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Abstract: Mobile edge computing (MEC) integration with 5G/6G technologies is an essential direction
in mobile communications and computing. However, it is crucial to be aware of the potential privacy
implications of task offloading in MEC scenarios, specifically the leakage of user location information.
To address this issue, this paper proposes a location-privacy-preserved task offloading (LPTO) scheme
based on safe reinforcement learning to balance computational cost and privacy protection. This
scheme uses the differential privacy technique to perturb the user’s actual location to achieve location
privacy protection. We model the privacy-preserving location perturbation problem as a Markov
decision process (MDP), and we develop a safe deep Q-network (DQN)-based LPTO (SDLPTO)
scheme to select the offloading policy and location perturbation policy dynamically. This approach
effectively mitigates the selection of high-risk state–action pairs by conducting a risk assessment
for each state–action pair. Simulation results show that the proposed SDLPTO scheme has a lower
computational cost and location privacy leakage than the benchmarks. These results highlight
the significance of our approach in protecting user location privacy while achieving improved
performance in MEC environments.

Keywords: mobile edge computing; location privacy; differential privacy; location perturbation; safe
reinforcement learning

1. Introduction

With the continuous development of mobile communication technology, mobile edge
computing (MEC) has emerged as a new computing paradigm and has gained significant
attention and application. MEC has been successfully applied in various major scenarios
such as autonomous driving, smart cities, smart homes, virtual reality, and facial recog-
nition [1,2]. However, during edge computing applications, the leakage of user location
privacy poses a potentially significant risk [3].

Traditional task offloading strategies typically focus on reducing latency and network
resource consumption, but they often overlook the protection of user location privacy. For
instance, attackers can infer user location information by monitoring the status of edge
servers or wireless channels [4–6]. Therefore, when users offload their computation tasks
to edge servers in the context of MEC, it is important to minimize latency and network
resource consumption and ensure user privacy protection.

In order to protect user location privacy while meeting the performance requirements
of MEC applications, such as response time and energy consumption, it is necessary to
take corresponding technical measures. These measures include location perturbation,
anonymization, and differential privacy [7–9]. However, current research on location
privacy protection in MEC applications has the following major shortcomings:
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1. The system lacks universality and flexibility and is only suitable for static scenarios or
single-application demands [10,11], making it difficult to adapt to the ever-changing
MEC scenarios.

2. The system falls short of providing adequate security guarantees, leaving it vulnerable
to internal and third-party attacks that may compromise the accuracy of location
data [12,13]. The lack of a trusted identity verification mechanism in the authentication
system increases the risk of user location information leakage.

3. The system lacks a dynamic balance between the computational cost of MEC systems
and users’ privacy requirements. Notably, the protection of user location privacy can
lead to an increase in the computational burden on MEC servers [14].

To address the aforementioned shortcomings, enhancing the comprehensiveness of
privacy protection mechanisms in MEC applications is necessary. This includes establishing
secure communication channels, employing secure computing techniques, and taking mea-
sures to prevent untrusted third-party attackers from leaking user location privacy [15,16].
In MEC applications, the distance and wireless channel conditions between users and edge
servers are closely related; the closer the distance, the better the channel conditions, and the
farther the distance, the worse the channel conditions [17]. If the edge server is untrusted
or compromised, attackers can infer wireless channel information by monitoring users’ task
offloading rate and deducing their location information. In the context of MEC systems,
location perturbation is crucial in preserving user privacy by adding noise or modifying
sensitive location information. Differential-privacy-based location perturbation techniques
have been studied to protect users’ location privacy [18]. Thus, this paper investigates
location privacy protection in MEC systems based on differential privacy.

This paper aims to investigate the issue of location privacy protection in MEC appli-
cations. In addition, different tasks have varying sensitivities to energy consumption and
computation delays, resulting in different energy consumption and latency requirements.
Additionally, it is significant to consider the dynamic trade-off between computation cost
and user privacy requirements. By tackling the challenges associated with location privacy
protection and enhancing MEC performance, we can attain sustainable development of
location services and optimize MEC applications. To address the trade-off between privacy
protection level and energy consumption/latency performance in MEC, we can design an
objective function that considers both location privacy and computation cost, aiming to
maximize the overall performance of the MEC system.

Traditional research on balancing privacy protection, energy consumption, and latency
has often relied on rule-based approaches, which typically require predefined rules and
models [7]. These approaches neglect the dynamic network environment and fail to adapt
to complex and changing protection requirements. In contrast, reinforcement learning
(RL) stands out by learning through iterative interaction with the environment, facilitating
adjustments to environmental changes and uncertainties. Unlike traditional decision-
making approaches that often require manual strategy adjustments, RL achieves adaptive
strategy refinement through trial-and-error learning. Moreover, deep RL (DRL) combines
the strengths of deep learning and RL, employing neural networks to glean insights from
the environment and optimize decision-making strategies. As a result, the integration of
DRL enhances decision effectiveness, providing a more robust framework for addressing
complicated challenges in the dynamic environment. Notably, the inclusion of safe learning
mechanisms empowers the learning agent to avoid the selection of high-risk state–action
pairs [19]. Thus, we develop a safe DRL algorithm to solve the designed problem.

This paper proposes a safe deep Q-network (DQN)-based location-privacy-preserved
task offloading (SDLPTO) scheme to dynamically balance computational cost and privacy
protection. This scheme utilizes differential privacy techniques to protect user location
privacy while considering the trade-off between energy consumption, latency, and privacy
protection. Simulation results demonstrate the performance advantage of our proposed
scheme compared to benchmarks. The main innovations of this paper can be summarized
as follows:
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1. We propose a location-privacy-aware task offloading framework that utilizes differen-
tial privacy technology to design a perturbed distance probability density function,
making it difficult for attackers to infer the user’s actual location from a fake one.

2. We model the privacy-preserving location perturbation problem as a Markov deci-
sion process (MDP). We use the DRL method to adaptively select location-privacy-
preserved task offloading (LPTO) policies to avoid location privacy leakage while
ensuring computational performance in a dynamic MEC system. This solution can
jointly consider location privacy and computational offloading performance, enabling
a balance between them.

3. We develop an SDLPTO scheme to find the optimal location-privacy-preserved task
offloading policy. We utilize the DQN algorithm to capture the system state and accel-
erate policy selection in a dynamic environment. Meanwhile, we implement a safe
exploration algorithm for location perturbation and offloading decisions, mitigating
potential losses from high-risk state–action pairs.

4. Simulation results demonstrate that our proposed SDLPTO better balances location
privacy and offloading costs. This scheme consistently outperforms benchmark
schemes across various task sizes and perturbation distance ranges, demonstrating its
advantage in preserving location privacy while minimizing offloading overhead.

The subsequent parts of the paper are organized as follows: Section 2 discusses related
work. Section 3 presents the proposed system model, location perturbation model, and
problem formulation. Section 4 introduces a safe DQN-based location-privacy-preserved
task offloading scheme. Section 5 gives simulation results and performance analysis, and
Section 6 concludes the paper.

2. Related Work

As a distributed computing model that pushes data processing and storage to the
network edge, edge computing has been expanding its application scope, but privacy
issues have become increasingly prominent. Data encryption, K-anonymity, blockchain,
and location perturbation techniques [7,20–22] have been studied in the context of privacy
protection in MEC. More specifically, location perturbation is a technique employed to
protect privacy by introducing modifications or perturbations to the original location data.
Various technologies, such as differential privacy, path cloaking, temporal clustering, and
location truncation, can be utilized for location perturbation [3,23,24].

In recent years, many works have utilized differential-privacy-based location per-
turbation techniques to effectively protect users’ location privacy [14,18]. Differential
privacy technology has superior privacy protection effects and can prevent attackers from
re-identifying data based on known background knowledge [18,25]. In [18], Wang et al.
propose a location-privacy-aware task offloading framework (LPA-Offload) that protects
user location privacy by using the location perturbation mechanism based on differential
privacy. The scheme formulates the optimal offloading strategy based on an iterative
method and then calculates the computation cost and privacy leakage. In [25], Miao et al.
propose an MEPA privacy-aware framework for MEC that uses differential privacy technol-
ogy to protect location privacy in the dataset domain. A privacy-preserving computation
offloading scheme based on the whale optimization algorithm is proposed in [7]. This
scheme uses differential privacy technology to perturb users’ locations and makes offload-
ing decisions based on the perturbed distance. However, this scheme faces challenges in
adapting to dynamic environments. It fails to derive an effective location perturbation
strategy despite proposing an algorithm to address the convex optimization problem of
computation offloading under a given privacy budget. The previous studies mentioned
do not consider preserving privacy while optimizing for delay and energy consumption
in edge computing. Alternatively, some studies consider privacy preservation but fail
to optimize these factors simultaneously. Furthermore, it is important to note that the
aforementioned methods are designed for static scenarios and cannot effectively address
optimization challenges in dynamic environments.
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RL technology has been widely used in dynamic MEC systems [26–28], and one of its
most important applications is to protect user privacy. The algorithm has the characteristic
of adaptive learning and can automatically adjust the learning strategy according to changes
in data and the environment. It also uses distributed storage technology to store user data
on multiple nodes, thereby preventing user data from being stolen or tampered with by
attackers [29]. In [17], Min et al. propose a scheme that can protect both user location privacy
and user pattern privacy and study a privacy-aware offloading scheme based on RL, which
can reduce computation latency and energy consumption and improve the privacy level
of medical IoT devices. In [29], Liu et al. propose a privacy-preserving distributed deep
deterministic policy gradient (P2D3PG) algorithm that solves the problem of maximizing
the distributed edge caching (EC) hit rate under privacy protection constraints in a wireless
communication system with MEC. In [14], Zhang et al. studied differential privacy and RL
task transfer strategy, established an MEC system model, and designed a four-layer policy
network as an RL agent, but lacked a balance between privacy and computation offloading
performance. To solve the above problems, our work proposes an RL-based algorithm that
achieves a balance between privacy protection and computation offloading performance
by combining differential privacy and RL technology.

3. System Model and Problem Formulation

In this section, we present the system model for computation offloading in MEC, the
location perturbation model, followed by the specific formulation of the design objective
function.

3.1. System Model

We assume that the MEC system consists of a MEC server and a user with mobile
devices, similar to the work in [17,18]. The user’s offloading strategy takes into account the
distance between the user and the MEC server, as well as the wireless channel conditions.
In scenarios where the distance is short, and the channel quality is good, users are more
likely to prefer a high offloading rate, offloading more tasks to the edge server to improve
performance. Conversely, in scenarios where the distance is long, or the channel quality
is poor, users may prefer a lower offloading rate, executing more tasks locally to reduce
computational costs. In order to protect the user’s location privacy, we perturb the user’s
real location into a fake location, and we perform task offloading through the fake location.
The user’s location perturbation and the offloading process between the user and the MEC
server are shown in Figure 1.

Figure 1. Illustration of location-privacy-preserved task offloading in MEC.
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3.2. Offloading Model

At each time slot k, we assume that the user needs to execute a total of v(k) (in bits)
computational tasks. The offloading ratio, denoted as χ(k) ∈ [0, 1], represents the proportion
of total tasks that the user chooses to offload to the MEC server. Accordingly, the user has
two offloading strategies: χ(k)v(k) bit computation tasks are offloaded to the MEC server,
while the remaining

(
1− χ(k)

)
v(k) tasks are processed locally [30].

Local computing model. Let fl and ϕ denote the CPU frequency and the number of
CPU cycles for the mobile device to process the task, respectively. Accordingly, the energy
consumption E(k)

l [30] and computational delay T(k)
l [31] for local computation on a mobile

device are given by

E(k)
l = κ f 2

l (1− χ(k))v(k)ϕ (1)

T(k)
l =

(
1− χ(k)

)
v(k)ϕ

fl
(2)

where κ represents the effective energy coefficient associated with the chip architecture.
Edge computing model. When the channel state is better, the mobile device sends

tasks to the edge server through the channel and offloads them to the edge server, which
can reduce energy consumption and latency.

There are three main processes for task offloading to the MEC server: user task upload,
MEC server computation, and computation result return. Due to the small number of tasks
to be returned, the returned results are usually much smaller than the size of the input data,
so for this paper, we ignore the communication delay of the computed results when they
are returned. The data transmission rate R(k) for offloading tasks from the user to the MEC
server can be established as

R(k) = B0 log2

(
1 +

h(k)p
N0B0

)
(3)

where B0 denotes the communication bandwidth, h(k) denotes the channel gain between
the user and the MEC server, N0 is the noise power, and p is the transmission power when
the user offloads the task. And h(k) = (d(k))−ϑ, where ϑ is the path loss index, and d is the
distance from the user to the server. According to Equation (3), it can be concluded that the
distance between the user and the server affects the state of the wireless communication
channel, and the further the distance, the worse the state of the wireless communication,
and the distance between the user and the edge server is related to the condition of R(k).

The computational latency of the edge server consists of the data transfer time and
the execution time of the task on the edge server. Considering that the output data size is
usually much smaller than the input data, we can ignore the time overhead of transferring
data from the edge server to the mobile user. Therefore, the computational delay T(k)

s and
energy consumption E(k)

s for offloading are given by

T(k)
s =

χ(k)v(k)

R(k)
+

χ(k)v(k)ϕ
fs

(4)

E(k)
s =

pχ(k)v(k)

R(k)
(5)

where fs denotes the CPU-cycle frequency of the MEC server.
To sum up, at time slot k, the total execution delay T(k) and energy consumption E(k)

are given by
T(k) = max

{
T(k)

l , T(k)
s

}
(6)
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E(k) = E(k)
l + E(k)

s (7)

3.3. Location Perturbation Model

Due to the limited coverage range of the edge servers within a local area, applying
traditional differential privacy techniques to the MEC servers for task offloading faces
challenges [18]. Therefore, a novel distance perturbation probability density function is
used to protect the user’s location privacy. Users can use this function to perturb the
distance between themselves and the edge server, ensuring the security of their location
information and preventing any potential leakage. Assume that the maximum coverage
radius of the edge server is dmax, the upper bound of the user perturbation distance range
is d1, and the lower bound is d2, ∆d = d2 − d1, with d1 < d2 and d1, d2 ∈ [0, dmax]. The
probability density function P(d∗ | d) for perturbing the true distance d to fake distance d∗

is set as follows:

P(d∗ | d) =

 ε
2∆d e−

ε|d∗−d|
∆d + e

ε(d1−d)
∆d

2∆d + e−
ε(d2−d)

∆d
2∆d , if d∗ ∈ [d1, d2]

0 , otherwise
(8)

We apply differential privacy techniques to introduce randomness to neighboring
datasets, thereby making it challenging for attackers to deduce the user’s actual location
from the fake positions. The process of utilizing the perturbation probability function is
depicted in Figure 2.

Figure 2. Location privacy protection process based on differential privacy.

Kullback–Leibler divergence (KL divergence) [32] can also be referred to as relative
entropy. It is a method used to quantify the degree of fit between the probability distribution
of mechanisms P(d∗ | d) and privacy-preserving mechanisms without privacy protection
Q(d∗ | d), where d is the true distance and d∗ is the perturbed distance between the user
and the edge server. The KL divergence is defined as

KLD(P∥Q) =
∫ d2

d1

Q(d∗ | d) log
Q(d∗ | d)
P(d∗ | d)

dd∗ (9)

According to the definition of KL divergence, a smaller value of KLD(P||Q) indicates
a higher degree of fit between P(d∗ | d) and Q(d∗ | d), resulting in a higher probability
of user location information leakage. Conversely, as the value of KLD(P||Q) increases, it
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indicates a better fit between P(d∗ | d) and Q(d∗ | d), resulting in a lower probability of
user location information leakage. Therefore, the degree of privacy leakage PLd1,d2 can be
defined as

PLd1,d2 = −
∫ d2

d1

Q(d∗ | d) log
Q(d∗ | d)
P(d∗ | d)

dd∗ (10)

where Q(d∗ | d) denotes the probability distribution of offloading the task at the true dis-
tance between the user and the server, and P(d∗ | d) denotes the probability distribution of
perturbing the true distance to a fake distance by adding a differential privacy mechanism.

3.4. The Proof of Differential Privacy Guarantee

Given the true distance d between the user and the server and the neighborhood d
′
,

the probability of d being perturbed to d∗ is Pr(d∗|d). The probability of d
′

being perturbed
to d∗ is Pr(d∗|d

′
). The ratio of Pr(d∗|d) to Pr(d∗|d

′
) satisfies the definition of ε-differential

privacy. The detailed proof is given as follows:

Pr(d∗ | d)
Pr(d∗ | d′)

=
ϵ

2∆d e−
ϵ|d∗−d|

∆d + e
ϵ(d1−d)

∆d +e−
ϵ(d2−d)

∆d
2∆d

ϵ
2∆d e−

ϵ|d∗−d′ |
∆d + e

ε(d1−d′)
∆d +e−

ε(d2−d′)
∆d

2∆d

=
ε

2∆d e−
ε|d∗−d|

∆d + εe
ε(d1−d)

∆d
2∆d + εe−

ε(d2−d)
∆d

2∆d

ε
2∆d e−

ε|d∗−d′ |
∆d + εeε(d1−d′)

2∆d + εe−ε(d2−d′)
2∆d

≤ max
(

e
ε

∆d |d
∗−d′ |−|d∗−d|, e

ε
∆d |d1−d|−|d1−d′ |, e

ε
∆d |d2−d′ |−|d2−d|

)
≤ max(eε, eε, eε)

= eε

(11)

3.5. Problem Formulation

The system’s total cost to process the user terminal device task is C(k). In the context of
mobile edge computing, energy consumption and latency are the two most commonly used
metrics to measure the performance of offloading schemes. Considering the computational
cost required during task offloading comprehensively, the total computational cost consists
of computational latency and energy consumption, which is expressed as

C(k) = λ · T(k) + (1− λ) · E(k) (12)

where λ ∈ (0, 1) is defined as the weight of balancing energy consumption and computa-
tional latency in task offloading.

Users can automatically select a suitable offload strategy based on factors such as the
current network congestion level and the distance between the user and the server and
develop an offloading scheme targeting the minimum computational cost based on the
state conditions of the wireless channel. The designed objective in this paper is to minimize
the weighted sum of the computational cost C(k) and the level of privacy leakage PL(k) (i.e.,
maximize the utility U(k)), which is given by

max U(k) = max −
[
(1−ω)C(k) + ωPL(k)

]
= max −(1−ω)

[
λ · T(k) + (1− λ) · E(k)

]
−ωPL(k)

(13)

where ω ∈ (0, 1) is an influencing factor reflecting the user’s concern about the level of
privacy leakage. The larger ω is, the more concerned users are about the degree of privacy
leakage. We adjust ω to weight the privacy and computational costs.
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4. Safe DQN-Based Location-Privacy-Preserved Task Offloading

It is typically difficult to employ traditional optimization techniques to obtain the
optimal location-privacy-preserved task offloading policy in a dynamic MEC system. In
this section, we will show how to utilize a safe DRL method to protect the user’s location
privacy while ensuring the performance of MEC. In detail, we first model the privacy-
preserving location perturbation problem as an MDP [33]. Then, we propose an SDLPTO
scheme in which risk assessment is performed on state–action pairs to avoid the selection
of high-risk disturbance policies, as shown in Figure 3.

The system’s next state is only related to the state and selected policy of the current
time slot. Hence, the MDP model can model the location-privacy-preserved task offloading
process. Therefore, we can use RL technology to dynamically explore the optimal location-
privacy-preserved task offloading policy [34]. We define the state, action, reward, and risk
level function of the SDLPTO scheme, which can be represented by a tuple (s, a, U, l).

• State: s(k) = [V(k),R(k−1)] is the system state at time slot k, s(k) ∈ S , where S is the
state set. Before optimizing the performance of the edge computing system and the
degree of privacy leakage, we set the number of tasks V(k) generated by user devices
and the wireless channel condition R(k) between the user and the edge server to the
environment state.

• Action: a(k) = [χ(k), ε(k)] is the system state at time slot k, a(k) ∈ A, where A is the
action set. We use the task offloading ratio χ(k) and privacy budget ε(k) as actions
which affect the computational offloading decision and privacy leakage situation, and
perturbation location d∗, respectively.

• Reward: Considering several factors and long-term optimization, we define the utility
as a weighted sum of energy consumption, latency, and privacy leakage level, which
can be expressed as U(k).

• Risk level function: The risk level of taking a(k) in state s(k) is l(s, a) at time slot k.

Current State 

Conv 1 Conv 2

Q-network

E-network

FC 1 FC 2

FC 3 FC 4

Sample minibatch from memory pool
Form the

  experienceStore into replay memory

Update paraments

System Environment

Location Attacker Channel

UtilityRisk level

+

CNN

+

Figure 3. Illustration of the safe DQN-based location-privacy-preserved task offloading (SDLPTO)
structure.

The risk level of the current state–action pair l(s, a) is evaluated by the user based
on the privacy leakage level p(s(k), a(k)), which is evaluated based on Equation (10). It
represents the extent of privacy leakage caused by the perturbation policy a(k) in state s(k).
We assume that there are L risk levels, with the highest risk level being Lh, representing the
most dangerous behavior state. Conversely, zero represents the lowest risk level. We define



Electronics 2024, 13, 89 9 of 16

{ξd}0≤d≤Lh as the safety performance indicators with L risk thresholds. Consequently,
similar to, the risk level l(s(k), a(k)) can be evaluated by

l(s(k), a(k)) =
Lh

∑
d=0

I(p(s(k), a(k)) > ξd) (14)

where I{·} is an indicator function.
Although the user evaluates the current state–action pair’s risk level by l(s(k), a), the

location-privacy-preserved task offloading policy may result in severe privacy leakage.
Therefore, the user also estimates the long-term risk level E(s(k), a) of the previous location-
privacy-preserved task offloading policies to estimate their impact on the future by tracing
back the prior B experienced state–action pairs, which are given by

E(s(k), a(k)) =
λ−1

∑
e=0

γel(s(k+e), a(k+e)) (15)

where γ is the decay factor.
The long-term expected reward (Q-value) of the user that adopts the perturbation

policy a(k) at state s(k) is updated as follows:

Q
(

s(k), a(k)
)
← (1− α)Q

(
s(k), a(k)

)
+ α

(
U(k) + δ max Q

(
s(k+1), a(k)

))
(16)

where α ∈ [0, 1] is the learning rate and δ ∈ (0, 1] is the discount factor.
The user takes account of both the Q-value and E-value while selecting the location-

privacy-preserved task offloading policy. The policy function π(s(k), a) is the probability
distribution of selecting the offloading policy and location perturbation policy a(k) in the
current state s(k), which is given by

π
(

s(k), a
)
=

exp
(

Q(s(k),a)
E(s(k),a)+1

)
I
(

l
(

s(k), a
)
= L

)
∑a′∈A exp

(
Q(s(k),a)

E(s(k),a′)+1

)
I
(
l
(
s(k), a′

)
= L

) (17)

At time slot k, based on the current state s(k), the user selects the location-privacy-
preserved task offloading policy π(s(k), a) according to Equation (17). Then, the user
executes the action a(k) = [χ(k), ε(k)] and obtains the system reward U(k) after evaluating the
energy consumption, latency, and privacy leakage level. Then, the system state transfers to
the next state s(k+1).

The experience feedback technique is an important part of the DQN algorithm. The
transitions Υ(k) = (s(k), a(k), U(k), s(k+1), l(s(k), a(k))) are stored in a storage pool B, and
then some experiences from B are randomly selected to train on a small batchM. The
system state s(k) is extended to the location-privacy-preserved task offloading experience
sequence denoted by φ(k), consisting of the state s(k) and the previous H action–state pairs,
i.e., φ(k) =[s(k−H), a(k−H), · · · , s(k−1), a(k−1), s(k)]. The experience sequence φ(k) is input to
the E-network and the Q-network to estimate E

(
s(k), a

)
and Q

(
s(k), a

)
, respectively. Then,

the policy a(k) is selected based on Equation (17).
The current state–action pair is fed into the E-network to obtain the network’s estimate

of the E-value. Then, the target E-value is calculated. The difference between the estimated
E-value and the target E-value is computed, and this difference is used to update the
weights E of the E-network. The loss function of the E-value L

(
E (k)

)
is defined as follows:

L
(
E (k)

)
= EΥ(k)∈M

( λ

∑
i=0

γil
(

s(k+i), a(k+i)
)
− E

(
s(k), a(k)

))2
 (18)
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During training, we use a stochastic gradient descent algorithm to update the weights
of the convolutional neural network (CNN). The CNN evaluates the strategy as a Q-value
so that the agent can choose the optimal action based on the current state. By minimizing
the mean square error between the estimated network’s output Q-value and the optimal
target Q-value, the agent can update the Q-network weights Q and improve its performance
in the environment, with the loss function L

(
Q(k)

)
given by

L
(
Q(k)

)
= EΥ(k)∈M

[(
U(k) + γ max Q

(
s(k+1), a

)
−Q

(
s(k), a(k)

))2
]

(19)

The process is repeated H times to update Q(k) and E (k). We also adopt the transfer
learning technique to initialize the weights of the two deep CNNs to improve the training
efficiency, and the random exploration is avoided at the beginning of learning. For the
traditional DQN algorithm, the usual approach involves calculating the target Q-value and
selecting the action with the highest Q-value as the current policy choice. However, in the
SDLPTO algorithm, a risk assessment method is employed during action selection to avoid
choosing high-risk actions. The detailed safe DQN-based location-privacy-preserved task
offloading is described as Algorithm 1.

Algorithm 1 Safe DQN-based LPTO (SDLPTO)

1: Initialize the real distance, ω, γ, α, Q and E according to transfer learning
2: for k = 1, 2, 3, · · · do
3: Observe the system state s(k) = [V(k),R(k−1)]
4: Input the experience sequence φ(k) = [s(k−H), a(k−H), · · · , s(k−1), a(k−1), s(k)] to the

Q-network and E-network to estimate the Q-values and E-values
5: Select a(k) = [χ(k), ε(k)] based on the offloading policy and location perturbation

policy obtained from the network
6: Obtain d∗ based on (8) at current privacy budget ε(k)

7: Obtain R(k) based on (3) at current perturbation distance d∗

8: Calculate the average cost C(k) and privacy leakage PL(k) to obtain the utility U(k)

9: Update the weights of the CNNs for Q(k) and E (k) by applying minibatch updates
via (18) and (19)

10: end for

5. Simulation Setup and Results

In this section, we evaluate the performance advantage of our proposed scheme
through simulation experiments. In the context of task offloading in edge computing, we
assume that there is one user and one edge server. The coverage range of the MEC server
is 500 m [7]. The mobile user is randomly distributed within this area, and the path loss
exponent is assumed to be ϑ = 0.2. All the experiments are implemented by Python 3.8 and
on the same machine, with 16 GB RAM and an Intel(R) Core(TM) i5-12500 processor.

The learning rate of the agent is set to 0.004, the discount factor is set to 0.99, and
we train the agent for 4000 time slots. Each time slot has a duration of 1 s, similar to [35].
Our research team determined these parameters by conducting multiple experiments,
enabling us to fine-tune the parameters and achieve optimal simulation performance. The
rest of the parameter settings for the experiments are shown in Table 1. Adjusting the
system environment parameters might impact the numerical results; they do not alter our
approach’s overall trends and advantages.

When the privacy parameter ω set by the user is larger, the level of privacy leakage
is lower, and the user tends to use a larger privacy parameter to protect location privacy.
However, on the other hand, the distance between the user and the server may increase,
which means that the average cost incurred by the user will be higher.
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Table 1. Experimental parameters.

Parameter Definition Value

α Learning rate 0.004
δ Discount factor 0.99
H Batch size 32
B0 Channel bandwidth 10 MHz
N0 Background noise 30 dBm
fl User CPU frequency 1 GHz
fs Server CPU frequency 10 GHz
p Transmission power 20 mW
ϕ Calculate density 10 cycles/bit
v Task data size 50∼300 Kbit

As shown in Figure 4a, the computational cost also increases with the increase in the
parameter ω. When the value of ω is high, a larger perturbation range is required to perturb
the user’s location to protect location privacy. Because the perturbed position data may
have a certain deviation from the actual distance between the user and the server, which
might be greater than the real distance, more computation is needed when offloading tasks,
thus increasing the computational cost. As the parameter ω increases, the level of privacy
leakage of the user’s location will decrease. The parameter ω balances the trade-off between
the user’s privacy leakage level and the computational cost, reflecting the user’s concern
about location privacy protection. A higher ω value indicates that the user pays more
attention to location privacy protection and requires a larger disturbance range to disturb
the user’s location. When the disturbance area becomes larger, the distance difference
between the disturbed pseudo-location and the actual location may increase, making it
difficult for attackers to infer the user’s actual location, thus protecting the user’s location
privacy.
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Figure 4. The relationship between ω, d, and the cost and privacy leakage. (a) Evaluation of parameter
ω. (b) Evaluation of parameter d.

Figure 4b shows that as the parameter distance increases, the computational cost also
increases. As the distance gradually increases, the range of the perturbation region will
become larger, and the probability of the user’s perturbed location being further from the
true location will become larger to protect location privacy. When the distance between the
user and the server after perturbation becomes greater, the state of the wireless channel
may worsen, the user may perform more tasks locally, and the offloading strategy may
not be optimal, thus increasing the computational cost. Furthermore, it shows that as the
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parameter distance increases, the level of location privacy leakage of the user will decrease.
As the distance gradually increases, the range of the perturbation region will become larger.
The attacker needs to search within a broader area to determine the user’s real location,
which greatly increases the difficulty and probability for the attacker to find the user’s real
location. In this way, the user’s location privacy is protected.

Figures 5 and 6 illustrate the performance of the proposed mechanism versus time.
From the figure, it can be seen that our proposed SDLPTO mechanism outperforms the
No DP and DPRL mechanisms by reducing the privacy leakage level of SDLPTO by 18.2%
and 11.2% at time slot 2000, reducing the computational cost by 33.1% and 35.2%, and
improving the utility by 33% and 27.2%, respectively. This is because No DP does not
consider location privacy, and DPRL only implements location privacy protection and
offloading optimization separately; our proposed method jointly optimizes user privacy
and computational offloading cost, effectively improving the overall user benefit. Moreover,
compared with LPTO, SDLPTO reduces the privacy leakage level and computational cost
by 7.7% and 26.7%, respectively, and improves the benefits by 9.1%. This is because safe
exploration can avoid selecting operations with higher risk levels, thus reducing privacy
leakage and computational cost.
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Figure 5. Utility of the four schemes versus time.

Figure 7a,b illustrate the relationship between average computational cost, privacy
leakage, and task size for the four mechanisms. As the task volume increases from 50 Kbit
to 300 Kbit [35], SDLPTO exhibits a 6.0% increase in privacy leakage level and a 5.2-times in-
crease in computation cost. This indicates that as the task scale grows, more computational
resources are required to execute these tasks, leading to a significant rise in computa-
tion cost. Moreover, as the task volume increases, users tend to offload more tasks to
edge servers, which entails greater collection and processing of location information data,
potentially increasing the risk of location privacy leakage.
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Figure 6. Computational cost and privacy leakage level versus time. (a) Privacy leakage level.
(b) Computational cost.

In contrast, the No DP and DPRL mechanisms are only affected in terms of computa-
tional cost by increased task volume, while their privacy leakage level remains consistently
high. When the task volume reaches 300, SDLPTO demonstrates a reduction of 3.6% in pri-
vacy leakage level and a decrease of 11.2% in computational cost compared to LPTO. This
indicates that even with increased task volume, our proposed approach can still effectively
balance and optimize the trade-off between user privacy requirements and computational
cost, reducing the privacy leakage level and average computational cost.

Figure 7c,d illustrate the average performance of the four mechanisms at different
range sizes. As the perturbation range increases, there is a possibility of perturbing the
user’s real location to a more distant position. With a greater perturbation distance, ac-
cording to Equation (3), the signal undergoes attenuation, interference, and other effects
during transmission, resulting in degraded channel conditions and an increase in average
computational cost. For example, when the perturbation range increases from 50 to 250,
both LPTO and SDLPTO experience a respective increase of 39.8% and 40.5% in average
computational cost.

Simultaneously, as the range increases, the privacy leakage level of users decreases.
However, the No DP mechanism does not consider location privacy protection, leading to
consistently high privacy leakage levels. Despite the increase in range resulting in increased
costs, our proposed mechanism still outperforms the others. For example, at a perturbation
range of 250, SDLPTO achieves a 15.2% reduction in privacy leakage level and a 5.9%
decrease in average cost compared to DPRL.
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Figure 7. Evaluation of average cost and average privacy leakage. (a) Impact of task size on average
cost. (b) Impact of task size on privacy leakage. (c) Impact of range on average cost. (d) Impact of
range on privacy leakage.

6. Conclusions

We have investigated a safe-learning-based location-privacy-preserved task offloading
scheme, SDLPTO, which effectively addresses the challenge of balancing computational cost
and location privacy protection in dynamic MEC systems. This paper has the following
three main contributions. First, we proposed a location-privacy-aware task offloading
framework that uses differential privacy technology to protect users’ location privacy.
This framework can jointly consider the location privacy and computational offloading
performance, enabling a balance between them. Second, we applied a DRL technique
to dynamically optimize the offloading and perturbation policies in dynamic MEC by
trial and error, ensuring optimal offloading performance while preserving privacy. Third,
we implemented a safe exploration algorithm for location perturbation and offloading
decisions. This algorithm effectively mitigates potential losses associated with high-risk
state–action pairs, enhancing the overall privacy and offloading performance. Experiments
were conducted to demonstrate the advantage of the proposed scheme over the typical
no-privacy-preserving scheme and DPRL scheme, as it significantly enhances location
privacy while reducing computational costs.
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