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Abstract: Recent advances in Generative Artificial Intelligence (AI) have increased the possibility of
generating hyper-realistic DeepFake videos or images to cause serious harm to vulnerable children,
individuals, and society at large with misinformation. To overcome this serious problem, many
researchers have attempted to detect DeepFakes using advanced machine learning techniques and
advanced fusion techniques. This paper presents a detailed review of past and present DeepFake
detection methods with a particular focus on media-modality fusion and machine learning. This
paper also provides detailed information on available benchmark datasets in DeepFake detection
research. This review paper addressed the 67 primary papers that were published between 2015 and
2023 in DeepFake detection, including 55 research papers in image and video DeepFake detection
methodologies and 15 research papers on identifying and verifying speaker authentication. This
paper offers lucrative information on DeepFake detection research and offers a unique review
analysis of advanced machine learning and modality fusion that sets it apart from other review
papers. This paper further offers informed guidelines for future work in DeepFake detection utilizing
advanced state-of-the-art machine learning and information fusion models that should support
further advancement in DeepFake detection for a sustainable and safer digital future.

Keywords: DeepFake detection; advanced machine learning in DeepFake detection; modality fusion
in DeepFake detection; comprehensive review of DeepFake detection

1. Introduction

DeepFakes are causing significant concern among the general public. For instance,
fake videos created by fraudsters can easily deceive the general public [1]. Such fake videos
can spread virally on social media, causing irreversible harm to targeted individuals or
organizations (e.g., high-profile personalities or a company with significant brand value).
A more sinister threat emerges when DeepFakes are used to create child pornography or
sexually explicit fake content [2,3].

Generally, humans cannot distinguish a real video from a DeepFake with the naked
eye (or ears) [4]. On a superficial level, DeepFakes are created by combining several
techniques, such as merging, combining, replacing, and superimposing images and video
clips to create fake videos [5], making them appear real. Taking advantage of more recent Al
techniques such as generative adversarial networks (GANs), DeepFakes can now generate
hyper-realistic content by incorporating audio into the video, thereby not only altering the
visual content but also making it realistic in terms of audio [6].
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Several approaches have recently been proposed to detect such manipulated content by
analyzing spatial and frequency information in images, as well as temporal and frequency
information from audio and video. To advance the state of the art in detecting DeepFakes,
several benchmarking datasets have been made available to the public. By leveraging these
databases and existing approaches, state-of-the-art methods have evolved to exploit the
concept of information fusion, providing robust detection of fake media.

Although there are numerous surveys on DeepFake detection (DFD) [7] detailing
advances, challenges, and potential future work, this paper focuses on a sub-topic of media
modality fusion in DFD, thus complementing existing review works. In this paper, we
delve into existing approaches in DFD, listing relevant works and benchmarking databases
and their respective results. Furthermore, we discuss challenges and potential future work
aimed at pushing the boundaries of the current state of the art in DeepFake detection.

In the remainder of this paper, Section 2 provides a detailed overview of the available
datasets in DFD, while Section 3 explores a number of relevant works using fusion for DFD
in videos. This is followed by Section 4, which focuses on audio. Finally, Sections 5 and 6
delve into more advanced topics in DFD, concluding with remarks and directions for future
research work.

2. Benchmark Datasets

In this digital era, “Digital Transformation” has become a new epicenter across the
globe for its diverse lucrative applications, such as facial attendance, centralized data
lake, and intelligent robotic automation. It provides ease and intelligence for applications
that connect the daily activities of human beings by leveraging advanced technologies.
Since 2018, rapid growth in modern generative models has been observed because of the
synthesis of vision and visual-related domains such as face synthesis, frame synthesis,
and tone synthesis. Considering the harmful effects of manipulated images and videos on
individuals and society, several multinational companies (MNCs) and universities have
generated their own synthesized “DeepFake Dataset” in order to implement deep-learning-
based advanced pipelines for detecting fake videos or images.

Regularly updating benchmark datasets with diverse and evolving DeepFake content
ensures that detection models are tested against a representative range of deceptive tech-
niques. Each benchmark dataset or pertaining paper contains the evaluation metrics to
determine the reliability of that dataset for further comparison with the improved version
of DeepFake’s algorithm. Although each dataset has itself gone through the training and
testing phases, benchmarking is to be performed to show the outperformance of the existing
or new detection algorithm on the updated dataset.

The first DeepFake dataset, named as “Face Forensic DeepFake (FF-DF)” was released
in 2018 and it was added to the repository to improve detection accuracy. Table 1 shows the
chronological progress in the arrival of the DeepFake Dataset reported by several researchers.
Table 1 presents a list of various DeepFake datasets reported by several researchers.

Table 1. DeepFake datasets (DFDs) generated since 2018.

Dataset Pristine Video Fake Video Total Videos Release Date
FF-DF 1000 1000 2000 18-March
UADFV 49 49 98 18-November
DF-TIMIT 320 620 940 18-December
FF++ DF 1000 1000 2000 19-August
Google DFD 3000 3000 6000 19-September
DFDC-Preview Dateset 1131 4113 5214 19-September
Celeb-DF 590 5639 6229 19-November
DeeperForensics-1.0 50,000 10,000 60,000 20-June

DFDC-Full Dataset 23,654 104,500 128,154 20-June
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The total number of DeepFake videos was 3038 (1669 fake videos + 1369 pristine
videos) in 2018, but the total number of videos was 188,154 (114,500 fake videos + 73,654 pris-
tine videos) in 2020. It is clear that the Deepfake Detection Challenge (DFDC)-Full Dataset
had the largest corpus of the DeepFake datasets and the UADFV dataset had the least. The
size of the DFD benchmark datasets further increased to over 100,000 videos in each dataset
including DF-Platter in 2023 [8,9]. Most research utilized both past and present benchmark
datasets in evaluating their DFD performance for fair comparisons.

3. Video and Image Modality Fusion in DeepFake Detection

Generally, DeepFake detection can be classified into two categories: temporal and
spatial analysis for video DFD and frame forgery analysis for image DFD.

Li et al. [10] described a novel approach for detecting fake or manipulated faces in
pristine images or videos. They observed one of the vital features of human facial activity,
that is, eye blinking rate, for authenticating the physiological signal that is not properly
incorporated in the synthesized fake videos, as demonstrated in Figure 1.

Original
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Figure 1. Eye-blinking detection on an original video (Top) and a DeepFake-generated video
(Bottom).

In this study, the blinking rates of the eyes in pristine video were studied and compared
with those of DeepFake videos. Using this novel method, the final outcome demonstrated
that the proposed DeepFake detection mechanism can identify a synthesized or fake video
when the blinking rate of the eyes is observed to be abnormal or anomalous. Figure 1
depicts the frame-by-frame observation of eye blinking of a human being in an original
video and a DeepFake video, where the authors calculated the average time duration
between consecutive eye blinks and the average time of eye blinking to be noticed for
detecting real or fake videos. This method incorporates two stages: (a) face detection using
image or frame, facial landmarks, face alignment, and eye region extraction, and (b) feeding
features of the first stage into a long-term recurrent convolutional network (LRCN) to count
the number of the eye blinks, as shown in Figure 2.



Electronics 2024, 13, 95 4 0f 27
(c) TIME: b
ii iiiiiiii
Feature Extraction | CNN | | CNN |“""“' | CNN |""| CNN | | CNN
4 4 ' i }
Sequence Learning | LSTM LSTM | ISTM |=® LSTM LSTM
1 1
BRI e FC FC
State Prediction
01 [o] [0 [ [

(b)
Figure 2. Overview of LRCN method. (a) is the original sequence. (b) is the sequence after face
alignment and passed to (c¢) LRCN, which consists of three parts: feature extraction, sequence learning,
and state prediction.

Afchar et al. [11] focused on analyzing the mesoscopic properties of images using
detection systems based on a deep learning approach. They integrated two different
activation functions and implemented two detection methods, Meso-4 and Mesolnception-
4, to distinguish between fake and real videos or images.

In Meso-4, they employed four successive layers of convolution and pooling, followed
by a dense network with one hidden layer that utilized the Rectified Linear Unit (ReLU)
activation function to improve generalization, as illustrated in Figure 3. However, in the
Mesolnception-4 architecture, the authors replaced the initial two layers of convolution
with inception models and then applied them to the DeepFake and Face2Face datasets for
evaluation, as depicted in Figure 4. The result showed a very high success rate in detection
i.e., 98% for the DeepFake Dataset and 95% for the Face2Face dataset.
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Figure 3. The network architecture of Meso-4.
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Figure 4. The network architecture of Mesolnception-4.

Hinton et al. [12] addressed some major limitations of convolutional neural networks
(CNNSs) and proposed a foundation for a novel capsule architecture. Nguyen et al. [13]
adopted the idea of capsule architecture and extended their work to detect different kinds
of forgery in images and videos in addition to replay attacks. The authors [13] incorporated
the state-of-the-art Deep Convolutional Neural Networks (DCNNs) and compared the
outcomes of this method with other benchmarking methods. This method is widely used
with dynamic routing algorithms and expectation maximization routing algorithms.

In this approach, the video stream is split into frames in the pre-processing phase, and
then the detection, extraction, and scaling of faces from images are executed as input to
the next phase. In the second phase, the extracted faces were fed to the VGG-19 network
to extract latent features, which were later used as inputs to the Capsule Network. In the
third phase, the Capsule Network, as shown in Figure 5, is executed to detect a forgery
in images and videos, and post-processing is used to calculate the average probabilities
for generating the final result. The Capsule-Forensics-Noise was 95.93% for the DeepFake
Dataset at the frame level and 99.23% for the DeepFake Dataset at the video level.

2D-conv + stats

pooling + 1D-conv \
Real image capsule
2D-conv + stats pooling
+ 1D-conv

Fake image capsule

Extraction of Latent

Features using VGG19
2D-conv + stats pooling
+ 1D-conv

Figure 5. The architecture of Capsule Network.

Rossler et al. [14] proposed an automated pipeline to detect fake faces from images or
videos. In this method, a tracking algorithm was used to trace and track the human face of
videos or images, and then, fed it to different classifiers for detecting the forgery whether it
persists in the videos or not. The authors [14] selected four DeepFake datasets, including
DeepFakes, Face2Face, FaceSwap, and NeuralTextures, along with a pristine dataset to
evaluate precision.
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Detecting DeepFakes using divergent classifiers, such as Steganalysis Features and
Support Vector Machine (SVM), Cozzolino et al., Bayar and Stamm, and Rahmouni utilized
MesoNet, XceptionNet, and XceptionNet full images. While applying these classifiers
randomly to a divergent range of video qualities, they found that the XceptionNet classifier
outperformed other classifiers or combinations. The binary precision values on low-quality
trained XceptionNet is 96.36% for DeepFakes (DFs), 86.86% for Face2Face (F2F), 90.29% for
FaceSwap (FS), 52.4% for NeuralTextures (NT), and 52.04% for pristine images (Real-set).

Dolhansky et al. [15] implemented three detection models using different features on
the DeepFake Detection Challenge (DFDC) dataset that consists of 5k videos, including
original and fake clips. The sample dataset of DFDC is shown in Figure 6. In the first
method, they applied a light-weighted DNN model, that is, TamperNet, which consists
of six convolutional layers and one fully connected layer on the DeepFake Dataset, which
is used to detect acute level manipulations on images such as cut-and-pasted objects; this
method also identifies forgery in digitally fabricated images, including face swaps.

Figure 6. Examples of face swaps.

In the second method, they implemented two other detection models using Xcep-
tionNet on a face dataset and a full-image dataset on forensic data. In these frame-based
models, there are two thresholds applied to the sampled frame per second of video: (1) a
per-frame detection threshold and (2) a threshold that specifies how many frames must
exceed the per-frame threshold to identify a video as fake. They evaluated the frame-per-
video threshold over frames with a detectable face. During the validation, it was clearly
observed that when log-WP was maximized over each fold, the recall reminder was at the
optimal level, that is —3.044 for TamperNet, —2.14 for XceptionNet (face), and —3.352 for
XceptionNet (Full), respectively.

Korshunov et al. [16] presented DeepFake videos generated from the VID-TIMIT
dataset. They used open-source software based on GANSs to create DeepFake and assigned
special importance to the impact of training and blending parameters on the quality of the
resulting low and high visual quality using different tuned parameter sets. They generated
two versions of videos for each (320) subject based on low-quality (64 x 64) GAN model
and high-quality (128 x 128) models. They also demonstrated the SOA on VGG and
FaceNet-based face recognition algorithms are vulnerable to the DeepFake videos and fail
to distinguish such videos from the original ones with up to 95.00% of false acceptance rate.

Generally, the audio-visual integrated system includes two stages which are to be
used for feature extraction and another to classify the tampered videos from the pristine
using a two-class classifier. Here, Korshunov et al. [16] followed the same patterns and
used Mel-frequency cepstral Coefficient(MFCC) as audio features and distance between
mouth landmarks as visual features in the detection pipeline. In the DeepFake videos,
the digital presentation attacks consist of Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), Image Quality Metrics (IQMs), and Support Vector Machines
(SVMs). Dimensionality reduction of the blocks of features for joining the audio-visual
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was performed using PCA and then fed to LSTM [17] to separate the tampered and man-
tampered videos.

Korshunov et al. [16] also evaluated baseline face-swap detection algorithms and
found that the lip-sync-based approach failed to detect mismatches between lip movements
and speech. They also verified that image quality measures with a Support Vector Machine
(SVM) classifier can detect high-quality DeepFake videos with an 8.97% equal error rate.

Agarwal and Varshney [18] designed a statistical model based on hypothesis testing to
detect face-swapped content or fraudulence in images. In this study, the authors considered
a mathematical bound value corresponding to the error probability based on the detection
of genuine or GAN-generated images.

Lyu [19] highlighted the key challenges in detecting DeepFakes using high-quality or
definition-synthesized videos and audio clips. The author tried to raise a deep concern
about one of the critical disadvantages of the current DeepFake generation methods that
cannot produce a fine mapping of color shades for hair with respect to the human face.

Based on the above discussion, this paper highlighted the laconic view of the proposed
DFD pipeline or mechanism and was also concerned about the future amelioration of
advanced DFD. Here, the author proposed an adversarial perturbation-enabled model
that will give less emphasis on DNN-based face detectors. The proposed detection model
consisted of two phases: (a) face detection phase enabling the adversarial perturbation
approach and (b) an Al system to detect DeepFake.

Kumar et al. [20] implemented several DL approaches and compared their results with
the context of DeepFake classification using metric learning. The authors used a Multitask
Cascaded Convolutional Neural Network (MTCNN) to extract faces from images or videos.
The MTCNN incorporates three networks: (a) a proposal network, (b) a refine network,
and (c) output networks to suppress overlapping boxes using non-max-suppression and
generate bounded faces. The Xception architecture was used for transfer learning, and
sequence classification was applied using LSTM in addition to 3D convolution and a triple
network. A triplet network was used with metric learning for proposing an approach
that counts the number of frames in a particular video clip. The realism factor had to be
accessed if the number of frames was found to be less than the actual number of frames
when compared with pristine video. In this study, three types of triplet-generation methods
were investigated. These were easy triplets, semi-hard triplets, and hard triplets, which
are based on the distance between the anchor, positive, and negative embedding vectors.
The proposed detection architecture, as shown in Figure 7, leverages XceptionNet for the
entire process using the MTCNN. In the first phase, the FaceNet model is used to detect,
extract, and generate a feature space which is 512 dimension embedding vectors for each
face. Subsequently, the generated feature space is fed to semi-hard triplets that discriminate
between fake frames and pristine frames through triplet loss. During validation, this
approach achieved an AUC score of 99.2% on Celeb-DF and accuracy of 99.71% on a highly
compressed neural texture [20].
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Figure 7. Triplet architecture used for clustering and classification of real videos embedding vectors.
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Mittal et al. [21] introduced a method that is a conglomeration of a Convolution Neural
Network and a Recurrent Neural Network that helps to extract vital temporal features
from faces to detect manipulated or synthesized faces. A Gated Recurrent Unit (GRU),
along with a weighting mechanism and Automatic Face Weighting (AFW), was used to
automatically choose the most reliable frames for detecting forged faces.

Figure 8 shows the overall execution flow of the proposed detection architecture
for knowing the authenticity of genuine or fabricated videos, where this method detects
and extracts the facial features from multiple frames using MTCNN. After detecting face
regions, a binary classifier is trained using EfficientNet-b5 to extract features that will
classify the real and fake faces. Finally, the prediction for classifying realism or fakeness
can be estimated by the mixture of AFW and GRU. The authors trained and evaluated the
proposed method on the DeepFake Detection Challenge (DFDC) dataset, which yielded a
0.321 log-likelihood error.

Weights

Pw
Jr‘ e /2
~ ‘ Fﬁ | GRU
sl E i
b
r-s;@ & [
| b
X1 X1 N / i Prw
Input Sequence Cropped face regions L. — RNN
- Net \ ["—_“_\‘—l _T Prediction
b h :
hl N 1 N
Features Logits AFW Prediction

Figure 8. Extraction of the face from the frame using MTCNN algorithm.

Kawa and Syga [22] presented two DeepFake detection models that achieved higher
accuracy and low cost in terms of computation. In the first method, they have ameliorated
the existing MesNet model by introducing a new activation function, i.e., the Pish activation
function. MesNet used a convolution neural network that came in two variants, Meso4
and Mesolnception-4. Using MesoNet with the Pish and Mish activation functions showed
a higher text accuracy than the other combinations. In the second method, Local Feature
Descriptors and the angle of BRISK features were used. In addition, we compared the
evaluation performance of the proposed Pish network with that of other benchmark neural
networks such as SqueezeNet, DenseNet, and EfficientNet. This method yielded an error
rate of 0.28%, which is a comparatively shorter computation time.

Chugh et al. [23] proposed an approach based on the modality dissonance score
(MDS), which classifies forgery in DeepFake video between audio and visual modalities
through their dissimilarities. The contrastive loss was used to analyze the closeness features
between audio and video. In addition, entropy loss is used to analyze the features to detect
the individual modality, either audio or video. Kaur et al. [24] used a deep depth-based
convolutional long short-term memory model applied to temporal sequential frames
to detect DeepFake from the video frames. The frames from the DeepFake video were
extracted using “OPENCL”, which is generated by a conglomeration of the feature of source
frames onto destination frames of the video clip. It is a two-level deep temporal-based
C-LSTM, in which the first layer extracts the frame from a forged video and then feeds it to
the C-LSTM model for DeepFake detection.

Symeon et al. [25] used the DFDC dataset to train the DL models for detecting
fraudulent mages or videos. In this paper, researchers put their efforts into the extraction
of face features especially for false positive images, that can generate a large noisy corpus
of contents for ameliorating the detection accuracy. Prior to feeding these features to three
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proposed deep learning architectures, Mesolnception-4, XceptionNet, and EfficientNet,
the authors integrated two pre-processing steps: a data augmentation layer and an image
filtering layer. In the first step, they pre-processed the dataset, including transformations
such as horizontal and vertical flipping, random cropping, rotation, compression, Gaussian
and motion blurring, and brightness, saturation, and contrast transformation. This staging
layer is used to improve the quality of the image. In the second pre-processing layer, they
eliminate images whose sizes are less or equal to N/2 when it is in a connected form, where
N is the number of extracted frames per video after the face extraction. At last, the DL
models incorporate sigmoid activation in the final layer, Adam optimizer, and minimization
in log loss error while training on DFDC. The detailed excerpt of the DeepFake detection
pipeline is depicted in Figure 9.

Training
_Training_ R

i

Pre-processing Layer

Figure 9. Baseline DeepFake detection pipeline.

Rahul et al. [26] established a technique based on the common attributes of fabricated
video clips that analyzed face interpretation. Here, the study consists of a sandwich ap-
proach, in which the manipulated videos are converted into frames and fed to the MTCNN
to extract the facial features using the MobileNet model. The pre-trained MobileNet is used
as an input, and transfer learning is applied to a pre-trained MobileNet neural network to
classify the videos as fake or real. This technique was tested on the Face Forensic dataset
and obtained an average accuracy of 86% in detection.

Advancements in computer vision and deep-learning methods have led to the dis-
covery of sophisticated and compellingly forged versions of DeepFakes. Owing to the
involvement of Al-synthesized DeepFake contents, many attempts have been made to
release benchmark datasets and algorithms for DeepFake detection. Prior DFD methods
dealt with only a single modality for the authentic originality of videos because researchers
have a high error rate in accuracy. In 2020, because of the aforementioned drawback
of single-modality analysis, Mittal et al. [21] presented a deep-learning network model
inspired by the Siamese network and triplet loss for detecting fake videos. To verify the
model, the authors reported the AUC metric on two large-scale DFD datasets: the DF-
TIMIT and DFDC datasets. Then, compared with several SOTA DFD methods, such as
Two-Stream, MesoNet, HeadPose, FWA, VA, Xception, Multi-task, Capsule, and DSP-FWA,
they report a per-video AUC of 84.4% on the DFDC and 96.6% on the DF-TIMIT datasets.
This was the first approach to simultaneously exploit audio and video fusion modalities to
perceive emotions from a DFD. In this study, the relationship between the visual and audio
modalities taken from the same video by extracting the visual face and speech features
is shown in Figure 10, which are Freal and Sreal, respectively. Similarly, Open-Face and
PyAudio analyses were used to collect meaningful features from visual faces and speech.
The extracted features, freal, sreal, ffake, and sfake form the inputs to the networks (F1, F2,
51, and S2, respectively). Later, these networks used a mixture of two triplet loss functions
designed using similarity scores denoted as p1 and p2. Here, p1 represents the similarity
between the facial and speech modalities, and p2 is the similarity between the effects of the
modalities of both the original and fabricated videos.
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Real Video

Ly

Fake Video

Figure 10. Flow diagram to train a visual-audio detection modelWubet.

Wubet [27] used a ResNet and VGG-16-based CNN to classify eye states and long
short-term memory for sequence learning. This study investigated fake or real videos from
the UADFV dataset by counting eye blinks within an interval, and the eye aspect ratio was
used to determine the height and width of open and closed eyes, as shown in Figure 11.

Figure 11. Coordinates to detect eye regions and the blinking of the eye.

Here, in the given figure, p2, p3, p5, and p6 measure the height, whereas p1 and p4
measure the eye width. These points are responsible for determining whether the eyes are
closed or open. In this study, the average human eye blinking rate was used as a threshold
to detect and count the eye blink and blink intervals because the normal blinking rate of
humans is between 2 and 10 s, and each eye blink will take between 0.1 and 0.4 s. Based
on this calculation, the authors classified fake and real videos. It detected 184 eye blinks
per minute on real videos and 428 eye blinks per minute on fake videos, and the overall
accuracy was 93.23% and 98.1% for real and fake videos, respectively.

Similarly, Pishori et al. [28] extended the work on the eye blink mechanism for
detecting DeepFakes and proposed a three-stepped detection model which is a combination
of convolutional LSTM, eye blink detection, and grayscale histograms to detect DeepFake
videos. This study used CNN+RNN integration to detect the number of eye blinks, and the
OpenCV library was used to detect facial landmarks in images or video frames.

The entire image pre-processing is performed using grayscale algorithms, and the
eye-aspect ratio (EAR) recorded the high accuracy in detection while it is trained. The
gray-scale histograms of unaltered and face swap DeepFake are shown in Figure 12.
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Figure 12. Grayscale histogram of an unaltered video (left) and grayscale histogram of a face swap
DeepFake of the same video (right).

Hussain et al. [29] proposed a novel SOA method for bypassing the DeepFake detector
if the adversary has complete or partial knowledge of the detector. In this work, they
generated adversarial examples for each frame of a given fake video and combined them to
synthesize an adversarially modified video that is classified as real by the victim DeepFake
detector, which is XceptionNet and MesoNet, and discussed two pipelines: white-box and
black-box attack scenarios to classify the fake videos.

Owing to the increase in the content of DeepFakes, many researchers and reputed
universities have already conducted thorough surveys and highlighted the divergent
models or systems for detecting the fakeness in images or videos, such as in Vakhshiteh
etal. [30]. Nguyen et al. [4], Mirsky and Lee [31], Tolosana et al. [32], Sohrawardi et al. [33],
and Verdolina [34] have majorly contributed to highlighting the pluses and minuses of
DeepFake and provided a clear excerpt on the mechanisms of DeepFake provided detection.

The rapid increase in research on GANSs has led to the generation of finer DeepFake
content, which makes it difficult to detect a forgery in videos. Neves et al. [35] imple-
mented five methods on the Celeb-DF v2 dataset using the concept of a spatiotemporal
convolutional network to detect DeepFake videos. The authors performed pre-processing
on the DeepFake Dataset; at the pre-processing step, the authors cropped the face region
from frames, which might distract the overall network learning. The resizing of frames had
to be the same size and without any distortion using RetinaOFace. Subsequently, it was
fed to the respective methods, such as RCN, R2plus1D, I3D, MC3, and R3D, for detecting
fake or real videos from DeepFakes. The non-temporal classification method for detecting
the originality of frames relies on detecting statistical artifacts in frames generated by the
deployment of GANSs. The Discrete Fourier Transform (DFT) was applied to the image, and
then the 2D amplitude spectrum was compressed into a (300 x 1) feature vector with an
azimuthal averaging mechanism. Afterward, these feature vectors were fed to the classifica-
tion model i.e., Logistic Regression, which will help to make a decision on the authenticity
of the frame or video. The overall architecture of the non-temporal DFD pipeline is shown
in Figure 13.
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Figure 13. An architecture of non-temporal DFD pipeline.
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Guera and Delp [36] proposed a two-stage analysis composed of a Convolutional
Neural Network to extract the frame-level features. Later, it had to be fed to a Recurrent
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Neural Network that detects the originality of videos or whether they are fake. They
achieved precision in accurately capturing temporal inconsistencies between frames due to
face swapping. In the CNN stage, Inception-V3 with a fully connected layer at the top of
the network was adopted. In the sequential processing stage of LSTM, the SoftMax layer is
applied to compute the intra-frame and temporal inconsistencies between frames that are
generally created by face swapping or DeepFake manipulation. The LSTM was followed
by a 512 fully connected layer with a 0.5% chance of dropout.

Guarnea et al. [37] proposed a technique to analyze the DeepFakes of human faces to
detect a forensic trace hidden in images using Expectation Maximization (EM) algorithms.
Leveraging EM algorithms are used to extract a set of local features from images, and the
validation is performed through tests with a naive classifier on five architectures (GDWCTS,
STARGAN, ATTGAN, STYLEGAN, STYLEGAN?2) against the CELEBA datasets. Figure 14
shows the overall pipeline of the EM algorithm.

DEEPFAKE DATASETS EM ALGORITHM CLASSIFIER

STYLEGAN2 GDWCT .

Figure 14. An overview of our attack pipeline to generate Adversarial DeepFakes.

Huang et al. [38] proposed a fake polisher method based on a post-processing shallow
reconstruction method without knowing any prior information about the GAN, which can
easily fool the existing SOA detection methods. Currently, GAN-based image generation
methods are incomplete owing to limitations in leaving some artifact patterns in the synthe-
sized image. Therefore, the authors proposed methods that can easily detect such artifact
patterns and reduce the artifacts in the synthesized image. The first trains a dictionary
model to capture the patterns of real images and then seeks representation of DeepFake
images in a low-dimensional subspace through linear projection or sparse coding. The
authors can perform shallow reconstruction of the fake-free version of the DeepFake image,
which reduces artifact patterns. Three SOA of DFD methods, namely, GANFingerprint
(finger-print based method), DCTA (spectrum-based method), and CNNDetector (image-
based method) along with other 16 popular GAN-based fake image generation techniques
were used to evaluate whether the images were fabricated or real.

Masi et al. [39] presented a DFD method based on a two-stage network structure that
isolated digitally manipulated faces by learning to amplify artifacts while suppressing
high-level face content, as depicted in Figure 15.
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Figure 15. DFD method based on a two-stage network structure.
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Currently, this process is using a method that extracts spatial frequencies as a pre-
processing step. In this two-branch structure, one branch propagated the original informa-
tion and another branch suppressed the face content that amplified multi-band frequencies
using the Laplacian of Gaussian (LOG) as a bottleneck layer. The LOG operator suppresses
the image content presented in low-level feature maps and acts as a band-pass filter to
amplify artifacts. The novel loss functions encouraged the compactness of representations
of natural faces and provided a way to manipulate faces for better and wider viewpoints.
The authors derived a novel cost function for the variability of natural faces and proposed
a method for unrealistic facial samples in the feature space. They applied this method
to face-forensics, Celeb-DF, and Facebook DFDC-presented benchmarks, as shown in
Figure 16.

Figure 16. Unrealistic facial samples in feature space.

The two-branch representation extractor is based on a densely connected layer that
learns to combine information from the color and frequency domains using a multiscale
Laplacian of Gaussian (LOG) operator.

Trinh et al. [40] proposed a Dynamic Prototype Network (DPNet) that leveraged
dynamic representations to explain DeepFake visual dynamics, as shown in Figure 17. The
DPNet automatically learns the dynamic prototypes, which can be used to determine the
temporal logic specifications that check the robustness of the model and verify whether it
is suitable for the desired temporal behaviors. The architecture of the DPNet consists of
a feature encoder, prototype layer, and temporal logic for verifying dynamic prototypes.
The evaluation of these methods was made on the DFD and FF++ datasets and tested with
other baseline models, as shown in Figure 17. In this study, the authors used a quantitative
interpretation metric to measure the interpretation against the ground truth to determine
how well the prototypical patch of the prototype overlapped with the ground truth mask.
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Figure 17. Proposed DPNet architecture for detecting fake images.

Li et al. [41] proposed a novel method called Face X-ray to detect a forgery in face
images and provide blending boundaries of a forged face using a binary mask. The detailed
architecture of the detection method is depicted in Figure 18, in which the authors blended
the altered face into an existing background image, and intrusive image discrepancies
existed across the blending boundaries.
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Figure 18. Detailed description of Face X-ray detection architecture.

The grayscale image acts as an input face image for the Face X-ray method, which
reveals whether it can be decomposed into a blend of two images from a disparate source.
During testing, the binary face boundaries will be generated with a forgery in the image
owing to blending, and it generates a blank image when the image is real. Owing to the
acquisition process, each image has its own distinctive marks, that is, noise and error level

analyses of distinctive marks, as shown in Figure 19.

Figure 19. Noise analysis (middle) and error level analysis (right) of (a) a real image and (b) a fake

image.

Lietal. [42] extended their previous work on facial X-rays. In this study, they examined
a novel face-swapping algorithm called a face shifter for high-fidelity and occlusion-aware

face swapping, as shown in Figure 20.
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Figure 20. AEI-Net is composed of an Identity Encoder, a Multi-level Attributes Encoder (a), and
an AAD-Generator. The AAD-Generator uses cascaded AAD ResBlks (b), which are based on AAD

layers (c), to combine identity and attribute information at different feature levels [42].
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The face shifter generated a swapped face with high fidelity by exploiting and integrat-
ing target attributes. It can handle faced occlusions with a second synthesis consisting of a
heuristic error-acknowledging reinforcement network (HEAR-Net). They also developed a
Face X-ray method to detect forged images created by a face shifter. The authors designed
a GAN-based network called adaptive embedding integration networks (AEI-Net) for the
integration of target attributes and multilevel attribute encoders instead of compressing it
into a single vector, such as RSGAN and IPGAN, in addition to AAD layers. Such adaptive
integration improved the signal-level integration used by the RSGAN, FSNet, and IPGAN.

Neves et al. [35] proposed a GAN-fingerprint removal approach (GANprintR) to
generate a more realistic synthesis or DeepFake Dataset that can be used by a research
group for the detection of DeepFakes, as shown in Figure 21. In this study, the authors used
three detection models or classifiers based on XceptionNet, Steganalysis, and local artifacts
to check for fake detection on the synthesized dataset. When tested with XceptionNet, it
obtained an average absolute worsening of 9.65% EER when using GANprintR. However,
the degradation was higher for Steganalysis (14.68% EER) and more promising with local
artifacts (4.91% EER).
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Figure 21. Proposed video-based face manipulation detection architecture.
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In more recent years, Yang et al. [43] further provided a new perspective by formu-
lating DeepFake detection as a graph classification problem, in which each facial region
corresponds to a vertex. A spatiotemporal attention module was exploited to learn the
attention features of multiple facial regions with improved DeepFake detection.

Zhao et al. [44] proposed an Interpretable Spatial-Temporal Video Transformer
(ISTVT), which consisted of a novel decomposed spatial-temporal self-attention and a
self-subtract mechanism to capture spatial artifacts and temporal inconsistency for robust
Deepfake detection. The authors proved improved DeepFake detection performance in
extensive experiments using large-scale datasets, including FaceForensics++, FaceShifter,
DeeperForensics, Celeb-DF, and DFDC datasets.

Wang et al. [45] proposed a deep convolutional transformer to incorporate the decisive
image features both locally and globally. The authors applied convolutional pooling and re-
attention to enrich the extracted features and enhance efficacy. Their work employed image
keyframes in model training for performance improvement and visualized the feature
quantity gap between the key and normal image frames caused by video compression with
improved transferability in DeepFake detection.

Yu et al. [46] proposed a novel Augmented Multi-scale Spatiotemporal Inconsistency
Magnifier (AMSIM) with a Global Inconsistency View (GIV) and a more meticulous Multi-
timescale Local Inconsistency View (MLIV), focusing on mining comprehensive and more
subtle spatiotemporal cues. Yu et al. [47] further used Predictive Visual-audio Alignment
Self-supervision for Multimodal DeepFake Detection (PVASS-MDD), which consisted of
PVASS auxiliary and MDD stages for DeepFake detection. The continued advancement in
spatiotemporal and multi-modal fusion in DeepFake detection is noted using advanced
machine learning techniques.
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4. Audio Modality Fusion in DeepFake Detection

Similar to DeepFakes in video and image, audio content can be a victim of Deep-
Fakes (and also contribute to hyper-realistic DeepFakes on video data). The increase in
fake and synthetic audio has become one of the major challenges for researchers in distin-
guishing between spoofed audio and genuine audio. The first well-publicized instance
of an audio DeepFake scam was reported in mid-2019. At that time, the fraudsters used
artificial-intelligence-based software to impersonate a chief executive’s voice and demand
a fraudulent transfer of USD 243,000 [48]. Automatic speaker verification (ASV) systems
are primarily threatened by replay and audio spoofing attacks, voice conversion (VC), and
speech synthesis (SS) to commit illegal acts.

SS and VC have also progressed significantly over the past decade, reaching a point
where it has become very challenging to differentiate between spoofed speech and genuine
user speech. Technical enhancements in synthetic audio and DeepFakes threaten to magnify
the scale, persistence, and consequences of misinformation. Incorrect information can affect
emotions and opinions. At worst, it could lead to organized and stabilized unwanted
public actions united behind false intentions or impressions. To avoid SS and VC attacks,
several researchers have adapted the ASV technique with audio spoofing detection systems
that feature countermeasure scores to classify spoofed and genuine speech. The ASVSpoof
challenge edition was initiated, as shared in Table 2.

Table 2. DeepFake classification based on Audio.

Dataset Total Audio Release Date
AVSSpoof2015 106 17 September 2015
AVSSpoof2017 V2 179 2 April 2018
AVSSpoof2019 107 4 June 2019

Chettri et al. [49] studied the state of the art and observed the model speaker per-
formance in an end-to-end manner for the ASVSpoof2017 challenge. They found that
architectures such as the second version of the automatic verification spoofing and counter-
measures challenge (ASVSpoof2017) showed poor generalization in the evaluation dataset
but found a compact architecture that showed good generalization on the development
data, which demonstrated that it was not easy to obtain a similar level of generalization
on both development and evaluation data, leading to a variety of open questions. Here,
the authors reported their experiments and challenges in designing a deep anti-spoofing
system that was trained and evaluated on the ASV spoof database. They explored four
end-to-end CNN-based models generalized in the development dataset, but consistently
performed well in the evaluation dataset. Later, they explained their experiments to de-
termine a suitable architecture that generalizes well to unseen data. They also proposed
anovel CNN architecture for the spoofing detection task that has approximately 5K free
parameters, as shown in Figure 22, in which the shape of the feature map after the second
convolutional an max pooling layer is (8§ x 25 x 33), that is, no. of channels x time X
frequency.

Tom et al. [50] proposed a detection method consisting of a group delay gram (GD-
gram) obtained by concatenating a group delay function over consecutive frames as a novel
time-frequency representation of an utterance. This work was divided into two stages.
The first stage incorporates transfer learning of a pre-trained CNN for fast adaption to the
GD-grams extracted from utterances and attentional weighting of the raw GD-grams is
performed; in the second stage, another stage of transfer learning of a pre-trained CNN on
GD-grams weighted by soft attention for classification is performed. The model adapted
the ResNet-18 architecture and used its Global Average Pooling (GAP) layer to provide
attention maps for the second stage of discriminative training to improve performance.
Figure 23 shows the overall detection framework for identifying spoofs in audio.
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Figure 22. Architecture of the proposed model, where Conv: convolutional layer, FC: fully connected
layer, MP: max pooling layer [49].
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Figure 23. Proposed audio-based spoof detection architecture [50].

Alzantot et al. [51] developed an audio spoofing detection system based on the coun-
termeasure score (CMS) to distinguish between spoofing attacks and pristine speech. In this
paper, authors incorporated three variants of feature extraction: the Mel-Frequency Cepstral
Coefficient (MFCCS), the constant Q Cepstral Coefficient (CQCCS), and the Logrithmic
Magnitude of Short-Time Fourier Transform (Log-magnitude STFT). The other three deploy-
ment models, MFCC-ResNet, CQCC-ResNet, and Spec-ResNet, along with their respective
feature extractors, were applied to 78 human voice clips for evaluation. Finally, they evalu-
ated the performance of RCN with varying choices of input features against the two attack
scenarios of ASVSpoof2019 (logical access and physical access) using both the development
(known attacks) and evaluation datasets (both known and unknown attacks). The outcome
of this model showed an overall improvement in t-DCF and EER scores of 71 and 75,
respectively.

Todisco et al. [52] addressed two key novel advancements in detecting spoofs in audio.
These advancements include (a) addressing two different spoofing scenarios, Logical Access
(LA) and Physical Access (PA), along with their three important forms of spoofing attacks,
that is, synthetic, converted, and replayed speech, and (b) use of the tandem detection
cost function (t-DCF), which reflects the impact of both spoofing and countermeasures
on ASV reliability. Logical Access aims to determine whether the advances in TTS and
VC technology pose a greater threat to the reliability of ASV scenarios. The Physical
Access scenarios aimed to assess the spoofing threat and countermeasure performance
via simulation, with which factors influencing replay spoofing attacks could be carefully
controlled and studied. The PA database was constructed from a far more controlled
simulation of replay spoofing attacks, which are also relevant to the study of fake audio
detection in the care of smart home devices. ASVSpoof 2019 migrates to a new primary
metric in the form of an ASV-centric tandem decision cost function (t-DCF). The adoption
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of t-DCF ensures that the scoring and ranking reflect the comparative impact of spoofing
and countermeasures on an ASV system.

Balamurali et al. [53] showcased a detailed implementation step of SOA that consisted
of both the pre-processing and post-processing of audio signals or speech to detect the
originality of audio content. In this study, the authors focused on an ensemble method by
considering the correlation between several audio spoofing detection techniques. In this
spoof detection system, they examined all robust audio features, including traditional and
learned features, using an autoencoder. The base layer for implementing this system uses a
traditional Gaussian mixture model called the universal background model (GMM-UBM).
When evaluated on the ASVSpoof2017 database, this feature ensemble model showed an
equal error rate (EER) of 12, which was further improved to 10.8 by introducing a hybrid
model with the conglomeration of both known and machine-generated features that are
trained on an augmented dataset.

Kamble et al. [54] made a great effort to investigate the Teager energy-based features
for spoof speech detection (SSD) tasks. The Teager energy profiles computed for natural,
VC, SS, and replay signals showed changes around the glottal closure instants (GCls).
For the SS signal, the bumps were very smooth compared with the natural signal. These
variations around the GCI of the Teager energy profiles helped discriminate the spoof signal
from their natural counterparts. The Teager energy-based feature set, that is, Teager Energy
Cepstral Coefficients (TECC), performed outstanding for S1-S9 spoofing algorithms with an
average EER of 0.161%, whereas state-of-the-art features, namely, Cochlear Filter Cepstral
Coefficients-Instantaneous Frequency (CFCC-IF), and Constant-Q Cepstral Coefficients
(CQCC) gave an EER of 0.39% and 0.163%, respectively. It is interesting to note that the
significant negative result of the proposed feature set to S10 vs. natural speech confirms
the capability of TECC to represent the characteristics of airflow patterns during natural
speech production. Furthermore, the experiments performed on the BTAS 2016 challenge
dataset, gave 2.25% on the development set. In the evaluation set, the TECC feature set
gave a Half Total Error Rate (HTER) of 3.8%, which is the metric provided by the challenge
organizers, thus overcoming the baseline by a noticeable difference of 3.16%. However, the
TECC feature failed to detect the USS-based spoofing algorithm and unknown attack of the
replay speech recorded with the laptop HQ device. The error rate of TECC+MFCC is 0.38%
on the development set and 6.41% on the evaluation set.

Chen et al. [55] proposed an audio-based model to detect audio DeepFakes or limit
spoofing of voices, and extracted 60-dimensional linear filter banks (LFBs) from raw audio
and passed them into a residual network. FreqAugment and augment layer and large
margin cosine loss function (LMCL) were being used during the training. The main
objective of LMCL is to maximize the variance between genuine and spoofed class and
FreqAugment, a layer that randomly masks adjacent frequency channels while in DNN
training for increasing the generalization ability of the DNN model.

Kumar and Bharathi [56] proposed a novel feature called the filter-based cepstral
coefficient (FBCC) 55, which is used in the front-end processing of countermeasures. FBCC
is a new feature extraction approach that was proposed and used for the first time in the
field of speech processing, particularly for spoof detection in ASV systems. The FBCC-
based countermeasure was substantially effective in counterattacking spoofed utterances
under both the LA and PA conditions. FBCC is based on the energy variation pattern
(EVP), which captures the energy variation information with regard to the energy level in
the neighborhood within a frame and adjacent frames. EVP is computed using statistical
filters; hence, the proposed approach is called the filter-based cepstral coefficient (FBCC).
Three versions of the FBCC were analyzed in this study. The different versions of the FBCC
are based on the types of filters used, namely Gaussian, bilateral, and medjian filters. The
computational similarity between the FBCC with linear frequency cepstral coefficients
(LFCC) and Mel frequency cepstral coefficients (MFCC) has led to the consideration of
MFCC and LFCC as baseline countermeasure systems. The main strengths of the FBCC
were 1. generalization of spoof detection for different types, 2. better performance under
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LA and PA conditions, and 3. the fine-tuning of the parameters in the context of the filters
was comparatively lower.

The computation of the FBCC uses the power spectral density (PSD) as the basis. The
PSD is a function of the energy strength in the frequency domain. The FBCC tends to
capture the changing pattern in energy relative to the changes in energy strength in the
frequency domain. The FBCC captures energy variations intended to discriminate synthetic
speech from natural speech.

Chintha et al. [57] proposed a new audiovisual authentication detection method using
a combination of convolutional latent representations with bidirectional recurrent struc-
tures, such as CRNNSpoof and WIRENetSpoof, and entropy-based cost functions. Latent
representations for both audio and video were carefully chosen to extract semantically
rich information from the recordings. By feeding these into a recurrent framework, we
can detect both the spatial and temporal signatures of DeepFake renditions. Entropy-
based cost functions work well in isolation and in the context of traditional cost functions.
They demonstrated the methods on the FaceForensics++ and Celeb-DF video datasets
and ASVSpoof 2019 Logical Access audio datasets, thereby achieving new benchmarks
for all categories. They performed extensive studies to demonstrate generalization to new
domains and gain further insight into the effectiveness of the new architectures. These
audio embeddings were passed into a bidirectional recurrent layer.

Das et al. [58] conducted a comprehensive analysis of the nature of different types
of spoofing attacks and system development, particularly long-range acoustics and deep
features for spoofing detection. In the training phase of the deep feature extractor (DFE), it
incorporated a discrete Fourier transform (DFT) and fed to the log power spectrum process
as input from attributes related to utterances that considered both bonafide and spoofed
speech from the train set, which can be used as DFE by eliminating the output layer and
then, generating the embedding as a deep feature representation.

5. Advanced DeepFake Detection Methods

Li et al. [59] focused on the advancement of facial landmark detection algorithms and
improved picture and video manipulation techniques and the integration of generative
models such as GANs and VAEs, which has contributed to more convincing and realistic
DeepFakes. Thereafter, Cozzolino et al. [60], in 2021, demonstrated the application of
DeepFake in forensic investigation, machine-learning-based classification models, and
the examination of visual artifacts and inconsistencies. The temporal aggregation of con-
volutional representations and deep learning techniques were also mentioned as having
demonstrated promising results in the detection of DeepFakes.

Zaho et al. [61] drew attention to the growing danger posed by DeepFake videos,
which are realistic but artificially produced videos that might trick viewers by depicting
things or people that do not actually happen or exist. Owing to their increasingly complex
generating processes, modified films are sometimes difficult for traditional DeepFake
detection systems to recognize correctly. The authors suggested a multi-attentional strategy
that combines self-attention, spatial attention, and temporal attention mechanisms to
overcome this difficulty. These attention processes enabled the model to focus on essential
regions and patterns while filtering out extraneous data, allowing it to effectively capture
both global and local contextual information within videos.

The proposed DeepFake detection model can identify artifacts, inconsistencies, or
anomalous patterns that point to DeepFake manipulation by incorporating these attention
mechanisms. For decision-making, the model examines visual and temporal clues, such as
facial expressions, eye movements, and motion patterns. The authors stressed the value
of using sizable datasets that include a variety of DeepFake variations while training the
multi-attentional DeepFake detection model. The generalization and resilience of the model
against unknown manipulation approaches were enhanced using this method. To excel
on various DeepFake video formats, the model can also benefit from transfer learning and
domain-adaptation techniques. However, the authors noted that there is still competition
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between DeepFake production techniques and detection approaches. To remain ahead of
harmful actors and ensure the development of efficient DeepFake detection techniques,
they emphasized on the necessity for ongoing research, innovation, and collaboration
among the scientific community, industry, and governments.

Zhou et al. [62] highlighted that, while visual cues have been extensively utilized
in DeepFake detection, audio information can provide valuable complementary signals.
Manipulated videos often exhibit discrepancies between audio and visual components
because of the challenges of synchronizing fake audio with manipulated visual content.
To address this, the authors proposed a joint audio-visual DeepFake detection approach
that simultaneously analyzes both audio and visual aspects of videos. The model leverages
deep learning techniques to extract relevant features from both modalities and integrates
them to make a joint decision regarding the authenticity of the video. The visual component
of the model utilizes Convolutional Neural Networks (CNNs) to extract visual features
from frames or facial regions of the input video. These features capture visual cues such
as facial expressions, inconsistencies in facial movements, or artifacts introduced during
DeepFake manipulation.

Simultaneously, the audio component of the model employs audio processing tech-
niques, such as spectrogram analysis, to extract relevant audio features. These features
capture acoustic cues such as speech patterns, speaker characteristics, and anomalies in
audio quality. The extracted audio and visual features are then fused using fusion mecha-
nisms, such as concatenation or attention mechanisms, to create a joint representation that
captures combined information from both modalities. This joint representation is fed into a
classification model that determines whether the video is genuine or manipulated.

The authors emphasized the importance of training the joint audio-visual DeepFake
detection model on diverse datasets that include a wide range of DeepFake variations. This
enables the model to learn discriminative patterns and generalize well for unseen manip-
ulation techniques. The experimental results presented in their paper demonstrate that
the proposed joint audio-visual DeepFake detection approach outperforms the individual
audio-only or visual-only approaches. The fusion of audio and visual modalities leads
to improved detection accuracy and robustness against various DeepFake manipulation
techniques. Zhao et al. [63] became aware of the growing danger posed by DeepFake films
and the demand for effective detection techniques. Traditional methods frequently rely
on a single characteristic or modality, which may limit their ability to identify complex
DeepFakes. They suggested MTFF-Net, a multi-feature fusion network, as a solution to
this problem.

MTFF-Net used a variety of visual elements retrieved from DeepFake videos to im-
prove detection. Color histogram, optical flow, Convolutional Neural Networks (CNNs),
and long short-term memory (LSTM) features were the four main visual features of the
network. Each element served as a representation of a different aspect of the video content
and offered helpful hints for differentiating between real and fake videos.

The color histogram feature recorded statistical data on color distributions in frames,
allowing for the detection of anomalies or inconsistencies caused by DeepFake manip-
ulation. Using the optical flow function, it was possible to identify anomalies that may
be present in DeepFake videos by capturing the motion patterns between frames. The
CNN features were extracted using pre-trained CNN models, which selected high-level
representations from the input frames. These features could distinguish between real
content and staff that have been altered, and record intricate visual patterns.

The LSTM features were obtained from LSTM networks, which considered the se-
quential data between frames and captured the temporal dynamics of the video. These
characteristics were particularly helpful for spotting temporal irregularities that DeepFake
videos frequently contained. The authors” multi-branch architecture extracted discrimi-
native representations from each modality by processing each piece of visual information
separately. The features were then combined at several levels, enabling the network to take
advantage of the complementary data offered by each feature. The authors employed a
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sizable dataset that contained a wide variety of DeepFake movies to train MTFF-Net. To
optimize the network parameters and facilitate precise detection, they used proper loss
functions and optimization approaches. The experimental findings in this study showed
that when compared to single-feature-based approaches and other cutting-edge DeepFake
detection models, MTFF-Net performed better. The network can capture a thorough grasp
of the video content owing to the multi-feature fusion strategy, improving the detection
accuracy and robustness against various DeepFake manipulation approaches.

In 2022, Varma and Rattani [64] focused on the development of a gender-balanced
DeepFake dataset specifically designed for FIR (face-in-video) DeepFake detection. The key
contribution of this study is the introduction of the GBDF dataset, which aims to address
the gender bias commonly observed in existing DeepFake datasets. Gender bias refers to
an imbalance in the representation of males and females in the dataset, which can result
in a biased performance of DeepFake detection models. The GBDF dataset is designed to
have an equal number of male and female subjects and includes a diverse range of facial
expressions, lighting conditions, and camera angles. It may contain both genuine and
DeepFake videos, with DeepFakes generated using various manipulation techniques, such
as face swapping or facial reenactment.

This paper discussed the process of collecting and curating the GBDF dataset, ensuring
that it represents a comprehensive and balanced dataset for DeepFake detection research.
It may include details of the annotation process, data preprocessing steps, and any specific
challenges or considerations in building a gender-balanced DeepFake dataset. Furthermore,
this paper presents experimental evaluations using the GBDF dataset to demonstrate its
effectiveness in training and evaluating DeepFake detection models. This could involve
comparing the performance of models trained on GBDF with those trained on other existing
datasets, highlighting the benefits of gender balance in improving the detection accuracy
and robustness.

In the same year, Jia et al. [65] developed a face forgery detection method that utilized a
fusion of global and local features. Face forgery detection aims to identify instances in which
a person’s face has been manipulated or replaced with another person’s face. Global features
typically refer to holistic characteristics that capture the overall appearance and structure
of a person’s face. These features may include facial landmarks, color distributions, texture
patterns, and statistical information. Global features provide a high-level understanding of
the face and can help identify inconsistencies or anomalies introduced by facial forgery.

Local features focus on specific regions or patches within the face. These features
capture fine-grained details such as textures, edges, and local patterns. By analyzing local
features, this method can detect subtle discrepancies or artifacts that may be indicative
of face manipulation or forgery. The GLFF approach combines global and local features
to leverage complementary information. The fusion of global and local features aims to
enhance detection accuracy by capturing both the overall structure of the face and local
details. Finally, this study may include experimental evaluations to assess the performance
of the GLFF method. This could involve testing the approach on benchmark datasets
containing genuine and manipulated facial images or videos. The evaluation may measure
metrics such as accuracy, precision, recall, and F1 score to demonstrate the effectiveness of
the GLFF method compared with existing approaches.

In 2023, Yan et al. [66] proposed a method called Uncovering Common Features
(UCF), which focuses on identifying common visual patterns and features across different
DeepFake manipulation techniques, leading to more robust and generalizable detection
models. The UCF method aims to uncover the common visual patterns and features shared
by different types of DeepFake videos. By focusing on these shared features, the approach
aims to develop a more generalizable detection model that can effectively detect a wide
range of DeepFakes. The UCF method employs deep-learning architectures to extract
discriminative features from DeepFake videos. The features were designed to capture both
global and local characteristics and provide a comprehensive representation of the videos.
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Mcuba et al. [67] explored the impact of deep learning methods on the detection of
DeepFake audio, specifically in the context of digital investigations. The authors investi-
gated different deep-learning techniques and their effectiveness in identifying manipulated
and synthetic audio content. Their research focused on various deep-learning methods and
architectures employed for DeepFake audio detection. These may include Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), generative adversarial
networks (GANs), and other deep learning architectures that have been used for audio
analysis and classification tasks. The authors likely curated a dataset specifically designed
for DeepFake audio detection. This dataset may consist of both genuine and manipu-
lated audio samples, representing a range of DeepFake audio techniques such as speech
synthesis, voice conversion, and audio manipulation.

Evaluating the impact of various data augmentation techniques on the training of
DeepFake detection systems helps improve precision and robustness against manipulated
content. There are several techniques [68]:

e  Flipping
¢  Color space
¢  Cropping

*  Rotation

¢ Translation

¢ Noise injection

*  Color space transformations

*  Kernel filters

¢ Mixing images

*  Adversarial training

*  GAN-based data augmentation

*  Neural style transfer

*  Meta-learning data augmentation

Generative Al including DeepFake technology, is highly susceptible to adversarial
attacks due to its “neural-network-based” nature. Adversaries can exploit vulnerabilities
to generate deceptive content that may bypass detection. Enhanced adversarial training,
incorporating diverse adversarial examples during model training, and deploying de-
fensive mechanisms such as adversarial loss can improve resilience against intentional
manipulations [69].

6. Conclusions and Future Scope

The image and video feature sections on DFD elicited readers to become familiar with
all the novel efforts that have been made by researchers from late 2017 to date. Although the
work conducted on DeepFakes by the researchers or research groups has indeed progressed
a lot towards the refinement and betterment in the existing models, there is still a large
scope of further research for improving the detection pipeline in terms of precision, time
efficiency, cost efficiency, and ease of interaction with real-world applications, which can
curtail and act as fuel for this DeepFake detection challenge. DeepFake detection models
often struggle to generalize across diverse datasets, leading to reduced effectiveness in real-
world scenarios with variations in lighting conditions, facial expressions, and video quality.
Another main challenge is raised due to the “unseen class of some facial datasets” in the
testing dataset with respect to the training dataset. Augmenting training datasets with
diverse samples, employing transfer learning from pre-trained models, and integrating
attention mechanisms can enhance generalization capabilities [45]. Future research topics
can include:

e Investigating the role of kernel dimensions when extracting features through EM
algorithms.

¢  Evaluation of different DFD techniques using real and manipulated datasets, including
full-body DeepFakes.
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Efficient, reliable, cross-platform robust mobile applications to detect DeepFake im-
ages and videos. Employing platform-agnostic frameworks and optimizing model
architectures for mobile devices ensures accessibility and usability across various
platforms. Consideration for resource constraints on mobile devices is crucial.
Leveraging model pruning, quantization, and efficient training techniques can op-
timize precision, time efficiency, and cost efficiency, making DeepFake detection
pipelines more practical for real-world applications [70].

Integrating temporal logic specifications into detection models enhances interpretabil-
ity and helps capture temporal patterns indicative of DeepFake content, providing
more context-aware detection

Adopting big data architectures or in-memory distributed frameworks can improve
computation efficiency and facilitate real-time DeepFake detection. However, chal-
lenges include data management and system complexity. Frameworks like Apache
Spark, and Apache Kafka exemplify one of the real-time frameworks for DeepFake
detection. But still, it requires continuous maintenance of the queuing system and
persistence layer. On the flip side, SaaS-based services have flexibility to easily deploy
and monitor the DeepFake detection pipeline, but it does require high configuration
cloud instances, and ultimately increasing the cost and portability from one system
to another system is non-trivial. Hence, another research domain might be influ-
enced towards edge computing (decentralized computing) for impeccable and precise
real-time frameworks [71].

Implementing the fusion of different modalities by creating a correlation mechanism
among several results of DFD methods for better performance.

The incorporation of different data augmentations prior to training of the DFD system
can improve the precision in detecting whether the image or video is pristine or fake.
Focus on expanding the LFD-based technique to achieve a lower EER, in addition to
less time and computation of DFD.

Incorporating temporal logic specifications can increase the scope of interpretability.
Use of distributed computing or distributed lightweight virtual machines to support
real-time detection systems.

To extend the use of the unsupervised domain, the feature space from the source
dataset is adapted to the target dataset to make the model robust and label-independent.
Exploring lightweight model architectures, model compression techniques, and edge
computing solutions can mitigate resource constraints. Optimization of algorithms and
prioritizing essential features can reduce resource requirements without compromising
detection accuracy. Alternatively, knowledge distillation can be beneficial to alleviate
the hassle of high computation for deploying a DeepFake detection algorithm by
leveraging the teacher—student architecture.

Continual unsupervised learning can be used to manage the resource-intensive
nature of advanced ML or DL techniques, but it is prone to catastrophic effects.
Further research scope is to implement the “prompt” in the continual learning for
DeepFake detection.

In audio DeepFakes, there are further futuristic scopes to improve the improve the

accuracy of authenticating spoofed or genuine audio. Some main challenges analyzed
during the survey are listed below:

Researchers have suggested improving the generalization of the model against un-
known spoofing attacks by applying advanced fusion to build a “wide and deep”
network that concatenates the features of the last fully connected layers of each model
with a shared soft-max layer as the output layer to ameliorate the fusion result.
Researchers are focusing on Unit Selection Synthesis (USS)-based spoof detection,
which is a festival framework that compromises different modules, such as Text
Processing, Phonetic Analysis, Prosodic Analysis, and Speech Generation.
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e Investigating multi-modal fusion techniques, such as attention-based fusion and graph
neural networks, can improve the integration of information from different modalities
for more robust DeepFake detection.

¢  Extending unsupervised domain adaptation techniques enhances the robustness of
DeepFake detection models when applied to new and diverse datasets without labeled
samples. For adapting the unsupervised domain in the DeepFake, various researchers
have been working towards the Zero-Shot Learning (ZSL), Few-Shot Learning (FSL),
and attention-based Online Transfer Learning (OTL).

¢ Lastly, the researchers are willing to further investigate bank-of-classifier solutions to
detect spoofness attacks that also require different solutions or fusions.

As DeepFakes can have significant impacts on society overall, by establishing plat-
forms for collaboration between government agencies, industry stakeholders, and research
institutions fosters a collective effort to address the societal impact of DeepFakes effec-
tively, sharing insights and resources. Currently, the governments of several countries have
started concerning the negative impact of the DeepFake that creates a room with scope of
further improvement in terms of research.

In DeepFakes, there are a myriad of transformation approaches to explicitly endow
the perturbations for generating the falsified images or videos that seem realistic to hu-
mans. There are mainly three methods to generate and detect the DeepFake by leveraging
machine learning, deep learning, and rule-based learning to deep scan the extracted spatial
and temporal features as embeddings and analyze if any attacks exist in the image or
video. Moreover, the most common transformations for generating the DeepFakes are face
swapping, lip-syncing, expression alteration, hair alteration, false gestures, fake speech
synthesis, background replacement, and eye-gaze manipulation. Furthermore, falsifica-
tion might occur due to soft/unseen attacks, which are difficult to see and analyze with
lightweight detection models or normal investigation, and hard/seen attacks can be visible
by humans or lightweight detection models. If we accumulate all the transformations, it
would be a non-trivial problem to design robust and generic algorithms to detect all kinds
of perturbations in the image or video because some algorithms are specifically designed to
work only for the image dataset and others for both audio and visual. In other words, some
attack detection methods are designed and trained by considering some specific transfor-
mations, while the others are targeting to detect different transformations. Furthermore, the
performance of detection models might be degraded when the testing set is different from
the training set with significant diversity. Thus, it requires further research on improved
model generalization for designing robust and cross-dataset-adaptable models.

Zhang et al. [72] observed that several works have been performed on DeepFake
detection of attacks or any other adversarial noises towards images or videos that might
not be adaptable to the detection of audio transformations. In a nutshell, no detection
method is completely immune to adversarial attacks. Many researchers and practitioners
continuously work on improving detection methods and developing robust defenses
against adversarial attacks by using the concept of unsupervised learning as well.

Continuous monitoring of DeepFake generation techniques is crucial. Leveraging
unsupervised learning approaches, anomaly detection, and real-time model updates can
aid in adapting to emerging forms of synthetic media.

Towards the further scope of quantum computing, driven quantum algorithms such
as quantum neural networks (QNNs) have a great potential for tackling the issue of the
classification of bona fide or synthetic images, audio, and videos. However, the field
is still evolving, and practical quantum computers may face challenges and limitations.
Algorithms or models prepared for DeepFakes according to the quantum architecture
depend on the specific techniques employed for classifying the pure-set and false-set from
the multi-modal corpus. Consequently, classical computers may struggle to detect such
DeepFakes if quantum algorithms exploit the unique properties of quantum systems. As
the improvement of quantum computing is ongoing, continuous research is needed to
understand its full implications in Al, especially vision intelligence. It would be another hot
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topic of further research for designing compatible and adaptable algorithms for DeepFakes
that will work for both classical and quantum architectures or systems.
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