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Abstract: This paper presents the improved Lv’s distribution (ImLVD) for noisy multicomponent
linear frequency-modulated (LFM) signals analysis, which is of significant importance in radar signal
processing. Two goals of this paper are (i) to overcome drawbacks of the Lv’s distribution (LVD),
and (ii) to study mechanisms of the constant delay introduction. Theoretical comparisons in cross-
term suppression, resolution, peak-to-sidelobe level, anti-noise performance and implementation
are performed for the maximum likelihood (ML) method, Wigner–Hough transform (WHT), LVD,
parameterized centroid frequency–chirp rate distribution (PCFCRD) and ImLVD. Based on theoretical
comparisons and illustrative examples, superiorities of the ImLVD are demonstrated and several
unclear mechanisms of the introduced constant delay are interpreted. Finally, three numerical
examples are given to illustrate that, because of the high cross-term suppression, resolution, peak-to-
sidelobe level and anti-noise performance without the non-uniform integration variable, the ImLVD
is more suitable for noisy multicomponent LFM signals analysis.

Keywords: Lv’s distribution; linear frequency-modulated signal; maximum likelihood method;
Wigner–Hough transform

1. Introduction

Noisy multicomponent linear frequency-modulated (LFM) signals are often encoun-
tered in the field of radar signal processing, and its centroid frequency (CF) and chirp rate
(CR) correspond to the velocity and acceleration [1,2]. Since the instantaneous frequency
(IF) of the LFM signal varies linearly with time, time-frequency transforms, including linear
transforms and bilinear transforms, have been widely used. The short-time Fourier trans-
form and S-transform are typical linear transforms [3,4]. The linear transforms do not have
the influence of the cross term, while high-frequency and time resolutions cannot be guaran-
teed simultaneously. In order to enhance the resolution, bilinear transforms are developed
and the Wigner–Ville distribution (WVD) [5] is a typical bilinear transform. The WVD
suffers from the serious influence of the cross term and several variations of it have been
proposed, such as the modification of smoothed pseudo-WVD [6]. The optimized sparse
fractional Fourier transform and combined use of discrete polynomial-phase transform and
sparse fractional Fourier transform have been proposed to estimate LFM parameters [7,8].
Time–frequency transforms can serve as a basis for the radar signal synthesis, coding and
detection, and related research is still going on [9–11].

The time–frequency transforms are based on one-dimensional energy integration and
have a low anti-noise performance. In the field of radar signal processing, a high anti-noise
performance is usually necessary [12]. Aiming to weaken this problem, another category of
algorithms dealing with noisy multicomponent LFM signals is developed, known as the
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CF–CR analysis technique (CFCRAT) [12]. In the past decades, many successful algorithms
have been proposed. Based on the direct integration of the LFM signal, the maximum
likelihood (ML) method [13], discrete Chirp–Fourier Transform [14], modified discrete
Chirp–Fourier Transform [15] and fractional Fourier transform [16] are proposed. Because
of the linearity, they do not have the influence of the cross term. Since the energy of
each auto term of time–frequency transforms is concentrated into a line whose slope is
related to the CR [17], some line integration-based algorithms are proposed. Representative
algorithms include the Hough short-time Fourier transform [18], Hough-local polyno-
mial periodogram [19], Wigner–Hough transform (WHT) [20] and modified-WVD [21].
Recently, the time-CR transforms similar to the time–frequency transforms are proposed
and several integrated time-CR transforms are also developed in [22–29]. The CFCRAT
is based on the two-dimensional energy integration and greatly enhances the anti-noise
performance. Unfortunately, the past decades’ research indicates that, no matter how the
CFCRAT works in radar signal processing, some drawbacks are inherent and cannot be
overcome [12,13,17–21], such as the low resolution, peak-to-sidelobe level (PSL) along the
CR axis, etc.

Analyses and simulations in [12,17] indicate that, through the constant delay intro-
duction, the recently reported Lv’s distribution (LVD) further develops the CFCRAT and
obtains superiorities in the cross-term suppression, resolution and anti-noise performance.
The LVD has been applied in radar detection [30], imaging [31] and ultrasonic [32,33]. In
2017, we analyzed mechanisms of the constant delay introduction and proposed the param-
eterized centroid frequency–chirp rate distribution (PCFCRD) which obtains the higher
cross-term suppression, CR resolution and anti-noise performance than the LVD [34]. Un-
fortunately, the PCFCRD is based on the time-CR transform and the integration variable in
the integrant is non-uniform, which is not preferred in realistic applications [35]. The LVD is
based on the time–frequency transform and can avoid the non-uniform integration variable.
Therefore, if we base our work on mechanisms of the constant delay introduction obtained
in [34] to improve the LVD, the proposed algorithm may have high cross-term suppression,
CR resolution and anti-noise performance without the non-uniform integration variable.

In this paper, the improved LVD (ImLVD) is proposed for noisy multicomponent LFM
signals analysis which is of significant importance in the field of radar signal processing.
The ImLVD is based on mechanisms of the constant delay which is introduced in [34].
With theoretical analyses and illustrative examples, we demonstrate that, compared to
the ML method, WHT, LVD and PCFCRD, the ImLVD has superiorities in resolution,
cross-term suppression, PSL, anti-noise performance and implementation. In addition,
several unclear mechanisms of the introduced constant delay are interpreted, including
quantitative influences of the constant delay on the cross-term suppression, resolution, PSL
and anti-noise performance. Finally, four examples are used to validate the practicality of
the ImLVD.

The remainder of this paper is organized as follows. Section 2 gives a brief review of
the LVD and presents the ImLVD. Theoretical comparisons and numerical illustrations are
given in Section 3. In addition, this part discusses the selection criterion of the constant
delay. In Section 4, with three examples, we demonstrate superiorities of the ImLVD
in noisy multicomponent LFM signals analysis. Section 5 includes the conclusion and
future work.

2. The ImLVD
2.1. Review of the LVD

In radar signal processing, the slow-time dimension of radar echoes of multiple
maneuvering targets is usually modeled as multicomponent LFM signals [36]. In a noisy
environment, multicomponent LFM signals analysis plays an important role in radar
detection, imaging and recognition [21,34,35]. For noisy multicomponent LFM signals, the
LVD further develops the CFCRAT and obtains superiorities in the resolution, cross-term
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suppression and anti-noise performance [7,17,20]. In the following, we give a brief review
of the LVD. The noisy multicomponent LFM signals can be expressed as

s(t) =
P
∑

p=1
sp(t) + n(t),− T

2 ≤ t ≤ T
2

=
P
∑

p=1
Ap exp

[
j2π
(

a1,pt + 1
2 a2,pt2

)]
+ n(t)

(1)

where sp(t) and n(t) denote the pth LFM signal and zero mean complex white Gaussian
noise of the power σ2, respectively. P is the number of signal components. Ap, a1,p and
a2,p denote the amplitude, CF (Hz) and CR (Hz/s) of the pth LFM signal, respectively. T
denotes the integration time, and its unit is s.

The IF of the pth LFM signal is given by

IFp(t) =
dφp(t)

dt
= a1,p + a2,pt (2)

where φp(t) = a1,pt + a2,pt2/2 denotes the phase function.
Based on the format of the IF, a correlation function can be expressed as

R1(t, τ) = s
(

t +
τ

2

)
s∗
(

t − τ

2

)
, τ ∈

{
−T

2
≤ t +

τ

2
, t − τ

2
≤ T

2

}
(3)

where τ and *, respectively, denote the lag variable and complex conjugation.
Based on the evolution of the IF with respect to time, the WVD [7], a time–frequency

transform, is proposed as

WVD(t, f ) =
∫
τ

R1(t, τ) exp(−j2π f τ)dτ (4)

where f denotes the frequency domain with respect to τ.
With R1(t, τ) in (3) and s(t) in (1), we have

WVD(t, f ) =
P

∑
p=1

Kpsinc
[

T
2
(

f − a1,p − a2,pt
)]

Electronics 2024, 13, x FOR PEER REVIEW 4 of 24 

( ) ( ) ( ) ( ) ( )
P

'
1, 2, W HT W HT

1

the auto term

W HT , sinc exp 2 , ,
2p p p

p t

Tf r K f a j r a t dt C f r n f rπ τ
=

   = − − + +    
 
 (7)

where '
pK  denotes the amplitude. ( )W HT ,C f r  and ( )W HT ,n f r , respectively, denote the 

cross term and noise [20]. 
The auto term in (7) needs to be solved by the Fresnel function [26], because its in-

tegration variable t  is different from tτ  in the integrant [26]. The WHT realizes 
two-dimensionally coherent energy integration, and each auto term peaks at ( )1, 2,,p pa a . 
In order to further enhance the resolution, cross-term suppression and anti-noise per-
formance, the authors of the reference [17] introduced a constant delay into the correla-
tion function ( )1 ,R t τ  and defined a new correlation function as 

( ) *
2 , , ,

2 2 2 2 2 2
T TR t s t s t t tτ α τ α τ α τ ατ τ+ − + +     = + −  ∈ − ≤ +  − ≤    

     
  (8)

where α  denotes a constant delay. Note that the constant delay introduction is 
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+ CWVD(t, f ) + nWVD(t, f ) (5)

where Kp denotes the correlation amplitude. CWVD(t, f ) and nWVD(t, f ), respectively,
denote the cross term and noise [7].

The auto term of the WVD concentrates along the line f−a1,p − a2,pt = 0, which
follows the evolution of the IF with respect to time. The WVD only coherently integrates
the energy along the τ axis. Consequently, CWVD(t, f ) and nWVD(t, f ) make it difficult to
analyze noisy multicomponent LFM signals [20]. By employing the Hough transform, the
WHT [20] is proposed as

WHT( f , r) =
∫
τ

∫
t

R1(t, τ) exp(−j2π f τ − j2πrτt)dtdτ (6)

where r denotes the CR domain.
Substituting R1(t, τ) and s(t) into (6), we have

WHT( f , r) =
P

∑
p=1

K′
psinc

[
T
2
(

f − a1,p
)]∫

t

exp
[
j2π
(
r − a2,p

)
τt
]
dt
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where K′
p denotes the amplitude. CWHT( f , r) and nWHT( f , r), respectively, denote the cross

term and noise [20].
The auto term in (7) needs to be solved by the Fresnel function [26], because its

integration variable t is different from τt in the integrant [26]. The WHT realizes two-
dimensionally coherent energy integration, and each auto term peaks at

(
a1,p, a2,p

)
. In

order to further enhance the resolution, cross-term suppression and anti-noise performance,
the authors of the reference [17] introduced a constant delay into the correlation function
R1(t, τ) and defined a new correlation function as

R2(t, τ) = s
(

t +
τ + α

2

)
s∗
(

t − τ − α

2

)
, τ ∈

{
−T

2
≤ t +

τ + α

2
, t − τ + α

2
≤ T

2

}
(8)

where α denotes a constant delay. Note that the constant delay introduction is guaranteed
by more samplings [17,34]. For example, if α = 1 s and T = 1 s, we need to sample data of
2 s to guarantee the introduction of the constant delay. However, more samplings do not
mean more computational cost. We can refer to [17,34] for more details.

Based on the new correlation function R2(t, τ) and the idea of the WHT, the LVD [17]
is proposed as

LVD( f , r) =
∫
τ

∫
t

R2(t, τ) exp[−j2π f τ − j2πrβ(τ + α)t]dtdτ (9)

where β is a scaling factor and related to α, and βα = 1 [17].
Considering the direct reading of the CR and the precision of the interpolation, the

reference [17] sets optimal values of α and β to be both “1” for the LVD. Under such a
condition, we substitute R2(t, τ) and s(t) into (9) and obtain

LVD( f , r) =
P

∑
p=1

K′′
p sinc

[
T
2
(

f − a1,p
)]∫

t

exp
[
j2π
(
r − a2,p

)
(τ + 1)t

]
dt
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a1,p, a2,p
)
. The difference between the WHT and LVD is the introduced constant delay α.

Mathematical analyses and numerical simulations in [12,17] indicate that the introduced
constant delay can significantly enhance the resolution, cross-term suppression and anti-
noise performance.

In 2017, through mechanisms analysis of the introduced constant delay, the proposed
PCFCRD indicated that the introduced constant delay should not be smaller than the
integration time T [34]. However, the constant delay α of the LVD in (10) is fixed to 1s and
it may perform badly in the CR resolution, anti-noise performance, cross-term suppression
and PSL under T > 1 s. Note that, in radar detection and imaging, a long integration time,
i.e., T > 1 s, is usually necessary to obtain a high Doppler resolution [21,37]. The PCFCRD
outperforms the LVD in most aspects due to the appropriate constant delay, while it has
the non-uniform integration variable which is not preferred in realistic applications [34,35].
By contrast, the LVD is based on the time–frequency transform rather than the time-CR
transform of the PCFCRD and can avoid the non-uniform integration variable. In the
following, we base our work on mechanisms of the introduced constant delay obtained
in [34] to improve the LVD.
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2.2. The Proposed ImLVD

By borrowing ideas of the LVD [17] and PCFCRD [34], we define a new correlation function

R3(t, τ) = s
(

t +
τ + h

2

)
s∗
(

t − τ + h
2

)
, τ ∈

{
−T

2
≤ t +

τ + h
2

, t − τ + h
2

≤ T
2

}
(11)

where h denotes a constant delay and it satisfies h ≥ T. By contrast, α in (8) used by the
LVD is fixed to 1s. When T > 1 s, we have α < T and the LVD may perform badly in the
CR resolution, anti-noise performance, cross-term suppression and PSL [17,34].

If the integration variable is the same as that in the integrant, the PSL, cross-term
suppression and anti-noise performance will be enhanced [26]. By referring to this idea
and using the new correlation function R3(t, τ), we propose the ImLVD as

ImLVD( f , r) =
∫
τ

∫
(τ+h)t

R3(t, τ) exp[−j2π f τ − j2πr(τ + h)t]d[(τ + h)t]dτ (12)

Substituting R3(t, τ) and s(t) into (12), we obtain

ImLVD( f , r) =
P

∑
p=1

K′′′
p sinc

[
T
2
(

f − a1,p
)]

sinc

[
(T + h)2

8
(
r − a2,p

)]
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where K′′′
p denotes the amplitude. CImLVD( f , r) and nImLVD( f , r), respectively, denote the

cross term and noise. It is easily seen from (13) that the ImLVD obtains the closed analytical
formula and also peaks at

(
a1,p, a2,p

)
. Details about the computation steps from (12) to (13)

are given in Appendix A.
Compared to the LVD in (10), the ImLVD in (12) has two differences, including:

(i) The integration variable of the ImLVD is the same as that in the integrant, and the
inner Fourier transform in (12) becomes a normal Fourier transform when we let
t′ = (τ + h)t;

(ii) h ≥ T in the ImLVD in (12), while α is fixed to 1s in the LVD in (10) and α ≤ T when
T > 1 s.

The following mathematical analyses and numerical simulations will demonstrate
that these differences will bring the advantages below.

(i) The first difference guarantees the closed analytical formula of the ImLVD in (13),
which helps the ImLVD weaken the serious PSL loss and enhance the cross-term
suppression and anti-noise performance [26];

(ii) The second difference guarantees the resolution, high cross-term suppression, PSL
and anti-noise performance of the ImLVD.

(iii) In addition, the ImLVD is based on the time–frequency transform and avoids the
non-uniform integration variable. This allows the ImLVD to be implemented by the
fast Fourier transform (FFT)- and inverse FFT (IFFT)-based chirp Z-transform (CZT)
instead of the non-uniform FFT of the PCFCRD [17,34].

Illustrative Example 1. Here, we use a numerical example to illustrate how the ImLVD works
in the case of multicomponent LFM signals. Consider three noise-free LFM signals, Au1, Au2
and Au3. Signal parameters are listed in Table 1, and the constant delay h of the ImLVD is set
to 2s. A1, A2 and A3 denote signal amplitudes. Figure 1a–c show simulations results. The
amplitudes of the signal components are often different and vary with time [17]. In order to illustrate
that the varying amplitudes do not have any influence on the ImLVD, we refer to [16] to set
A1 = A2 = A3 =

(
1/π1/4

)
exp

(
−t2/2

)
, and Figure 1d shows the ImLVD under this condition.

Comparing Figure 1c with Figure 1d, we can determine whether the varying amplitudes will have
any influence on the ImLVD or not.
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Table 1. Signal Parameters.

Sampling Frequency Fs 200 Hz Signal Length N 400

Parameters of Au1 A1 = 1 a1,1 = 40 Hz a2,1 = 38 Hz/s

Parameters of Au2 A2 = 1 a1,2 = 8 Hz a2,2 = 2 Hz/s

Parameters of Au3 A3 = 1 a1,3 = −36 Hz a2,3 = −28 Hz/s
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Figure 1. Illustration of ImLVD. (a) New correlation function defined in (11). (b) Result after inner
integration in (12). (c) ImLVD. (d) ImLVD under A1 = A2 = A3 =

(
1/π1/4

)
exp

(
−t2/2

)
.

Figure 1a shows the new correlation function R3(t, τ) which is defined in (11). We can
find that the constant delay h does not increase the area of integrated signal, and the energy
distribution is similar to that of the LVD [20]. Along the time axis in Figure 1a, we perform
the Fourier transform with the integration variable [(τ + h)t], i.e., the inner integration
in (12). The processing result is shown in Figure 1b, where the auto term and cross term
coexist due to the bilinearity of the correlation function R3(t, τ). The auto term peaks
along r = a2,p, while the cross term is distributed (will be demonstrated in Section 3.1).
Performing the Fourier transform along the lag axis in Figure 1b, i.e., the outer integration
in (12), we obtain the ImLVD in Figure 1c. As expected, the auto term of the ImLVD is
integrated, while the cross term can be ignored compared with the auto term. Figure 1d
shows the ImLVD under the varying amplitudes. Based on this result, we deduce that the
varying amplitudes do not have any influence on the ImLVD.
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3. Theoretical Comparisons and Numerical Illustrations

Generally, in realistic applications, the cross-term suppression, resolution, PSL, anti-
noise performance and implementation determine the practicability of the signal analysis
method [17,34]. In this section, with theoretical derivations and several numerical examples,
we compare the ImLVD with the ML method, WHT, LVD and PCFCRD to demonstrate
superiorities of the ImLVD. In addition, quantitative influences of the constant delay on the
resolution, cross-term suppression, PSL and anti-noise performance are also studied.

3.1. Cross-Term Suppression

The ML method is linear and does not have the cross term, while the WHT, LVD,
PCFCRD and ImLVD are bilinear and have the cross term. The analysis of the cross-term
characteristic can demonstrate whether the cross term can accumulate as the auto term or
not and give a more in-depth understanding of the cross-term suppression [17]. We analyze
the cross-term characteristic through calculating cross terms of the WHT, LVD, PCFCRD
and ImLVD [17,34].

With s(t) in (1), WHT in (6), LVD in (9), PCFCRD in the reference [34] and ImLVD in
(12), we calculate their cross terms as

CWHT( f , r) =
∫
τ

∫
t

P−1

∑
l=1

P

∑
q=l+1

A′
lqD′

lq(t, τ)·exp
[

j2π
(

f −∇a1,lq

)
τ
]
· exp

[
j2π
(

r −∇a2,lq

)
τt
]
dtdτ (14)

CLVD( f , r) =
∫
τ

∫
t

P−1

∑
l=1

P

∑
q=l+1

A′′
lqD′′

lq(t, τ)·exp
[

j2π
(

f −∇a1,lq

)
τ
]
· exp

[
j2π
(

r −∇a2,lq

)
(τ + 1)t

]
dtdτ (15)

CPCFCRD( f , r) =
∫
t

∫
τ

P−1

∑
l=1

P

∑
q=l+1

A′′′
lq D′′′

lq (t, τ) · exp
[

j2π
(

f −∇a1,lq

)
t
]
· exp

{
j2π
(

r −∇a2,lq

)[(
τ +

h
2

)2
+ t2

]}
dτdt (16)

CImLVD( f , r) =
∫
τ

∫
(τ+h)t

P−1

∑
l=1

P

∑
q=l+1

A
′′′′
lq D

′′′′
lq (t, τ) · exp

[
j2π
(

f −∇a1,lq

)
τ
]
· exp

[
j2π
(

r −∇a2,lq

)
(τ + h)t

]
d[(τ + h)t]dτ (17)

where A′
lq,A′′

lq,A′′′
lq and A

′′′′
lq denote amplitudes. ∇a1,lq =

(
a1,l + a1,q

)
/2, ∇a2,lq =

(
a2,l + a2,q

)
/2,

∆a1,lq = a1,l − a1,q and ∆a2,lq = a2,l − a2,q. D′
lq(t, τ) = cos

{
2π
[
∆a1,lqt+

(
∆a2,lq/2

)(
t2 + τ2/4

)]}
,

D3
lq(t, τ) =cos

{
2π
[
∆a1,lqt +

(
∆a2,lq/2

)[
t2 + ((τ + 1)/2)2

]]}
, D′′′

lq (t, τ) = cos
[
2π
(

∆a1,lq

+∆a2,lqt
)
(τ + h/2)

]
, D′′′′

lq (t, τ) = cos{2π
[
∆a1,lqt +

(
∆a2,lq/2

)[
t2 + ((τ + h)/2)2

]]
}.

Analyses of (14), (15), (16) and (17) indicate that, if D
′
lq(t, τ), D′′

lq(t, τ), D′′′
lq (t, τ) and

D
′′′′
lq (t, τ) do not exist; cross terms of the WHT, LVD, PCFCRD and ImLVD will seem like

their auto terms and can be integrated. However, D′
lq(t, τ), D′′

lq(t, τ), D′′′
lq (t, τ) and D

′′′′
lq (t, τ)

do exist in their cross terms. As long as a1,l ̸= a1,q and a2,l ̸= a2,q, cross terms of these four
algorithms cannot accumulate as their auto terms.

By comparing D′
lq(t, τ) of the WHT with D′′

lq(t, τ) of the LVD, D′′′
lq (t, τ) of the PCFCRD

and D
′′′′
lq (t, τ) of the ImLVD, it is easy to find that the LVD, PCFCRD and ImLVD have

additional disturbance factors, the constant delays “1 s” and “h”. The authors of [17] have
proved that, due to the constant delay introduction, the cross term depends on not only the
auto term, but also the location of the auto term; that is, the constant delay introduction
further disturbs the cross-term accumulation, and the cross-term strength -to-auto terms’
peaks ratios, i.e., cross-term suppression [12,17,26,34], of the LVD, PCFCRD and ImLVD are
smaller than that of the WHT. The ImLVD lets its integration variable be the same as that
in the integrant, which helps the ImLVD further disturb the cross-term accumulation [26].
Therefore, the ImLVD may have the highest cross-term suppression.
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Since the auto term peaks of these four algorithms are fixed, the cross-term strength
can reflect the cross-term suppression [17,34]. Therefore, the following example uses the
cross-term strength to reflect the cross-term suppression of these four algorithms.

Illustrative Example 2. Consider three noise-free LFM signals, Bu1, Bu2 and Bu3. Signal
parameters are listed in Table 2, and constant delays of the PCFCRD and ImLVD are set to 2 s.
For each algorithm, we apply it to the noise-free multicomponent signals to obtain the simulation
result Θ, and then apply it to each LFM signal to obtain simulation results Θ1, Θ2 and Θ3. As
a consequence, we obtain the cross-term strength as Θ − Θ1 − Θ2 − Θ3. Figure 2a–d show the
cross-term strength of the WHT, LVD, PCFCRD and ImLVD, respectively. Color bars in Figure 2
can indicate the cross-term strength. Auto term peaks of the WHT, LVD and PCFCRD are 80,000,
and auto term peaks of the ImLVD are 160,000.
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Figure 2. Comparison of cross-term strengths. (a) Cross-term strength of the WHT. (b) Cross-term
strength of the LVD. (c) Cross-term strength of the PCFCRD. (d) Cross-term strength of the ImLVD.

Table 2. Signal Parameters.

Sampling Frequency Fs 200 Hz Signal Length N 400

Parameters of Bu1 A1 = 1 a1,1 = 40 Hz a2,1 = −32 Hz/s

Parameters of Bu2 A2 = 1 a1,2 = −10 Hz a2,2 = −32 Hz/s

Parameters of Bu3 A3 = 1 a1,3 = −10 Hz a2,3 = −28 Hz/s
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It is not difficult to find that this illustrative example considers the extreme condition
a2,1 = a2,2 and a1,2 = a1,3 which benefits the cross-term accumulation. Under such an extreme
condition, Figure 2 shows that cross terms of the WHT, LVD, PCFCRD and ImLVD are still
distributed and their cross-term strength is much smaller than their auto-term peaks. The
constant delay introduction further disturbs the cross-term accumulation. Therefore, the
cross-term suppression of the LVD, PCFCRD and ImLVD is higher than that of the WHT.
The ImLVD lets its integration variable be the same as that in the integrant, which helps the
ImLVD further disturb the cross-term accumulation [26]. As expected, the ImLVD has the
highest cross-term suppression in Figure 2.

3.2. Resolution

The Fourier transform is based on the process of interpolation, and the interpolation
range determines the resolution [34]. Therefore, although the ML method, WHT and LVD
cannot be given in closed analytical formulas, we still can obtain their resolutions based
on their interpolation ranges. Formulas (18)–(22) give CF and CR resolutions of the ML
method, WHT, LVD, PCFCRD and ImLVD.{

δML( f ) = 2
T

δML(r) = 8
T2

(18)

{
δWHT( f ) = 2

T
δWHT(r) = 8

T2
(19){

δLVD( f ) = 2
T

δLVD(r) = 8
(T+1)2

(20)

{
δPCFCRD( f ) = 2

T
δPCFCRD(r) = 8

(T+h)2
(21)

{
δImLVD( f ) = 2

T
δImLVD(r) = 8

(T+h)2
(22)

Formulas (18)–(22) indicate that, compared to the ML method and WHT, the LVD,
PCFCRD and ImLVD have higher CR resolutions due to the constant delay introduction.
In radar detection and imaging [17,21,34], the integration time T is usually larger than 1 s
to guarantee the anti-noise performance and high azimuth resolution. Consequently, the
CR resolutions of the PCFCRD and ImLVD are usually higher than that of the LVD. Since
the resolution illustration is related with the PSL illustration, the illustrative example of the
resolution will be given in the next subsection.

Remark 1. Under T < 1 s, since h = T < 1 s, the CR resolution of the ImLVD will be lower than
that of the LVD. Actually, we can also set h ≥ 1 s under T < 1 s for the PCFCRD and ImLVD to
guarantee its superiority in the CR resolution. However, (i) as discussed in Section 4, compared with
h ≥ 1 s, h = T is more practical for the realistic application, and (ii) this paper aims to overcome
drawbacks of the LVD under T > 1 s.

3.3. PSL

The PSL is −13.3 dB for the sinc function and is −26.6 dB for the squared sinc function.
Since the integration variable is different from that in the integrant, the ML method, WHT,
LVD and PCFCRD have serious PSL losses along the CR axis [26]. In addition, for the
LVD, as T is bigger than “1 s” and increases, the constant delay “1 s” has less and less
influence on the resolution, and the sidelobe rises until it becomes a part of the mainlobe.
Consequently, the PSL of the LVD along the CR is the same as that of the WHT under
T ≤ 1 s, while it is worse under T > 1 s. On the contrary, the integration variable of the



Electronics 2024, 13, 244 10 of 23

ImLVD is the same as that in the integrant, and T = h guarantees the unchanged sidelobe
along the CR axis. {

PSLML( f ) = −13.3 dB
PSLML(r) < −13.3 dB

(23){
PSLWHT( f ) = −26.6 dB
PSLWHT(r) < −26.6 dB

(24){
PSLLVD( f ) = −26.6 dB
PSLLVD(r) ≤ PSLWHT(r)

(25){
PSLPCFCRD( f ) = −26.6 dB
PSLPCFCRD(r) = PSLWHT(r)

(26){
PSLImLVD( f ) = −26.6 dB
PSLImLVD(r) = −26.6 dB

(27)

In (23)–(27), PSLs along the CR axis are derived with the continuous signal. However,
in realistic applications, the discrete non-uniform interpolation along the CR axis will induce
a small amount of PSL loss [24]. The actual PSLs of the ML method, WHT, PCFCRD and
ImLVD along the CR axis are −8.785 dB, −17.57 dB, −17.57 dB and −23.3 dB, respectively.
This conclusion can be found in references [17,26,34] and also can be demonstrated by the
following illustrative examples. We rewrite Formulas (23)–(27) as{

PSLML( f ) = −13.3 dB
PSLML(r) = −8.785 dB

(28)

{
PSLWHT( f ) = −26.6 dB
PSLWHT(r) = −17.57 dB

(29){
PSLLVD( f ) = −26.6 dB
PSLLVD(r) ≤ −17.57 dB

(30){
PSLPCFCRD( f ) = −26.6 dB
PSLPCFCRD(r) = −17.57 dB

(31){
PSLImLVD( f ) = −26.6 dB
PSLImLVD(r) = −23.3 dB

(32)

Formulas (28)–(32) indicate that, compared with the ML method, WHT, LVD and
PCFCRD, the ImLVD has the obvious superiority in the PSL along the CR axis. In the
following, with two illustrative examples, T = 1 s and T > 1 s, we verify theoretical
derivations of Sections 3.2 and 3.3.

Remark 2. References [17,34] demonstrate that the constant delay introduction benefits the cross-
term suppression, resolution and anti-noise performance, while they do not study the influence of
the introduced constant delay on the PSL. Interested readers may ask: If the integration variables of
the ML method, WHT and LVD are the same as their integrant variables, can they also eliminate the
serious PSL loss along the CR axis? Our answer is “no”. This is because ∂ξ(t, τ)/∂t (where ξ(t, τ)
denotes the integration variable) of the ML method, WHT and LVD cannot satisfy ∂ξ(t, τ)/∂t ≥ 0
or ∂ξ(t, τ)/∂t ≤ 0. This is not the focus of this paper and will be studied in another paper.

Illustrative Example 3. We consider a noise-free LFM signal Cu. The sampling frequency
Fs is 200 Hz, and the signal length N is equal to 200. The signal parameters are set as follows:
A1 = 1, a1,1 = 8 Hz, a2,1 =2 Hz/s. Constant delays of the PCFCRD and ImLVD are set to 1 s.
Figure 3a,b show resolutions and PSLs along the CF and CR axes, respectively.
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We obtain δML( f):δWHT( f):δLVD( f):δImLVD( f) as 1:1:1:1 and δML(r):δWHT(r):δLVD(r):δImLVD(r)
as 4:4:1:1 by the simulation results shown in Figure 3. Simulation results of the resolution
conform to the derived analytical formulas in (18)–(22). Compared to CR resolutions of the
ML method and WHT, CR resolutions of the LVD, PCFCRD and ImLVD are enhanced due to
the introduced constant delay. For the ML method, WHT, LVD and PCFCRD, their integration
variables are different from those in the integrant and serious PSL losses along the CR axis
exist. We obtain PSLML( f ):PSLWHT( f ):PSLLVD( f ):PSLImLVD( f ) as −13.3:−26.6:−26.6:−26.6
and PSLML(r):PSLWHT(r):PSLLVD(r):PSLImLVD(r) as −8.785:−17.57:−17.57:−23.3 by the
simulation results shown in Figure 3. Simulation results of the PSL also conform to the
derived analytical formulas in (28)–(32). This example demonstrates that (1) CR resolutions
of the LVD, PCFCRD and ImLVD benefit from the constant delay introduction, and (2) the
same integration variable and integrant variable help the ImLVD avoid the serious PSL loss
along the CR axis.

Illustrative Example 4. Here, we consider a noise-free LFM signal Du, and the signal lengthN is
equal to 400. Constant delays of the PCFCRD and ImLVD are set to 2 s. Other simulation
parameters are the same as those of Illustrative Example 3. Figures 4a and 4b, respectively, show
resolutions and PSLs along the CF and CR axes.

We obtain δML( f ):δWHT( f ):δLVD( f ):δImLVD( f ) as 1:1:1:1 and δML(r):δWHT(r):δLVD(r):
δImLVD(r) as 1/4:1/4:1/9:1/16 with the simulation results shown in Figure 4, which conform
to derived analytical formulas in (18)–(22). Meanwhile, we obtain PSLML( f ):PSLWHT( f ):
PSLLVD( f ):PSLImLVD( f ) as −13.3:−26.6:−26.6:−26.6 and PSLML(r):PSLWHT(r):PSLLVD(r):
PSLImLVD(r) as −8.785:−17.57:−11.92:−23.3. The simulation results of the PSL also con-
form to derived analytical formulas in (28)–(32). Under T > 1 s, as expected, the CR
resolution of the LVD still benefits from the introduced constant delay, while its PSL along
the CR axis has additional serious loss. Simulations in Figures 3 and 4 demonstrate that,
compared to the ML method, WHT, LVD and PCFCRD, the ImLVD has superiorities in the
resolution and PSL along the CR axis.
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3.4. Anti-Noise Performance

This subsection focuses on the comparison of the anti-noise performance. With the dis-
crete noisy LFM signal s(m) = s1(m) + n(m) (m = −[N/2],−[N/2] + 1, . . . , [(N − 1)/2]
and the sampling interval is Ts), we first calculate the expect value and modulus square
expect value at ( f0, r0) which stands for the peak’s coordinate of the ImLVD of the noiseless
LFM signal. Then, a theoretical evaluation method is proposed and used to verify the high
anti-noise performance of the ImLVD.

3.4.1. Expect Value at ( f0, r0)

The ML method, WHT, LVD, PCFCRD and ImLVD can be applied to s(m) and
can take the expect values of ML( f0, r0), WHT( f0, r0), LVD( f0, r0), PCFCRD( f0, r0) and
ImLVD( f0, r0). In radar detection and imaging, the integration time T is usually larger
than 1s to guarantee the anti-noise performance and high azimuth resolution. Therefore,
we consider T > 1 s and use the software “Wolfram Mathematica 13.1” to calculate expect
values of ML( f0, r0), WHT( f0, r0), LVD( f0, r0), PCFCRD( f0, r0) and ImLVD( f0, r0) as

E[ML( f0, r0)] = NA1 (33)

E[WHT( f0, r0)] =
N2 A2

1
2

+ Nσ2 (34)

E[LVD( f0, r0)] =
N2 A2

1
2

+ Ψ
(

σ2
)

, Ψ
(

σ2
)
∈
(

0, Nσ2
)

(35)

E[PCFCRD( f0, r0)] =
N2 A2

1
2

h (36)

E[ImLVD( f0, r0)] =
N2 A2

1
2

h (37)

3.4.2. Modulus Square Expect Value at ( f0, r0)

Applying the ML method, WHT, LVD, PCFCRD and ImLVD to s(m), we take the
modulus square expect value at ( f0, r0). We also consider T > 1 s. By employing the
software “Wolfram Mathematica” and the properties of the moment of zero mean complex
Gaussian random variables, we calculate modulus square expect values of ML( f0, r0),
WHT( f0, r0), LVD( f0, r0), PCFCRD( f0, r0) and ImLVD( f0, r0) as

E
{
|ML( f0, r0)|2

}
= N2 A2

1 + Nσ2 (38)
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E
{
|WHT( f0, r0)|2

}
=

N4 A4
1

4
+

3N3 A2
1

2
σ2 +

3N2

2
σ4 (39)

E
{
|LVD( f0, r0)|2

}
=

N4 A4
1

4
+ Θ

(
σ2
)

(40)

E
{
|PCFCRD( f0, r0)|2

}
= h2

(
N4 A4

1
4

+
N3 A2

1
2

σ2 +
N2

2
σ4

)
(41)

E
{
|ImLVD( f0, r0)|2

}
= h2

(
N4 A4

1
4

+
N3 A2

1
2

σ2 +
N2

2
σ4

)
(42)

where Θ
(
σ2) ∈ (N3 A2

1
2 σ2 + N2

2 σ4, 3N3 A2
1

2 σ2 + 3N2

2 σ4
)

.

If we separately use the expect value or modulus square expect value as a criterion to
determine the anti-noise performance, it is difficult to directly tell which algorithm is better.
References [17,20,28] use the output signal-to-noise ratios (SNRs) to evaluate the anti-noise
performance, while analyses in the following Remark 3 show that this also cannot work.
Interested readers may ask why. This is because they ignore the fact that the integrations
after the bilinear algorithms, such as the WHT, LVD and ImLVD, take the form of energies
of the signal plus noise, while the integrations after the linear algorithms, such as the ML
method, take the form of amplitudes of the signal plus noise. Based on this understanding,
we propose to use the expect value of the bilinear algorithm and the modulus square expect
value of the linear algorithm to theoretically evaluate the anti-noise performance. By using
E[WHT( f0, r0)] in (34), E[LVD( f0, r0)] in (35), E[PCFCRD( f0, r0)] in (36), E[ImLVD( f0, r0)]

in (37) and E
{
|ML( f0, r0)|2

}
in (38), we determine that the PCFCRD and ImLVD have a

higher anti-noise performance than the other three algorithms. Reference [26] has indicated
that, if the integration variable is the same as that in the integrant, the anti-noise perfor-
mance will be enhanced. Therefore, the ImLVD has the highest anti-noise performance
among these five algorithms.

Remark 3. References [17,20,28] use the output signal-to-noise ratios (SNRs) to evaluate the
integration SNR gain. We take the WHT as an example, and its output SNR is defined as

SNRout,WHT =
|WHTs1( f0, r0)|2

var{WHTsn( f0, r0)}
(43)

where var{•} denotes the variance. WHTs1( f0, r0) denotes the WHT of the signal only.
WHTsn( f0, r0) denotes the WHT of the signal plus noise.

Based on (34), (37), (39), (42) and (43), we calculate output SNRs of the WHT and ImLVD as

SNRout,WHT =
N2 A4

1
2NA2

1σ2 + 2σ4
(44)

SNRout,ImLVD =
N2 A4

1
2NA2

1σ2 + 2σ4
(45)

Obviously, although the ImLVD has the obvious superiority in the anti-noise performance
compared to the WHT, the evaluation method “output SNR” reveals that the WHT and ImLVD
have the same output SNR.

Illustrative Example 5. Consider the noisy LFM signal Eu. The sampling frequency Fs is
100 Hz and the signal length N is equal to 600. The signal parameters are set as follows: A1 = 1,
a1,1 = 16 Hz, a2,1 = 44 Hz/s. Constant delays of the PCFCRD and ImLVD are set to 6s. The
tested SNRs-in are SNRin = [−18 dB:1 dB:−12 dB], and 1000 trials are performed for each SNRin.
The measurement given in (46) is used to compare the anti-noise performance [37] . The SNR-out
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of the matched filter corresponds to SNRout = 10 log10 NA2
1/σ2. Figure 5a gives the integral

SNR-in- SNR-out comparison, while Figure 5b gives the zoomed-in plot of [−15 dB:1 dB:−12 dB]
in Figure 5a.

SNRout = 10 log10
A2

1
Nσ2


∣∣∣∣∣∣

N
2 −1

∑
m=− N

2

s(m) exp

[
−j2πa′1,1mTs′j2π

a′2,1

2
(mTs)

2

]∣∣∣∣∣∣
max


2

(46)

where a′1,1 and a′2,1 are estimations of a1,1 and a2,1 with the peak detection technique, respectively.
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As expected, the ImLVD has a higher anti-noise performance than the other four
algorithms. Figure 5a,b show that the ImLVD and PCFCRD [12] are almost coincident with
the matched filter when SNRin ≥ −15 dB, while the threshold SNRin is −13 dB for the ML
method [13] and −12 dB for the other two algorithms. Based on the above analyses, we
know that, if T is close to 1s, the anti-noise performance of the LVD [34] will be close to that
of the ImLVD, while if T is much larger than 1s, the LVD will obtain a similar anti-noise
performance as the WHT [20]. Thus, in Figure 5, the anti-noise performance of the LVD is
close to that of the WHT and lower than that of the ML method, PCFCRD and ImLVD.

3.5. Implementation

As with the LVD, the ImLVD can be implemented by using the FFT- and IFFT-based
chirp Z-transform (CZT), which is presented in Appendix A. Figure 6 shows the imple-
mentation flowchart of the ImLVD. With analyses of the implementation, we obtain that
the computational cost of the ImLVD is in the order of O

(
N2 log2 N

)
. The ML method

and WHT are based on the brute-force searching of the CF and CR. To guarantee the same
estimation ranges of the CF and CR, we assume that the number of searching is N for
both parameters. Under this assumption, computational costs of the ML method and
WHT are both in the order of O

(
N3). In the reference [34], we use the non-uniform FFT

to speed up the implementation of the PCFCRD, and its computational cost is also in the
order of O

(
N2 log2 N

)
. However, the PCFCRD is based on the time-CR transform, and

the integration variable in the integrant is non-uniform, which is not preferred in realistic
applications [35]. Table 3 lists the computational costs of these five algorithms.
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Table 3. Computational Cost.

Algorithm ML Method WHT LVD PCFCRD ImLVD

Computational cost O
(

N3) O
(

N3) O
(

N2 log2 N
)

O
(

N2 log2 N
)

O
(

N2 log2 N
)

Remark 4. Aforementioned computation cost analyses of the ML method and WHT are based on
their original implementation methods. The references [14,15,21] have developed fast implementation
methods for the ML method and WHT, and their computational costs are also in the order of
O
(

N2 log2 N
)
. Under such condition, these five algorithms require similar computational costs.

Remark 5. For the LFM signal, the ideal energy representation along the CR dimension takes the
form of the sinc function in the CF–CR domain. Theoretical analyses and numerical simulations
indicate that two differences between the LVD and ImLVD let the ImLVD take the form of the
sinc function along the CR dimension. In other word, along the CR dimension, the energy of the
ImLVD is more concentrated than that of the LVD. In addition, based on implementation details
in Appendix A, we can find that two differences between the LVD and ImLVD are both realized
with linear operations. Therefore, the ImLVD may enhance properties of the LVD, and the inverse
ImLVD can also be defined as the inverse LVD. We can refer to [17,34] for more details.

3.6. Constant Delay Selection Criterion

Theoretical comparisons in Section 3 reveal that the constant delay is related with the
cross-term suppression, resolution, PSL and anti-noise performance. In this section, the
constant delay selection criterion will be discussed.

Analytical formulas (14)–(22) indicate that the constant delay benefits the cross-term
strength reduction and CR resolution. Analytical formulas (27), (32) and (37) indicate that,
when the constant delay h ≥ T, the anti-noise performance of the ImLVD achieves its
optimum and the serious PSL loss along the CR axis can be eliminated. As we know, a
large h means a large signal length, while the signal length is finite in realistic applications.
Therefore, considering the cross-term suppression, resolution, PSL, anti-noise performance
and actual signal length, we set

h = T (47)

Remark 6. For the LVD proposed in the reference [17], the selection criterion of the constant delay
aims to guarantee that, (1) no interpolation is required along the scaled time axis and both sides of
the scaled time axis are symmetrical, and (2) the CR value can be directly read from the CF–CR
plane. By contrast, the selection criterion discussed here considers the interpolation, cross-term
suppression, resolution, PSL, anti-noise performance, signal length and direct reading of the CR
value. The selection criterion discussed here is more practical. For more details about the selection,
we can refer to references [12,17,37].
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4. Numerical Simulations

In this section, we use three numerical examples to demonstrate the practicability of the
ImLVD. These three numerical examples are the adjacent LFM signals separation, LFM sig-
nals with different amplitudes (of large differences) and noisy multicomponent LFM signals,
which are representative scenarios existing in radar detection and imaging [17,30,31,34,35].

4.1. Adjacent LFM Signals Separation

The cross-term suppression, resolution and PSL jointly determine the adjacent LFM
signals separation. In the following, we use the Numerical Example 1 to illustrate the
superiority of the ImLVD in the adjacent LFM signals separation.

Numerical Example 1 Here, we consider three adjacent LFM signals, denoted by Fu1, Fu2 and
Fu3. Signal parameters are listed in Table 4, and constant delays of the PCFCRD and ImLVD are
set to 2s. The ML method, WHT, LVD, PCFCRD and ImLVD are applied to the data. Simulation
results are shown in Figure 7 (X axis, Y axis and Z axis represent the Relative CF, Relative CR and
Amplitude, respectively) and the part marked with the red ellipse is zoomed.

Table 4. Signal Parameters.

Sampling Frequency Fs 256 Hz Signal Length N 512

Parameters of Fu1 A1 = 1 a1,1 = −0.5 Hz a2,1 = 0 Hz/s

Parameters of Fu2 A2 = 1 a1,2 = 1 Hz a2,2 = −0.5 Hz/s

Parameters of Fu3 A3 = 1 a1,3 = 0.5 Hz a2,3 = 0.5 Hz/s

The ML method has low PSL and resolution, and the WHT has low cross-term sup-
pression, resolution and PSL. The LVD introduces the constant delay “1s” to increase the
resolution and cross-term suppression, while its PSL is not improved. The PCFCRD also
encounters the serious PSL loss along the CR axis. Compared to the ML method, WHT and
LVD, the ImLVD has obvious superiorities in the resolution, cross-term suppression and
PSL. Consequently, in Figure 7, only the ImLVD can separate Fu1, Fu2 and Fu3 successfully.

4.2. LFM Signals with Different Amplitudes (of Large Differences)

The ImLVD is bilinear, and the cross term does exist. Under LFM signals with different
amplitudes (of large differences), auto terms of weak LFM signals may be submerged in
the residual cross terms generated by the strong LFM signals. In this subsection, we use
a numerical example to demonstrate that the ImLVD has an obvious superiority under
this situation.

Numerical Example 2. Four LFM signals, denoted by Gu1, Gu2, Gu3 and Gu4, are considered.
Signal parameters are listed in Table 5, and constant delays of the PCFCRD and ImLVD are set
to 2 s. Processing results by the ML method, WHT, LVD, PCFCRD and ImLVD are shown in
Figure 8, where the part marked with the red ellipse is zoomed.

Table 5. Signal Parameters.

Sampling Frequency Fs 256 Hz Signal Length N 512

Parameters of Gu1 A1 = 1 a1,1 = −1 Hz a2,1 = −2 Hz/s

Parameters of Gu2 A2 = 0.8 a1,2 = 1 Hz a2,2 = 2 Hz/s

Parameters of Gu3 A3 = 0.4 a1,3 = 0.5 Hz a2,3 = 0.5 Hz/s

Parameters of Gu3 A4 = 0.2 a1,3 = −8 Hz a2,3 = −20 Hz/s
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Gu1, Gu2 and Gu3 are close to each other. Since resolutions and PSLs of the ML
method, WHT and LVD are low, and the WHT and LVD have the cross term interference,
the spurious peak appears instead of the weak Gu3 in Figure 8a–c. In Figure 8d,e obtained
with the PCFCRD and ImLVD, four real signals appear without spurious peaks due to
the high cross-term suppression, resolution and PSL. Processing results shown in Figure 8
demonstrate that the ImLVD has the obvious superiority under the LFM signal with
different amplitudes (of large differences). It is interesting to find that, in Figure 8a obtained
via the ML method, a spurious peak appears instead of Gu4, while Gu4 are successfully
detected by other algorithms in Figure 8b–d. This may indicate that the cross term may
sometimes benefit the auto term detection. We will study this phenomenon in the future.

4.3. Noisy Multicomponent LFM Signals

In this subsection, we use a numerical example to evaluate the anti-noise performance
of the ImLVD for noisy multicomponent LFM signals analysis.

Numerical Example 3. We consider three LFM signals, Hu1, Hu2 and Hu3. Signal parameters
are listed in Table 6, and constant delays of the PCFCRD and ImLVD are set to 2 s. Three signals
have the same amplitude and are far away from each other. Therefore, if we directly apply the
ML method, WHT, LVD, PCFCRD and ImLVD to them, only the noise can induce spurious
peaks. Here, we contaminate the signal with the complex white Gaussian noise, and the SNRin
is −12 dB. Figure 9a–e correspond to results of the ML method, WHT, LVD, PCFCRD and
ImLVD, respectively.

Table 6. Signal Parameters.

Sampling Frequency Fs 300 Hz Signal Length N 600

Parameters of Hu1 A1 = 1 a1,1 = 60 Hz a2,1 = 40 Hz/s

Parameters of Hu2 A2 = 1 a1,2 = 2 Hz a2,2 = 2 Hz/s

Parameters of Hu3 A3 = 1 a1,3 = −40 Hz a2,3 = −30 Hz/s

It is clearly seen from Figure 9a–c that the signal energy is submerged by the random
noise, and spurious peaks appear. However, in Figure 9d,e, the signal energy is larger than
that of the noise and no spurious peak appears. Simulation results in Figure 9 demonstrate
that the PCFCRD and ImLVD have higher integration SNR gain than the ML method, WHT
and LVD, and are more suitable for noisy multicomponent LFM signal analysis.

Note that, in Figures 8 and 9, the PCFCRD and ImLVD obtain similar results. However,
analyses and simulations in Section 4 do indicate that the ImLVD outperforms the PCFCRD
in the cross-term suppression, PSL and anti-noise performance. Therefore, under some
extreme situations, results of the ImLVD must be better than those of the PCFCRD. In
addition, the PCFCRD is based on the time-CR transform, and the integration variable in
the integrant is non-uniform. In conclusion, compared to the ML method, WHT, PCFCRD
and LVD, the ImLVD is more suitable for realistic applications.



Electronics 2024, 13, 244 20 of 23

Electronics 2024, 13, x FOR PEER REVIEW 21 of 25 
 

 

plitude and are far away from each other. Therefore, if we directly apply the ML method, WHT, 
LVD, PCFCRD and ImLVD to them, only the noise can induce spurious peaks. Here, we con-
taminate the signal with the complex white Gaussian noise, and the SNRin is −12dB. Figure 9a–e 
correspond to results of the ML method, WHT, LVD, PCFCRD and ImLVD, respectively. 

Table 6. Signal Parameters. 

Sampling Frequency sF  300 Hz Signal Length N  600 
Parameters of Hu1 1 1A =  1,1a  = 60 Hz 2,1a  = 40 Hz/s 

Parameters of Hu2 2 1A =  1,2a  = 2 Hz 2,2a  = 2 Hz/s 

Parameters of Hu3 3 1A =  1,3a  = −40 Hz 2,3a  = −30 Hz/s 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
(a) (b) 

Electronics 2024, 13, x FOR PEER REVIEW 22 of 25 
 

 

  
(c) (d) 

(e) 

Figure 9. Comparison of the integration SNR gain under noisy multicomponent LFM signals. (a) 
Result of the ML method. (b) Result of the WHT. (c) Result of the LVD. (d) Result of the PCFCRD. 
(e) Result of the ImLVD. 

It is clearly seen from Figure 9a–c that the signal energy is submerged by the random 
noise, and spurious peaks appear. However, in Figure 9d,e, the signal energy is larger 
than that of the noise and no spurious peak appears. Simulation results in Figure 9 
demonstrate that the PCFCRD and ImLVD have higher integration SNR gain than the ML 
method, WHT and LVD, and are more suitable for noisy multicomponent LFM signal 
analysis. 

Note that, in Figures 8 and 9, the PCFCRD and ImLVD obtain similar results. 
However, analyses and simulations in Section 4 do indicate that the ImLVD outperforms 
the PCFCRD in the cross-term suppression, PSL and anti-noise performance. Therefore, 
under some extreme situations, results of the ImLVD must be better than those of the 
PCFCRD. In addition, the PCFCRD is based on the time-CR transform, and the integra-
tion variable in the integrant is non-uniform. In conclusion, compared to the ML method, 
WHT, PCFCRD and LVD, the ImLVD is more suitable for realistic applications. 

5. Conclusions and Future Work 
Two contributions can be obtained from this paper, including the ImLVD and fur-

ther study of the introduced constant delay. With theoretical analyses and illustrative 
examples, compared to the ML method, WHT, LVD and PCFCRD, the ImLVD has higher 
cross-term suppression, resolution, PSL and anti-noise performance without the 
non-uniform integration variable. Finally, three numerical examples are used to validate 
the practicability of the ImLVD. In this paper, the quantitative influences of the constant 
delay on the cross-term suppression, resolution, PSL and anti-noise performance are ob-

Figure 9. Comparison of the integration SNR gain under noisy multicomponent LFM signals.
(a) Result of the ML method. (b) Result of the WHT. (c) Result of the LVD. (d) Result of the PCFCRD.
(e) Result of the ImLVD.

5. Conclusions and Future Work

Two contributions can be obtained from this paper, including the ImLVD and further
study of the introduced constant delay. With theoretical analyses and illustrative examples,
compared to the ML method, WHT, LVD and PCFCRD, the ImLVD has higher cross-
term suppression, resolution, PSL and anti-noise performance without the non-uniform
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integration variable. Finally, three numerical examples are used to validate the practicability
of the ImLVD. In this paper, the quantitative influences of the constant delay on the
cross-term suppression, resolution, PSL and anti-noise performance are obtained by using
theoretical analyses of the ImLVD, which is useful for future applications of the constant
delay introduction.

Many investigations have been carried out for noisy multicomponent LFM signals
analysis in radar signal processing, while physical attributes determine that, no matter
how the CFCRAT works, some drawbacks are inherent and cannot be overcame. With
the analyses and simulations in this paper, we find that the introduced constant delay is
helpful for the research into the CFCRAT. In the future work, we will continue the study on
the constant delay introduction, especially its applications in radar detection and imaging.
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Appendix A

This appendix presents the fast implementation of the ImLVD based on the FFT- and
IFFT-based CZT. To formulate the implementation, we consider a noise-free LFM signal,
whose discrete form is expressed as

s1(m) = A1 exp
{

j2π

[
a1,1mTs +

1
2

a2,1(mTs)
2
]}

(A1)

With s1(m), we can write the discrete form of R3(t, τ) defined in (11) as

R3(m, k) = G1 exp(j4πa1,1kTs) exp[j2πa2,1(2kTs + h)mTs] (A2)

where G1 = A2
1 exp(j2πa1,1h).

The implementation of the ImLVD in (12) can be separated into two steps, the inner
Fourier transform and the outer Fourier transform. The discrete form of the inner Fourier
transform can be written as

ℏ(mr, k) = ∑
m

R3(m, k) exp
[
−j2π

mr

N
(2kTs + h)m

]
(2kTs + h) (A3)

where mr = −[N/2],−[N/2]+1, . . . , [(N − 1)/2] corresponds to the discrete frequency domain.
Based on the characteristic of the Formula (A3), we rewrite it as

ℏ(mr, k) = exp
[
−jπ

m2
r

N
(2kTs + h)

]
(2kTs + h)∑

m
R3(m, k) exp

[
−jπ

m2

N
(2kTs + h)

]
exp

[
jπ

(mr − m)2

N
(2kTs + h)

]
(A4)

The summation in (A4) can be regarded as a convolution. So we can implement it
with the FFT and IFFT.

ℏ(mr, k) = ϖ(mr, k)FFTm

{
IFFTmr

{
exp

[
jπ

mr
2

N
(2kTs + h)

]}
IFFTmr

{
R3(mr, k) exp

[
−jπ

mr
2

N
(2kTs + h)

]}}
(A5)
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where ϖ(mr, k) = exp
[
−jπ m2

r
N (2kTs + h)

]
(2kTs + h). Note that ϖ(mr, k) = exp

[
−jπ m2

r
N (2kTs + h)

]
for the implementation of the LVD in [20]. Since ϖ(mr, k) can be calculated in advance, this
difference has no influence on the computational cost compared to that of the LVD.

Subsequently, the IFFT can be used to complete the inner Fourier transform. After the
FFT- and IFFT-based implementation, we obtain

ℏ(mr, k) = G′
1 exp(j4πa1,1kTs)sinc

[
(T + h)2

2

(
mr

NTs
− a2,p

)]
(A6)

where G′
1 denotes the amplitude. It is worthwhile noting that Equations (A4) and (A5) are

used to illustrate how we speed up the computation from Equation (A3) to Equation (A6).
The second step, the discrete form of the outer Fourier transform, can be written as

ImLVD
(

k f , mr

)
= ∑

k
ℏ(mr, k) exp

(
−j2π

k f
N k
)

= FFTk{ℏ(mr, k)}
(A7)

where k f = −[N/2],−[N/2] + 1, . . . , [(N − 1)/2] corresponds to the discrete frequency domain.
Substituting ℏ(mr, k) in (A6) into (A7), we have

ImLVD
(

k f , mr

)
= K′′′

p sinc
[

T
2

( k f

NTs
− 2a1,p

)]
sinc

[
(T + h)2

2

(
mr

NTs
− a2,p

)]
(A8)

Above is the ImLVD implementation by using the FFT- and IFFT-based CZT.
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