIME explainer
was explored to ease interpretability and XAI concerns in the domain of marine network
intrusion detection.

Future directions worth exploring include reducing the time complexity of SHAP
processes to enable faster and more efficient model interpretability. Additionally, in an
adversarial scenario, bad actors can perpetuate anomalous XAI interpretations to gain
unauthorized explanations of NIDS models, thereby compromising model security. Pre-
venting anomalous XAI should be of key interest in our future work. Furthermore, the
integration of privacy-inspired federated learning models with blockchain could provide
stronger security for zero-trust NIDS deployment.
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ANN Artificial Neural Network
Bi-LSTM Bidirectional Long Short-Term Memory
CNN Convolutional Neural Network
CNN-BiLSTM CNNs with Bidirectional Long Short-Term Memory (BiLSTM) network
CNN-FRU-FCN Convolutional Neural Network with Fully-Connected
CNN-LSTM Convolutional Neural Network-Long Short-Term Memory
CPS Cyber–Physical System
CIR Confidence Impact Ratio
DIR Decision Impact Ratio
DNN Deep Neural Network
DoS Denial of Service
DT Decision Tree
DDoS Distributed Denial of Service
CAM Class Activation Mapping
FS Featurue Selection
GAN Generative Adversarial Network
Grad-CAM Gradient-weighted Class Activation Mapping
IMO International Maritime Organization
IAT Inter-Arrival Time
UDP User Datagram Protocol
IoUT Internet of Underwater Things
IoT Internet of Things
LIME Local Interpretable Model-agnostic Explanations
LSTM Long Short-Term Memory
LTE Long-Term Evolution
MCC Mathew Correlations Coefficient
NIDS Network Intrusion Detection System
NIST National Institute of Standards and Technology
PCC Pearson Correlation Coefficient
ReLU Rectified Linear Unit
RNN Recurrent Neural Network
SDN Software-Defined Networking
SHAP SHapley Additive exPlanations
TCP/IPV6 Transmission Control Protocol/Internet Protocol Version 6
XAI Explainable Artificial Intelligence
XGrad-CAM Axiom-based Grad-CAM
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