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Abstract: Due to the ever increasing number of closed circuit television (CCTV) cameras worldwide,
it is the need of the hour to automate the screening of video content. Still, the majority of video
content is manually screened to detect some anomalous incidence or activity. Automatic abnormal
event detection such as theft, burglary, or accidents may be helpful in many situations. However,
there are significant difficulties in processing video data acquired by several cameras at a central
location, such as bandwidth, latency, large computing resource needs, and so on. To address this
issue, an edge-based visual surveillance technique has been implemented, in which video analytics
are performed on the edge nodes to detect aberrant incidents in the video stream. Various deep
learning models were trained to distinguish 13 different categories of aberrant incidences in video. A
customized Bi-LSTM model outperforms existing cutting-edge approaches. This approach is used
on edge nodes to process video locally. The user can receive analytics reports and notifications. The
experimental findings suggest that the proposed system is appropriate for visual surveillance with
increased accuracy and lower cost and processing resources.

Keywords: visual surveillance; edge computing; activity recognition; anomaly detection; deep
learning; LSTM

1. Introduction

A CCTV-based system can be used to monitor various events at many public places.
Imbibing intelligence and automation in processing video captured by these systems can
be useful in many ways, ranging from traffic monitoring to vandalism detection. Prompt
and timely actions can be taken as soon as an abnormal event is detected in the live video
streams. Visual surveillance may encompass a number of tasks. It has applications in
moving object detection [1], abandoned object detection [2], pedestrian detection [3], car
make or model detection that may be helpful in accident sites and traffic violations [4],
socio-cognitive behaviors of crowds [5], anomaly detection in road traffic [6], shop lifting [7],
etc. Object detection has been one of the most important phases in a typical vision-based
surveillance system. It is the first step in extracting the most useful pixels from a video
feed. The study, presented in [1], looks at a variety of related methodologies, significant
obstacles, applications, and resources, including datasets and web-sources. When video
sequences are collected using IP cameras, the work provides a complete review of the
moving object task suitable for a number of visual surveillance scenarios. To prevent
bomb blasts from causing environmental and economic damage, automated smart visual
surveillance is needed to keep a watch on the open spaces and infrastructures and to
identify the items left behind in public places [2]. Commonly used approaches to identify
abandoned objects are based on background segmentation for static object identification,
feature extraction, object classification, and activity analysis [2]. Pedestrian detection and
tracking have been an important function in traffic and road safety surveillance systems [6].
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Traditional models have trouble dealing with complexity, turbulence, and the presence
of a dynamic environment, but intelligent analytics and modeling can help overcome
these difficult issues [3]. Protection of high rise civil engineering structures and human
occupants from strong winds and earthquakes is crucial to human life, the economy, and
the environment. The problem of vibration suppression of structures is an active, vast,
and growing research field among mechanical, control, and civil engineers. The design of
a vibration controller with high performance for passive, semi-active, active, and hybrid
control of building structures is a challenging task due to model uncertainties and external
disturbances. The main objective of a structural control system is to reduce the vibration
of the high rise building structures when external disturbances such as strong winds,
earthquakes, or heavy dynamic loads act on them.

In previous works, researchers have developed many interesting computer-based
systems and techniques for various tasks associated with visual surveillance. However,
these systems are either one-node heavy systems or rely on cloud resources for analytics.
It means when connecting more than one camera, the data streams are sent to a cloud
server for data analytics. It requires latency and bandwidth issues apart from heavy
investments. In recent times, with the advent of the internet of things (IoT) and edge
computing, the focus has shifted to performing computation as close to the source as
possible. The edge computing model envisages a major part of computation happening on
the edge of the network, i.e., the node itself. This requirement raises many concerns for
performing video analytics on the edge devices due to the limited computation resources,
memory, and power availability.

The present work proposes an edge-based visual surveillance system, where a range
of abnormal activities can be detected from a video stream with the help of local analytics
performed on an edge node. A deep learning model is deployed on each of the nodes
(low-cost Raspberry Pi with an edge camera) and further connected to a cloud server
for notifications and consumer interface. The rest of the paper is organized as follows.
Section 2 reviews some of the related work in the fields of video analytics and visual
surveillance, including edge-based visual surveillance and some deep learning models for
video analytics. Section 3 describes the proposed system and methodology in detail. Next,
Section 4 presents the experimental results and a comparison with other state-of-the-art
approaches. Finally, conclusions and references can be found.

2. Related Work
2.1. Visual Analytics and Surveillance Systems

Understanding human behavior is essential for a variety of present and future inter-
actions among people and smart systems and entities [5]. For instance, with prevalent
CCTV-based surveillance systems, such knowledge might aid in detecting (and resolving as
soon as feasible) incidents of hazardous, hostile, or just disruptive conduct in public meet-
ings. Intense amounts of video data have prompted efforts to classify video information
into categories such as human activities and complicated events. A growing body of work
focuses on calculating effective local feature descriptors from spatio-temporal volumes [8].
Human activity recognition in videos is an important task in visual surveillance. One ratio-
nale behind such a classification is to detect abnormal activities in videos. Mliki et al. [9]
adapted convolutional neural networks, which are generally used for classification, to iden-
tify humans. Furthermore, the categorization of human activities is performed in two
ways: an immediate classification of video sequences and a complete classification of video
sequences. They used the UCF-ARG dataset. One-shot learning (OSL) is becoming popular
in many computer vision tasks, including action recognition. Contrary to conventional
algorithms, which rely on massive datasets for training, OSL seeks to learn information
about item classes with the help of one or a few training samples. The work described
in [10] provides a deep learning model that can categorize and locate activities identi-
fied with the help of a single-shot detector technique employing the bounding box that
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has been deliberately trained to recognize common and uncommon actions for security
surveillance applications.

Wassim et al. [11] used a feature approach to detect abnormal activities in crowded
scenes on the UCSD anomaly detection dataset. The first category is motion features
calculated using optical flow; the second is the size of moving individuals within frames;
and the third is motion magnitude. Nawaratne et al. [12] described an incremental
spatiotemporal learner (ISTL) addressing some of the challenges in anomaly localization
and classification in real-time surveillance applications. ISTL is the unification of fuzzy
aggregation with active learning in order to continuously learn and update the distinction
between an anomaly and the normality that emerges over time. Anomaly detection using
sparse encoding has shown encouraging results. Zhou et al. [13] used three joint neural
architectures called “Anomalynet” for detecting anomalies in a video stream. Human
aberrant behavior can occur at various timelines and can be divided into two categories:
short-term and long-term. A uniform pre-defined timescale seems insufficient to represent
a variety of abnormalities that occur throughout varying time periods [4]. Therefore,
a useful approach for detecting anomalous human behavior is multi-timescale trajectory
prediction, as proposed in the work of Rodrigues et al. [14]. To address the issue of fewer
negative examples, the technique employs an unsupervised learning method that uses
the spatiotemporal autoencoder to locate and extract the negative samples, containing
anomalous behaviors, from the dataset. On this foundation, a spatiotemporal convolutional
neural network (CNN) with a basic structure and minimal computational complexity
has been given in [15]. More atypical human activity recognition systems are proposed
in [16–18]. Beddiar et al. [19] and Pareek et al. [20] provide surveys on vision-based human
activity recognition, discussing some of the recent breakthroughs, challenges, datasets,
and emerging applications of the concept.

In activity recognition [21], optical flow refers to the pattern of apparent motion of
objects, surfaces, and edges in a visual scene caused by the relative motion between the
observer and the scene [22,23]. Optical flow is often used to track and understand the move-
ment of objects in video sequences. In the context of activity recognition, optical flow can
be employed to analyze the dynamics and motion patterns of human activities. By tracking
the flow of pixels between consecutive frames, it becomes possible to extract information
about the direction and speed of motion, which can contribute to the recognition of various
activities such as walking, running, or gestures in a video [21–23].

2.2. Edge Computing for Visual Surveillance

Edge computing is a model where computing happens locally. It is performed so as to
minimize the reliance on servers. There are local computing nodes performing computation
and with some storage capabilities. In traditional visual surveillance systems having a
network of CCTV cameras, the video stream is first sent to a common server and from
there, it is analyzed either manually or automatically. This model involves data bandwidth,
privacy, and security issues due to the huge amount of data that needs to be transmitted
through a network. Edge computing brings computing resources closer to the source.
In the present model, an anomaly detection model runs on each individual node. Many
surveillance systems have recently been proposed in the literature [24–33].

There are many small-sized embedded devices suitable for computer vision tasks,
such as the Jetson Nano, Google’s Coral, and Intel’s Myriad-X vision processing unit [24].
The latest breakthrough is the VPU, developed by Intel. It focuses on the parallel processing
of neural networks, having high-speed inference processing and low power consumption.
They can be used in embedded systems, drones, or systems powered by external power
supplies. Myriad-X is available on the market. It has been used for object classification and
for an object detection system on a Raspberry Pi.

An Edge-based surveillance system can be a helpful and useful remote monitoring
tool for elderly patients [26]. The work of Yang et al. [28] describes the edge-based set-up
of detecting and tracking the target vehicles using unmanned aerial vehicles (UAVs). They
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use a CNN model for object detection and further classification. Due to the power and
computational limitations of UAVs, some of the processing in the system is offloaded to a
local mobile-enabled computing (MEC) server. This approach makes the overall system
computationally and power consumption-wise more efficient.

The edge devices have limited power and, therefore, restricted processing power.
Pradeepkumar et al. [29] discuss a method to maintain the object detection accuracy
of about 95% by just transmitting 5–10% of the frames captured by the edge camera.
Ananthanarayanan et al. [30] propose an edge computing-based anomalous traffic detection
video surveillance system that works on live video streams. Multiview activity recognition
and summarization is a difficult task due to many challenges like view overlapping,
inter-view correlations, and stream disparities [31]. Researchers have been trying to find
innovative solutions to these problems. Combining this with edge computing can be very
beneficial. Hussain et al. [31] proposed a framework to bring the task of multiview video
summarization to an edge computing platform. The data is shown in Table 1.

Table 1. Comparative Analysis of Some Edge Computing Based Visual Surveillance Systems.

References Year Features Hardware Algorithm Dataset

Cob-Parro et al. [24] 2021 Human detection and
classification

UpSquared2 system,
Intel Myriad X MobileNetSSD Model EPFL dataset

Zhang et al. [25] 2020 Surveillance saliency
detection DAVIS, UVSD

Rajavel et al. [26] 2022 Patient surveillance,
fall detection

Raspberry Pi 3, IP
Cameras

Four-layered IoT
architecture including

sensors, processing,
and cloud

Auvinet (2010),
DIRO-Université de

Montréal Dataset

Ahmed et al. [27] 2021 Person Detection,
Edge Computing

Edge camera, VPU,
local server, cloud

One stage deep
learning-based person
detector- CenterNet

Self-recorded dataset
2k images

Yang et al. [28] 2020 Vehicle detection and
tracking UAV, camera, MEC

CNN architecture,
hierarchical ML tasks
distribution (HMTD)

framework

ImageNet

Pradeepkumar
et al. [29] 2021 Vehicular traffic

monitoring Camera, edge node
YLLO object detector,

BATS bandwidth
optimizer algorithms

MS-COCO,
UA-Detrac

Ananthanarayanan
et al. [30] 2017 Abnormal traffic

patterns Steerable Cameras ‘Rocket’ software
stack, DNN

Crowd-
sourced videos

Hussain et al. [31] 2020
Multiview video
summarization,

activity recognition

Movidius NCS, vision
sensor, wireless

sensor

Lightweight CNN,
autoencoders, SVM

MVS Office, UCF-50,
and YouTube
11 Datasets

Aishwarya et al. [32] 2021
Normal and abnormal
activity recognition in
indoor environment

Raspberry Pi, Camera CNN, Background
Segmentation Own dataset (SRMIT)

Subramanian
et al. [33] 2021 Fog+Activity

Detection

Genetic Algorithm +
Background

Segmentation

Holllywood2,
UCF-ARG, KTH

2.3. Deep Learning Models for Video Classification
2.3.1. Convolutional 3D (C3D)

C3D is a 3-D convolutional neural network (CNN). It employs a series of 3 × 3 × 3
convolutional kernels, as well as a 2 × 2 × 2 pooling at all layers. It consists of eight
convolutional layers, five pooling layers, and two fully connected (FC) layers. At the top,
there is an output layer with softmax activation. This architecture has been extensively used
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as a feature extraction mechanism in videos as it is capable of representing the temporal
aspects very well. Figure 1 shows the basic layout of the C3D deep learning architecture.

Figure 1. C3D deep learning architecture.

Tran et al. [34] contrasted the t-SNE-based spatio-temporal feature discrimination of
activity classes on the UCF 101 dataset using the ImageNet model and the C3D model.
The latter had clear class discrimination in the form of activity instance clusters.

2.3.2. Recurrent Neural Network (RNN)

RNN allows the network to acquire long-term dependencies in a sequence, which
implies it can take the complete context into account when creating a prediction. An RNN is
a layer made of memory cells. The benefit of using a recurrent neural network for sequence
learning is that it preserves a memory of the complete sequence, blocking prior information
from being forgotten. In the simplest form, there are three layers: an input, an intermediate
(hidden), and an output. In this case, the first layer (input layer) accepts the input and the
hidden layer activations are subsequently applied in order to eventually obtain the output.
Figure 2 shows the basic RNN block.

Figure 2. RNN architecture.

It takes X0 from the series of inputs first, then outputs H0, which, along with X1, is
the next step’s input. The inputs for the following step are H0 and X1 at that point. Also,
the input with X2 for the next step is H1 from the following, and so on. In this vein, while
training, it is important to learn the individual case. The equation for the present status is
given in Equation (1),

Ht = f (Ht−1, Xt) (1)
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Further, it is transformed with the help of an activation function, which is tanh in the
present case, as given in Equation (2),

Ht = tanh(Whh Ht−1 + WxhXt) (2)

The final output Yt, is given by the following Equation (3),

Yt = Why Ht (3)

2.3.3. Bidirectional LSTM (Bi-LSTM)

The current output of a bidirectional LSTM is not only recognized with prior data,
but also with subsequent data. The output of a Bi-LSTM is characterized by the combined
output of two LSTM cells [35,36]. This structure enables the networks to keep track of
the sequence of data in both directions (i.e., backward and forward) at all time steps. It
enables the processing of data in both directions and learns from it. This architecture is
advantageous over the unidirectional model in that the two hidden states can store and
process data from both the past and the future at any given point in time. A typical Bi-LSTM
architecture is shown in Figure 3. It adds a hidden layer that sends information backwards
in order to process such data more flexibly.

Figure 3. Bi-LSTM architecture.

The Bi-LSTM is linked to a fully connected hidden layer, which is then connected to
a three-neuron softmax output layer. A dropout is used to prevent overfitting between
the Bi-LSTM layer and the hidden layer, as well as between the hidden layer and the
output layer.

3. Proposed System and Methodology

The following sections describe the methodology used for training and testing the
deep learning model for abnormal activity recognition in videos.

3.1. Proposed Deep Learning Architecture and Methodology for Anomaly Detection

Figure 4 depicts the data flow diagram of the proposed approach. For feature ex-
traction, we use a CNN, which is followed by a Bi-LSTM network for sequence learning.
The CNN model is used to extract features from the input frames and is similar to Inception
architecture as shown in Figure 5. When the frames have specific deviations from the
abnormalities or items, this structure is used to extract spatial information that are impor-
tant. The optional addition of further layers may not significantly improve performance
while increasing computational complexity. The extracted features are then converted into
sequences of extracted features. Each footage was incorporated into a 40-frame sequence.
So, we merge the sampled 40 frames together, save it to a disc, and now we can train a
model without having to send the input image data through the CNN model each time.
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Figure 4. The flow diagram of the anomaly detection approach.

Figure 5. Inception model architecture.

The CNN uses all of the small variations in each frame to identify hidden patterns in
photographs. The RNN, for activity recognition in a video, learns these variances in the
sequential fashion.

Since some base layers would be too difficult to even consider optimizing when using
backpropagation, the proposed model helps solve the problem of gradient vanishing.
Figure 6 shows a network with an architecture that is equivalent to four LSTM cells in total.
ReLU is the activation function that is used within the organization. It approaches more
information ahead of time due to backward passes at a given time step. We choose modules
and connect them in order to create a network that serves our needs. The Activity Detection
contribution should be a time series, and the LSTM’s fundamental structure ensures that it
can maintain temporal dimension features.

With enough regularization, a huge network can be completely optimized for a prob-
lem, such as L2 weight decay and dropout. Testing has no effect on training. The neural
network’s predictions are coupled to real-world variables. During learning, the F1 score
for activities is determined. Throughout the training cycle, the training dataset should be
randomized. Each new window for a new prediction causes the neural network’s state to
be reset.
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Figure 6. The Proposed Model.

For validation, 25% of the information is isolated from the dataset, and the categorical
crossentropy is utilized for error computation of the validation data. If C is the number of
classes, then the categorical crossentropy H(y, p) can be calculated as per Equation (4),

H(y, p) = −
c

∑
i=1

yi · log(pi) (4)

where yi is the true probability of class i, and pi is the predicted probability of class i.
For multiple examples involving multiple batches, the cross entropy can be calculated as
per the formula given in Equation (5),

H(y, p) = − 1
N

N

∑
j=1

C

∑
i=1

yij · log(pij) (5)

where N is the number of samples in a batch, and C is the total number of classes. yij is
the true probability of class i for sample j, and pij is the predicted probability of class i for
sample j.

For cost minimization, Adam optimization with a learning rate of 1 × 10−5 is em-
ployed. Batch normalization can be useful in training as well. The basic idea behind batch
normalization is that layers are standardized by mean and variance, with the goal of having
a mean of zero and a standard deviation of one throughout the batch. The result is then
directly standardized and balanced. The scaling multiplier and offset parameter are used
to rescale contributions to 0 and the value is set to 1.

3.2. Edge Deployment of the Model

In order to reduce the size of the trained model, a post-training quantization is applied
on the model, For this purpose, the tensorflow lite (TFlite) library is used. Quantization
reduces the precision of the weights and activations of the model. Instead of using 32-bit
floating-point precision (float32), quantization converts the model to use lower bit-width
integers (8-bit integers). It results in a reduction in the memory and computational re-
quirements of the model, making it more efficient for deployment on devices with limited
resources. A 75% reduction in model size is achieved in this way.

Furthermore, the model is deployed on multiple edge nodes (using Raspberry Pi).
The layered architecture of the proposed edge computing-based framework has been shown
in Figure 7. There are three layers in the architecture. There is an edge sensor layer, or the
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physical layer at the bottom, that has Raspberry Pi 4 nodes with a camera, a power source,
and other components to capture the video stream. It is then passed to the video analytics
layer, where deep learning models analyze the data for necessary anomaly labeling. This
layer is followed by the user (or consumer) layer, where various services may be subscribed
to by the user based on their preference.

Figure 7. Layered Edge Computing Visual Surveillance Framework.

4. Experimental Results
4.1. Experimental Setup

Experiments were conducted on a PC with a Ryzen 7 quad-core processor, an Nvidia
GPU, 16 GB of RAM, and Ubuntu 20.04 installed. The software stack consists of scikit-
learn and Keras with the TensorFlow backend, and all of the applications were written in
Python. The networks were trained for 500 epochs, and the Adam optimizer was utilized
for optimization. The entire program took about 6–7 h to finish. On the UCF-Crime Dataset,
the approach was tested.

4.2. Description of the Datasets Used

The dataset used for the experimentation contains a subset of videos from a publicly
available UCF-crime dataset [37], including CCTV footage videos from YouTube and
other sources. The dataset (Table 2) includes large, uncut surveillance videos containing
13 genuine anomalies such as abuse, arrest, assault, accident, burglary, and so on. These
anomalies were chosen because they have a significant impact on public security. There is
950 unedited genuine surveillance footage with clear abnormalities available, as well as
950 regular videos. Our dataset is divided into two parts: the training set, which contains
700 normal and 710 anomalous videos, and the testing set, which contains the remaining
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250 normal and 240 anomalous videos. In the films, both the training and testing sets
remember each of the 13 anomalies in separate temporal locations. Every one of the
13 anomalies in the recordings is present in both the training and testing sets. A section of
the recordings also contains various oddities.

Table 2. The number of recordings of every anomaly in the dataset.

Anomaly Videos

Abuse 50

Arrest 50

Arson 50

Assault 50

Burglary 100

Explosion 50

Fighting 50

Road Accidents 150

Robbery 150

Shooting 50

Shoplifting 50

Stealing 100

Vandalism 50

Normal Videos 950

4.3. Results

The proposed technique is tried on 25% of the recordings in each dataset. A portion of
the right and misclassified visual results are in Figure 8. Our strategy accepts a test video as
input and extracts features. The extracted features are taken care of for the proposed model
in the segment for time stretch T. The model returns the yield for each segment. Lastly,
the video is grouped into the highest recurrence class in output.

Figure 8. Examples of various anomalies from the training and testing.
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In Figure 9, lines 3 and 7 are misclassified, where “accident” is delegated to “abuse”
and “assault” is named “burglary”. These off-base expectations are because of the identity
of visible content and the movement of the camera. The proposed technique is assessed on
the GEFORCE GTX 1660 Ti Max Q GPU for feature extraction, training, and testing.

Figure 9. Predictions of the Proposed Model for Action Recognition for test recordings. The red text
style shows wrong prediction of our strategy.

Table 3 shows the different accuracy measures for the proposed method. It includes pre-
cision, recall, and F1 Score, which were calculated for true and predicted values, respectively.

Table 3. Accuracy Measures of Proposed Method.

Event Precision Recall F1 Score

Arrest 0.79 0.79 0.79

Arson 0.79 0.78 0.78

Assault 0.78 0.78 0.78

Burglary 0.79 0.79 0.79

Explosion 0.81 0.81 0.81

Hitting 0.79 0.79 0.79

Road Accidents 0.81 0.79 0.80

Robbery 0.78 0.78 0.78

Shooting 0.77 0.79 0.78

Shoplifting 0.77 0.79 0.78

Stealing 0.78 0.78 0.78

Vandalism 0.79 0.80 0.79

Normal Events 0.79 0.81 0.80

4.4. Comparative Performance Analysis and Discussion

Here, the comparative analysis with three other state-of-the-art, popular video classifi-
cation techniques has been given. For comparison, RNN, LSTM, and Bi-LSTM architectures
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have been used. Table 4 provides the classification accuracy of these methods along with
the proposed method.

Table 4. Accuracy Comparison of Different Models.

Model Training Accuracy Test Accuracy

C3D 55.16% 45.87%

RNN 85.61% 59.34%

Bi-LSTM 66.46% 60.96%

Proposed Model 91.62% 80.92%

Figure 10 shows the loss and accuracy curves for the C3D model architecture. Sim-
ilarly, Figures 11–13 display the loss and accuracy curves for Bi-LSTM, RNN, and the
proposed model. It is evident from the loss and accuracy curves that the proposed method
outperforms other methods.

The quantized (TFLite Model) and non-quantized (TF Model) versions of the deep
learning model were tested on a non-GPU Raspberry Pi 4 B edge device. The parameters of
accuracy, energy consumption efficiency, and processing speed were evaluated. For testing
purposes, video recordings with a frame size of 640 × 480 × 3 were used. To analyze
the performance of quantized and non-quantized models, both models were run on the
Raspberry Pi node for a test sample comprising 13 videos (v1–v13). The accuracy of
the quantized model was recorded as 79.90%, and the non-quantized model achieved an
accuracy of 80.10% with an error margin of just 0.20%.

Figure 10. Loss and Accuracy of C3D.

Figure 11. Loss and Accuracy of Bi-LSTM.



Electronics 2024, 13, 251 13 of 17

Figure 12. Loss and Accuracy of RNN.

Figure 13. Loss and Accuracy on Proposed Model.

Furthermore, the comparison of processing speeds of quantized and non-quantized
models is shown in Figure 14. The average processing speed (in fps) for the quantized model
is 32.21, making the model ideal for real-time processing. On the other hand, the average
speed of the non-quantized model was 12.14 fps. To calculate the energy efficiency of both
models on edge nodes, the energy consumption metric fps/watt, as described in [38], was
used. Figure 15 provides a comparison of the energy efficiency of quantized and non-
quantized models. The quantized model has an average energy efficiency of 3.88 fps/watt,
while the non-quantized model has an energy efficiency rate of 1.40 fps/watt. The quantized
model is 2.77 times more efficient compared to the non-quantized model.
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Figure 14. Comparison of processing speeds of quantized (TFLite Model) and non-quantized
(TF Model).

Figure 15. Comparison of energy efficiencies of quantized (TFLite Model) and non-quantized
(TF Model).

4.5. Limitations of the Current Work and Future Scope

The present work describes a method for training a deep learning model to detect
and classify abnormal activities from video footage. Although the experimental results
show satisfactory performance, the classification accuracy of the proposed technique is
also considered. However, the model has been trained and tested on limited data and
only uses 13 classes. The moderate size of data and classes was chosen in order to deploy
the trained model on resource-constrained edge devices. A basic quantization technique
was used for model compression. The work may open directions for further exploration
and investigation by other researchers. More data, alternate model architectures, model
compression methods, and edge computing architectures can further advance this work.



Electronics 2024, 13, 251 15 of 17

5. Conclusions

Visual surveillance is an important application area in the field of computer vision.
With the widespread presence of CCTV cameras, there is a need to automate the task
of taking proactive steps against anomalous incidences. Nonetheless, there are some
challenges in processing the video data collected by multiple cameras at a central location,
such as bandwidth, latency, high computation resource requirements, etc. In order to
overcome this issue, an edge-based visual surveillance system has been proposed wherein
the video analytics to spot anomalous incidences in the video stream is performed on
the edge nodes. Different deep learning models were trained to recognize 13 abnormal
types of incidence in video. A custom Bi-LSTM model performs better than other state-of-
the-art methods. This model is deployed on the edge nodes to process the video locally.
Analytics reports and notifications can be sent to the user. Experimental results show
that the proposed system is suitable for visual surveillance with improved accuracy and
reduced cost and computational resources.
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