
Citation: Zheng, Y.; Zhao, S.;

Zhang, X.; Xu, Y.; Peng, L. Large-Scale

Subspace Clustering Based on Purity

Kernel Tensor Learning. Electronics

2024, 13, 83. https://doi.org/

10.3390/electronics13010083

Academic Editor: Ivan Ganchev

Received: 16 November 2023

Revised: 19 December 2023

Accepted: 20 December 2023

Published: 23 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Large-Scale Subspace Clustering Based on Purity Kernel
Tensor Learning
Yilu Zheng 1,2,† , Shuai Zhao 3,*,† , Xiaoqian Zhang 3, Yinlong Xu 1,* and Lifan Peng 3

1 School of Computer Science and Technology, University of Science and Technology of China,
Hefei 230026, China; jimmy8711@swust.edu.cn

2 School of Computer Science and Technology, Southwest University of Science and Technology,
Mianyang 621010, China

3 School of Information Engineering, Southwest University of Science and Technology,
Mianyang 621010, China; zhangxiaoqian@swust.edu.cn (X.Z.); penglifan1226@163.com (L.P.)

* Correspondence: zhaoshuai980124@163.com (S.Z.); ylxu@ustc.edu.cn (Y.X.)
† These authors contributed equally to this work.

Abstract: In conventional subspace clustering methods, affinity matrix learning and spectral cluster-
ing algorithms are widely used for clustering tasks. However, these steps face issues, including high
time consumption and spatial complexity, making large-scale subspace clustering (LS2C) tasks chal-
lenging to execute effectively. To address these issues, we propose a large-scale subspace clustering
method based on pure kernel tensor learning (PKTLS2C). Specifically, we design a pure kernel tensor
learning (PKT) method to acquire as much data feature information as possible while ensuring model
robustness. Next, we extract a small sample dataset from the original data and use PKT to learn its
affinity matrix while simultaneously training a deep encoder. Finally, we apply the trained deep
encoder to the original large-scale dataset to quickly obtain its projection sparse coding representation
and perform clustering. Through extensive experiments on large-scale real datasets, we demonstrate
that the PKTLS2C method outperforms existing LS2C methods in clustering performance.

Keywords: cluster analysis; LS2C; sparse coding; kernel tensor

1. Introduction

Clustering is a method that groups data with similar features into the same category,
showing the dissimilarity between clusters and the similarity within clusters. It has been
widely used in the field of data analysis [1]. However, traditional methods (such as K-
means [2]) cannot inefficiently cluster high-dimensional data, because of the complex
structures [3]. Since the effective information in high-dimensional data usually resides
in low-dimensional structures, many subspace clustering methods have been proposed.
These subspace-based clustering methods have proven to be effective in mining feature
information from high-dimensional data and are widely applied in handling computer
vision tasks [4,5].

Classic subspace clustering methods typically rely on the self-representation (SE)
property of the data, i.e., any data point within the same subspace can be represented as a
linear combination of other distinct data points [6]. The goal is to find the minimal number
of base points, such that all other points are linear combinations of the base points. This can
be expressed by the following formula:

min
C

rank
[

1
2
∥X − XC∥2

F + λℜ(C)

]
s.t. C ⩾ 0, (1)

where X is the input data, λ > 0 is a regularization parameter, C is the SE coefficient matrix,
and ℜ(C) is the regularization term. In these methods, the affinity matrix is obtained
by applying different norms to the square of ℜ(C) and different algorithms in different

Electronics 2024, 13, 83. https://doi.org/10.3390/electronics13010083 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics13010083
https://doi.org/10.3390/electronics13010083
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0002-9408-6345
https://orcid.org/0000-0002-0051-5157
https://doi.org/10.3390/electronics13010083
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics13010083?type=check_update&version=2


Electronics 2024, 13, 83 2 of 20

scenarios. Finally, spectral clustering [7] is used to segment the affinity matrix and obtain
the final clustering results [8].

However, with the continuous increase of the data scale, complex negative factors
(including noise, data missing, etc.) and nonlinear structures in large-scale data seriously
degrade the accuracy and increase the computational complexity of clustering tasks. Conse-
quently, traditional subspace clustering methods (such as SSC [9], LRR [10], and LSR [11])
are not applicable to large-scale data clustering. This is because—when applying these
methods to large-scale data—they will inevitably encounter large-scale SE matrices and
encode models [12–14]. Meanwhile, spectral clustering algorithms also have high com-
putational complexity (O(n3), n is the number of samples) [15] and large memory usage.
Therefore, it is necessary to explore subspace clustering methods that are applicable to
large-scale data.

To overcome this problem, the current mainstream approaches involve extracting a
small set of data from the large-scale raw data based on the self-representation property, to
perform subspace clustering tasks and then extend them to the raw data [16]. Although this
method shows its success in performing LS2C tasks, there are still some issues that need to
be addressed: (1) performing a simple sparse representation or low-rank representation
of the sampled data leads to the limited acquisition of sample feature information, result-
ing in evident errors when predicting the feature information of the original large-scale
data [17,18] in many cases; (2) real data points are usually distributed in several nonlinear
subspaces, and the above methods cannot effectively handle the nonlinear structure of
the data; (3) only applying simple constraints (e.g., l2,1 norm, F-norm) to the noise in the
sample data will seriously degrade the clustering accuracy.

Toward the challenges mentioned above, we designed a novel LS2C method: pure
kernel tensor learning-based large-scale subspace clustering (abbr. PKTLS2C). Mainly three
techniques are proposed in PKTLS2C. Firstly, PKTLS2C extracts a small set of samples from
the original dataset, uses kernel tricks to map the sample dataset to a high-dimensional
Hilbert space, and stacks the resulting kernel matrices to form a third-order tensor. This
leads to the effective handling of nonlinear structures while acquiring more feature infor-
mation, which is beneficial for reducing errors in predicting the feature information of the
original data. Secondly, PKTLS2C separates the noise information from the kernel tensor,
retains the main information, updates the self-representation matrix of the sample dataset,
and applies l2,1 norm constraints to the self-representation matrix. So, PKTLS2C ensures
the sparse low-rank properties while avoiding the influence of specific data errors [19].
This denoising method can effectively enhance the robustness of the model and improve
clustering performance. Finally, a deep autoencoder is designed for PKTLS2C, which is
trained with the learned self-representation matrix of the sample dataset. When the training
was complete, we applied the autoencoder to the original large-scale dataset to project and
obtain its feature representation, thereby achieving the goal of reducing computational
complexity. Figure 1 shows the main structure of PKTLS2C. The main contributions of this
paper can be summarized as follows:

• We propose a secondary denoising method to process the sample dataset, providing
cleaner training samples for the deep encoder to predict the feature information of the
original dataset.

• By ingeniously integrating multi-kernel learning and tensor learning, and applying it
to large-scale dataset subspace clustering tasks, we can delve more deeply into sample
feature information and effectively handle the nonlinear structures. This approach sig-
nificantly reduces the prediction error of feature information for large-scale datasets.

• We designed a learnable deep encoder with multiple hidden layers that can effec-
tively manage the nonlinear structures in large-scale datasets and obtain the feature
representation of these datasets by projection.

• We integrate ADMM and GD into PKTLS2C and design an optimization method. We
validate the advantages of PKTLS2C to the existing approaches via experiments with
datasets consisting of millions of samples.



Electronics 2024, 13, 83 3 of 20

Figure 1. Schematic diagram of the PKTLS2C structure.

2. Related Work

In this section, we mainly review the existing approaches to large-scale spectral
clustering, scalable subspace clustering, and autoencoder-based subspace clustering, and
summarize the strategies dealing with the LS2C problem.

2.1. Large-Scale Spectral Clustering

Spectral clustering involves calculating the eigenvectors of the affinity matrix gen-
erated by the model and then using K-means to cluster these eigenvectors [7]. However,
computing the feature vector involves high computational complexity and large memory
usage [20]. Therefore, it is very difficult to apply spectral clustering methods to perform
subspace clustering tasks on large-scale datasets [21]. In order to extend the spectral clus-
tering method to large-scale datasets, Nyström [22] uses approximate eigenvectors of the
affinity matrix to calculate the required eigenvalues in multiple subsystems at the same
time [21], speeding up the computation process and meeting the requirement of large
memory usage. Other approaches [1,23,24] sample a small subset of data points from
the original dataset as landmarks, construct the affinity matrix from this sampled dataset,
use spectral clustering to determine the feature space of the sampled dataset, and finally
employ K-means or other methods to categorize the remaining data into their respective
subspaces. However, due to the complex structures of the datasets, the constructed affinity
matrix cannot effectively divide the subspace, degrading the clustering performance. In
contrast, PKTLS2C can effectively deal with the complex structure of datasets and improve
the accuracy of clustering.

2.2. Scalable Subspace Clustering

Scalable subspace clustering is a commonly used method to handle LS2C. It involves
sampling a small set of data points and initially performing clustering on this sample
dataset to reduce computational complexity.

SSSC [1] firstly samples from a large-scale dataset, then classifies the sample dataset,
and finally uses the sparse-representation-based classifier (SRC) [25] to assign the out-of-
sample data to the divided subspace. Similarly, the sampling–clustering–classification
method [14] also processes large-scale datasets by first clustering the sample dataset and



Electronics 2024, 13, 83 4 of 20

then using a linear classifier. Unfortunately, these two methods still require considerable
time to process large-scale datasets and often result in poor clustering accuracy, as the
simple classifier cannot effectively identify complex out-of-sample data. You et al. proposed
ENSC [26], which reduces computation time by finding the optimal coefficients between
sample data and out-of-sample data, processing only the sample dataset. You et al. also
proposed ESC [27] using a distance-first search algorithm to find a representative subset to
represent all data points. Kang et al. proposed SGL [28] using the idea of anchors to sample
data as landmarks and employing K-means to partition all the data points into the subspace
determined by the sample dataset. These methods select a small set of sample data to
represent all the data points based on the SE property of the data to reduce computational
costs. However, they cannot guarantee clustering accuracy due to the complex structure of
the out-of-sample data points. Compared to these methods, PKTLS2C can quickly calculate
the representation matrix of the out-of-sample data and ensure its robustness.

2.3. Autoencoder-Based Subspace Clustering

PKTLS2C uses a learned deep encoder to calculate the sparse representation of all
data points, thereby reducing computational complexity. An autoencoder is commonly
used by the existing methods. However, it still faces some challenges. For example, an
autoencoder (AE) [29] or a sparse autoencoder (SAE) [30] just encodes the data directly and
cannot deal with the noise in the dataset. Although the denoising autoencoder (DAE) [31]
can output robust coded representation, it does not have the ability to directly deal with the
noise existing in the dataset. The RPCA encoder (RPCAec) [32] outputs a robust encoded
representation by separating the noise from the dataset, but it only encodes for a single
subspace in each round of execution. In contrast, PKTLS2C ensures the purity of the input
dataset and the robustness of the model by means of secondary denoising. So, PKTLS2C
can output the coded representations of multiple subspaces at the same time.

3. PKTLS2C Model

In this section, we first explain the notations used in this paper, then introduce how to
train the autoencoder and process the sample dataset. Finally, we analyze the optimization
scheme and the computational complexity of PKTLS2C in detail.

3.1. Notations

To standardize the use of notations, a tensor is denoted by a calligraphic capital letter,
e.g., P , and a matrix is denoted by a bold capital letter, e.g., C. Table 1 summarizes the
meaning of the symbols used in this paper.

Table 1. Meaning of notations used in the text.

Notations Meaning

Y Original dataset
X Sampled dataset
ω Parameters learned by the deep encoder
M Constructed kernel tensor
P The pure kernel tensor
E The damaged kernel tensor

K(i) The i-th kernel Gram matrix
C Sampled data self-representation matrix

f (·, ω) Deep encoder
Tr(·) The trace operator of a matrix

3.2. Design of the Deep Self-Encoder

To efficiently solve the complex computational problem in the LS2C process, learned
coordinate descent (LCoD) [33] can learn a sparse-coded representation of the original
data by training a feed-forward neural network. Based on this idea, we designed a non-



Electronics 2024, 13, 83 5 of 20

iterative deep encoder to learn the low-rank sparse representation of the original data
for reducing the high computational complexity. It can be represented by the following
mathematical form:

C = f (X, ω), s.t. X = XC, (2)

where X = [X1, X2, . . . , Xm] is the input data, C is the representation coefficient, and ω
is the parameter learned by the deep encoder. During the process of training the deep
encoder, we use gradient descent (GD) [34] to minimize the loss function L(ω), which can
be defined as

L(ω) =
1
m

m

∑
i=1

L(Xi, ω). (3)

From Equation (3), we cannot compute the expectation error directly, because we
do not know which Xi in X is a noise point. Fortunately, we can take advantage of the
SE property of the data and use X as an SE dictionary, which can solve the problem of
generating a trivial solution during the encoding of the predicted computational data. So,
we can consider the squared error function and obtain the following form:

L(ω, Xi) =
1
2
∥Ci − f (Xi, ω)∥2, s.t. X = XC (4)

for 1 ≤ i ≤ m, where Ci is the i-th column of C.
To prevent excessive weight during the training process, we introduce the F-norm

here to constrain it and rewrite it to obtain our final predictive coding model, as follows:

min
C,ω

∥C − f (X, ω)∥2
F s.t. X = XC. (5)

In this paper, we use a learned deep encoder structure of three layers, as follows:

f (X, ω) = g(W3g(W2g(W1X))), (6)

where g is the activation function, and we choose the ReLU function (i.e., ReLU(x) =
max(0, x)) as the activation function; W1, W2, and W3 are the trainable matrices in the first,
second, and third layer, respectively; and ω = {W1, W2, W3} is the set of parameters to be
learned in the deep encoder.

Remark 1. Existing studies have demonstrated that, for deep encoders with more than three layers
of structure, any continuous activation function can achieve a low-rank sparse representation of
uniformly approximate data with enough hidden units [35,36].

3.3. PKTLS2C Model

Given a large-scale dataset Y = [Y1, Y2, . . . , Yn], we suppose that the number of clusters
in Y is known ahead. Based on the idea of scalable subspace clustering, we use the randperm
function to randomly select the number of points, and PKTLS2C randomly selects m points
and forms a small dataset X = [X1, X2, . . . , Xm].

We use the multi-kernel learning (MKL) [37,38] technique to efficiently find the internal
nonlinear structure in the sample dataset X. MKL maps the original data points into a high-
dimensional Hilbert space by means of multiple pre-built basis kernel functions to obtain
the linear structure. Through this route, the computational complexity of the similarity
among data points can be efficiently reduced. Therefore, based on Equation (1), the MKL
subspace clustering model can be represented as follows:



Electronics 2024, 13, 83 6 of 20

min
C

rank
[

1
2
∥ϕ(X)− ϕ(X)C∥2

F + λℜ(C)

]
=min

C

[
1
2

Tr
((

I − 2C + CTC
)

K
)
+ rank(λℜ(C))

]
s.t. C ⩾ 0, C = CT , (7)

where ϕ(·) is the basic kernel function, K = ϕ(X)⊤ϕ(X) is the kernel Gram matrix obtained
by the basis kernel function. In the following, we assume that the order of the kernel Gram
matrix K is n1 × n2.

Because a single kernel usually cannot accurately capture the complex structure of a
high-dimensional large-scale dataset, we use multiple basis kernel functions, e.g., n3 basis
kernel functions. We correspondingly obtain n3 kernel Gram matrices and form a kernel
pool {Ki}n3

i=1. We use

min
C

[
1
2

n3

∑
i=1

Tr
[(

I − 2C + CCT
)

Ki

]
+ rank(λℜ(C))

]
s.t. C ⩾ 0, C = CT , (8)

to replace Equation (7) as the new MKL subspace clustering model.
To obtain the higher-order correlations between different kernel matrices and to mine

more complementary features and common features among multiple kernels, we stack the
kernel pool as a third-order tensor M ∈ Rn1×n2×n3 , and the block vectorization is defined
as bvec(M) = [K1, K2, . . . , Kn3 ].

Some definitions related to the third-order tensor are presented in the following.

Definition 1. The t-product between two third-order tensors M and Q with matched dimensions
is defined as

M∗Q = fold(circ(M) · bvec(Q)), (9)

where circ(M) ∈ Rn1n3×n2n3 is the block circulant matrix of tensor M, bvec(Q) ∈ Rn1n3×n2 is
the block vectorizing of tensor Q, and fold(bvec(A)) = A is defined as the inverse operator of bvec.

Definition 2. The tensor singular value decomposition (t-SVD) with respect to a tensor
M ∈ Rn1×n2×n3 can be expressed as follows:

M = U ∗ S ∗ VT , (10)

where U ∈ Rn1×n1×n3 , S ∈ Rn1×n2×n3 ,V ∈ Rn2×n2×n3 , and S is a f -diagonal tensor, U and V
are two orthogonal tensors.

Definition 3. The tensor nuclear norm of M can be expressed as

∥M∥⊛ =
r

∑
i=1

S(i, i, 1), (11)

where S is from Equation (10).

Due to errors in the sample dataset X, the tensor M we constructed may be impaired.
In order to alleviate the negative impact of the impaired information on M to the sub-
sequent clustering task, we attempt to separate the impaired information. Suppose that
M = P + E , where P ∈ Rn1×n2×n3 is the purity kernel tensor and E ∈ Rn1×n2×n3 is the
noise tensor. As usual, we use the tensor nuclear norm (TNN) to impose a constraint on P ,
so that it has the low-rank property. We use the F-norm constraint on the noise tensor E in
order to effectively avoid the influence of noise. The specific expressions are



Electronics 2024, 13, 83 7 of 20

min
P ,E

∥P∥⊛ + ∥E∥2
F s.t. M = P + E . (12)

Here, we mainly focus on the Gaussian noise in the tensor M. We choose the F-norm
for the noise constraint, which can further simplify the calculation.

In MKL, to ensure that the optimal SE matrix is learned, we update C using the
purity kernel tensor P . According to Equation (11), we take the sum of all positive
slices of P ∈ Rn1×n2×n3 , and average it to obtain the optimal consensus kernel matrix
P ∈ Rn1×n2 , i.e.,

P =
1
n3

n3

∑
i=1

P(:, :, i). (13)

Thus, we can process the sample dataset X as

min
C,P ,E ,P

1
2

Tr
[(

I − 2C + CCT
)

P
]
+ rank(λ1ℜ(C)) + λ2∥P∥⊛ + λ3∥E∥2

F

s.t. C ≥ 0, C = CT , M = P + E . (14)

We impose an l2,1 norm on the regularization term ℜ(C). So, we can ensure that the
learned SE matrix C has the sparse low-rank property, allowing further handling of the
effects of specific data errors during its updating, which will improve the robustness of the
model. Thus, Equation (14) can be simplified as

min
C,P ,E ,P

1
2

Tr
[(

I − 2C + CCT
)

P
]
+ λ1∥C∥2,1 + λ2∥P∥⊛ + λ3∥E∥2

F

s. t. C ≥ 0, C = CT , M = P + E . (15)

Once C is obtained, we input it into the learned predictive coding model, and realize
the projection of the sample dataset to its low-rank subspace space. Therefore, the PKTLS2C
model can be finally expressed as follows:

min
C,P ,E ,P,ω

1
2

Tr
[(

I − 2C + CCT
)

P
]
+ λ1∥C∥2,1 + λ2∥P∥⊛ + λ3∥E∥2

F + γ∥C − f (X, ω)∥2
F

s.t. X =XC, C ≥ 0, C = CT , M = P + E , (16)

where λ1, λ2, λ3, and γ are equilibrium parameters. In order to reduce the difficulty of the
parameter selection during model training, we set γ = 1.

When we complete the processing of X, we replicate the trained deep encoder and
apply it to the original dataset Y . The low-rank subspace projection of the original large-
scale dataset is obtained from f (Y , ω). Finally, PKTLS2C uses the LSC algorithm to cluster
the original dataset Y .

3.4. Optimization

In this subsection, we use the alternating directional multiplier method (ADMM) [39]
and the gradient descent method (GD) to speed up the calculation and iterative convergence
of the PKTLS2C model. First, we introduce an auxiliary matrix B, which is initialized as
B := C. Then, Equation (16) can be rewritten as

min
C,P ,E ,ω,B

1
2

Tr
[(

I − 2C + CCT
)

P
]
+ λ1∥B∥2,1 + λ2∥P∥⊛ + λ3∥E∥2

F + γ∥C − f (X, ω)∥2
F

s.t. X = XC, C ≥ 0, C = CT , M = P + E . (17)

Because the computations of 1
2 Tr

[(
I − 2C + CCT)P] and λ1∥C∥2,1 in Equation (16)

interfere with each other, which increases the computational complexity of Equation (16). By
introducing the auxiliary matrix B, we can compute 1

2 Tr
[(

I − 2C + CCT)P] and λ1∥B∥2,1
separately, which will greatly reduce the computational complexity.



Electronics 2024, 13, 83 8 of 20

The augmented Lagrangian form of Equation (17) is given by

L(C,P , E , P, ω, B) =
1
2

Tr
[(

I − 2C + CCT
)

P
]
+ λ1∥B∥2,1 + λ2∥P∥⊛ + λ3∥E∥2

F

+ γ∥C − f (X, ω)∥2
F +

µ

2

(∥∥∥∥B − C +
y1

µ

∥∥∥∥2

F
+

∥∥∥∥M−P − E +
Y2

µ

∥∥∥∥2

F

)
s.t. X = XC, C ≥ 0, C = CT , M = P + E , (18)

where both y1 and Y2 are Lagrangian multipliers, but y1 is a matrix, and Y2 is a tensor; µ is
the penalty parameter. Next, we iteratively update all variables.

(1) Updating ω

Omitting the terms not related to ω in Equation (18), it becomes

L(ω) = min
ω

∥C − f (X, ω)∥2
F. (19)

Using the GD algorithm to minimize L(ω), we can update ω as

ω := ω − η
∂L(ω)

∂ω
, (20)

where η is the learning rate during the training of the deep encoder, which is set to η = 0.0001
in this paper, and ∂L(ω)

∂ω is the gradient in the minimization process.

(2) Updating P
Omitting the terms not related to P in Equation (18), we can update P as

min
P

λ2∥P∥⊛ +
µ

2

∥∥∥∥M−P − E +
Y2

µ

∥∥∥∥2

F
. (21)

Let A = M−E + Y2
µ , and according to Equation (14), we can obtain

min
P

λ2∥P∥⊛ +
µ

2
∥P −A∥2

F. (22)

Equation (22) is a typical TNN solving problem. We can first perform the fast Fourier
transform (FFT) on P ∈ Rn1×n2×n3 and A ∈ Rn1×n2×n3 to obtain P∗ ∈ Rn1×n3×n2 and
A∗ ∈ Rn1×n3×n2 , and then perform the SVD operation on the third dimensions of P∗ and
A∗. This allows us to better utilize the information in each frontal slice of P and A to obtain
the higher-order correlations between different kernel matrices. The specific procedure
for solving Equation (22) is shown in Algorithm 1. In Algorithm 1, if x ≤ 0, (x)+ = x;
otherwise, (x)+ = 0. diag(xn), n = 1, . . . , k is a k × k matrix, where elements of its diagonal
are x1, x2, . . . , xk, respectively, and other elements not in the diagonal are zero.

Algorithm 1 Updating P .

Input: A ∈ Rn1×n2×n3 , ι = λ2
µ > 0 (µ is the penalty parameter and λ2 is the

equilibrium parameters).
Initialize: A∗ = fft(A,[],3).

for i = 1, · · ·, n3 do
[U (i),S (i),V (i)] = SVD(A∗(i));
N (i) = diag{(1 − ι

S (i)(n,n)
)+}, n = 1, · · ·, min(n3, rank(Ki)) (+ is the

positive representation);
S (i) = S (i)N (i);
P∗ = U (i)S (i)V (i)T

;
end for

Output: P=ifft(P∗,[],3).



Electronics 2024, 13, 83 9 of 20

(3) Updating P

P is determined by the tensor P . So, we can simply update P as

P =
1
r

r

∑
i=1

P(:, : i). (23)

(4) Updating E
Omitting the terms not related to E in Equation (18), it becomes

L(E) = min
E

λ3∥E∥2
F +

µ

2

∥∥∥∥M−P − E +
Y2

µ

∥∥∥∥2

F
. (24)

Let ∂L(E)
∂E = 0, we can update E as

E =
µ(M−P) + Y2

2λ3 + µ
. (25)

(5) Updating C

Omitting the terms not related to C in Equation (18), it becomes

L(C) = min
C

1
2

Tr
[(

I − 2C + C(C)⊤
)

P
]
+

µ

2

∥∥∥∥B − C +
y1

µ

∥∥∥∥2

F
+ ∥C − f (X, ω)∥2

F. (26)

Let ∂L(C)
∂C = 0; we can update C as

C = (P + µI + 2I)−1(P + µB + y1 + 2 f (X, ω)). (27)

However, the nonlinear depth encoder f (X, ω) leads to difficulties in convergence
during the iterative solution of C. To achieve the fast local convergence of C, we remove
∥C − f (X, ω)∥2

F from Equation (17). So, we update C as

C = (P + µI)−1(P + µB + y1). (28)

Moreover, from our experiments presented in the next section, we find that PKTLS2C
still achieves high accuracy, even if ∥C − f (X, ω)∥2

F is omitted.

(6) Updating B

Omitting the terms not related to B in Equation (18), we can update B as

L(B) = min
B

λ1∥B∥2,1 +
µ

2

∥∥∥∥B − C +
y1

µ

∥∥∥∥2

F
(29)

Let D = C + y1
µ , we can solve Equation (29) by means of the following Lemma 1.

Lemma 1. Given a matrix D, suppose the solution of

min
B

λ1∥B∥2,1 +
µ

2
∥B − D∥2

F (30)

is B, then the i-th column of B is

B:j =

 ∥D:j∥2−
λ1
µ

∥D:j∥2
D:j, if

∥∥D:j
∥∥

2 > λ1
µ ;

0, , otherwise .
(31)

For the proof of Lemma 1, refer to [10] for details.



Electronics 2024, 13, 83 10 of 20

(7) Updating y1, Y2 and µ

y1 = y1 + µ(B − C),

Y2 = Y2 + µ(M−P − E),
µ = min{ρµ, µmax}, (32)

where ρ is the step length, set as 20, for the optimal balance of accuracy and execution time
in our experiments.

The optimization process of PKTLS2C involves repeatedly updating the parameters
until the convergence condition is satisfied. Algorithm 2 summarizes the whole iterative
process. In Algorithm 2, Equation (33) is a convergence condition, which varies for different
cases. An example of Equation (33) is shown in Section 4.7. After completing the training of
the deep encoder, it is copied to the large-scale dataset to calculate the low-rank subspace
projection of the large-scale dataset. Algorithm 3 shows the processing of the large-scale
dataset.

Algorithm 2 PKTLS2C algorithm via ADMM and GD.

Input: X,
{

K(i)
}r

i=1
, λi.

Initialize: C = B = 1 , µ = 10−5 , µmax = 10−6 , y1 = 0,Y2 = 0, ρ = 10−4, maxiter = 30.
While not converged and iter < maxiter do.

Update ω,P , P, E , C, B in turn via Equation (20), Algorithm 1, Equations (23), (25),
(28) and (31).

Update y1 , Y2 , µ via Equation (32).
if Equation (33) holds, then

break
end if

end while
Output: ω,C.

Algorithm 3 Processing large-scale data with PKTLS2C.

Input: large-scale dataset Y , number of clusters c.
Initialize: Randomly select X in Y using the randperm function
Train the depth encoder f (X, ω) using Algorithm 2.
Copy depth encoder f (·, ω) to the large-scale dataset Y , and compute CY via f (Y, ω).
CY is segmented with LSC to obtain the final clustering results.

Output: Clustering results.

3.5. Computational Complexity Analysis

The computational complexity of Algorithm 2 mainly arises from Step 2. The com-
putational complexities of updating ω, P and E are O(T1m3), O(T2(m2logm + m2)) and
O(T2m2) respectively, where m is the size of the sample dataset X, T1 is the number of
iterations used for training the deep encoder, and (usually) T1 < 5, T2 denotes the number
of iterations used for applying the deep encoder to the original large dataset Y . Updating C
involves matrix inversion with a computational complexity of O(T2m3). So, the overall com-
plexity of the training process is O((T1 + T2)m3 + T2m2(logm + 2)). Algorithm 3 shows the
process for large-scale data. Its computational complexity is linear with O

((
∑l

i=2 lili−1

)
n
)

,
where li is the number of units in the i-th layer, l is the number of layers, and n is the
number of samples in the large-scale dataset Y . From the analysis above, our method,
PKTLS2C, is efficient at reducing computational complexity and saving the memory usage
for dealing with LS2C tasks.



Electronics 2024, 13, 83 11 of 20

4. Experimental Analysis

In this section, we use six real datasets of different sizes to validate the clustering
performance of the PKTLS2C model and compare it with the state-of-the-art LS2C method.
All experiments were conducted on a computer equipped with an Intel i7-3.6GHz CPU and
128GB of RAM, using Matlab2020b.

4.1. Dataset Settings

The six real datasets used include two small datasets, two medium datasets, and
two large datasets. The two small datasets are COIL20 [40], a 32 × 32 grayscale im-
age of 20 different classes of objects, totaling 1440 samples, and MNISTSC2000, a vari-
ant of the MNIST dataset [41], where we select a total of 2000 samples from different
classes and downscale them to 500 by principal component analysis. The two medium
datasets are PenDights [42], a UCI dataset [43] containing 10 features and 10 classes with
10,992 samples, and MNIST [41], which is a 28 × 28 grayscale image of handwritten digits
from 0–9, with 60,000 training samples and 10,000 test samples. The two large datasets
are UCI datasets [43]. One is CovType [42], which contains 54 features and 7 classes of
581,012 samples. The other is PokerHand [44], which contains 10 features and 10 classes of
1,000,000 samples. The details of all datasets are summarized in Table 2. Figure 2 shows
some sample datasets.

Table 2. Details of the datasets used in the experiments.

Dataset Sample Dimensions Classes

COIL20 1440 1024 20
MNISTSC2000 2000 500 10

PenDights 10,992 16 10
MNIST 70,000 784 10

CovType 581,012 54 7
PokerHand 1,000,000 10 10

(a) (b)
Figure 2. Sample images of some datasets used in the experiment. (a) COIL20; (b) MNIST.

4.2. Comparison Methods and Evaluation Metrics

To extensively evaluate the performance of the PKTLS2C model, we compare PKTLS2C
with 13 state-of-the-art LS2C methods, including K-means [2], SEC [20], Nyström [22],
LSC-R [23], LSC-K [23], SSSC [1], SLRR [1], SLSR [1], PLrSC [34], RPCMl1+F2 [17],
RPCMl1 [17], RPCM∗ [17], and RPCMF2 [17]. The specifics of these methods were de-
scribed in detail in the introduction section. To guarantee the fairness of the comparison
experiments, we strictly follow the parameter settings in the original texts to optimize these
methods in order to achieve their optimal results.

We choose two commonly used metrics, the clustering accuracy (ACC) and the nor-
malized mutual information (NMI), to evaluate the clustering performance. For ACC and
NMI, larger values indicate better clustering performance. Refer to [39] for the detailed
definitions of ACC and NMI.

4.3. Parameter Settings and Analysis

In PKTLS2C, several parameter settings are involved, including kernel parameters,
learning depth encoder parameters, sampling numbers, and balancing parameters. They
are explained in detail as follows.



Electronics 2024, 13, 83 12 of 20

4.3.1. The Setting of Kernel Parameters

In order to better handle the nonlinear structure of the data, we set up a total of twelve
basis kernel functions, including (1) seven Gaussian kernel functions with the same formula

K(x, y) = exp
(

−∥x−y∥2
F

σ2d

)
. All have the same setting of σ, with the maximum distance

between x and y in the dataset, but with different d ∈ {0.01, 0.05, 0.1, 1, 10, 50, 100}; (2) four
polynomial kernel functions with the same formula K(x, y) =

(
a + xTy

)b, but different
settings of a ∈ {0, 1} and b ∈ {2, 4}; and (3) one linear kernel function K(x, y) = xTy.

4.3.2. The Settings of Hidden Units and Layers

When training the deep encoder, we find that the performance of PKTLS2C is greatly
related to the number of hidden units and the number of structural layers. Figure 3a,b
show the ACCs and NMIs, respectively, with a fixed number of hidden units (2000) but
varying the number of structural layers. Figure 4a,b show results with a fixed number of
structural layers (3), but different numbers of hidden units, conducted on the PenDigits
and MNIST datasets. This experiment achieved similar effects to other datasets, but due to
space limitations, they are not presented in this paper.

(a) (b)

Figure 3. ACCs and NMIs of PKTLS2C with different numbers of structural layers and a fixed number
of hidden units (2000) on the PenDights and MNIST datasets. (a) ACCs; (b) NMIs.

(a) (b)

Figure 4. ACCs and NMIs of PKTLS2C with different numbers of hidden units and a fixed number of
structural layers (3) on the PenDights and MNIST datasets. (a) ACCs; (b) NMIs.



Electronics 2024, 13, 83 13 of 20

It can be seen that the PKTLS2C model achieves ideal ACCs and NMIs when the
number of structural layers is ≥3 and the number of hidden units is ≥2000. As the number
of hidden units increases, both ACCs and NMIs become larger, but this leads to longer
execution times. Figure 5 shows the execution time in relation to the number of hidden
units. In order to better balance the clustering performance and the execution time, we set
the number of structural layers to 3 and the number of hidden units to 2000 in the following
experiments:

Figure 5. Execution times along with the number of hidden units and a fixed number of structural
layers (3) on the MNIST dataset (in seconds).

4.3.3. Setting of Balance Parameters

The PKTLS2C model contains four equilibrium parameters: λ1, λ2, λ3, and γ. Among
them, λ1, λ2, and λ3 are the parameters to equilibrate C, P , and E , respectively, and γ is
the parameter used to equilibrate ∥C − f (X, ω)∥2

F. To find the optimal parameters, we first
simply set γ to 1 [34], and then use the grid search method for the optimal λ1, λ2, λ3, and set
them to {10−4, 10−3, 10−2, 10−1, 1, 10, 20, 30, 50, 100, 1000}. Using PenDights as an example,
the parameters’ sensitivity of the PKTLS2C model on this dataset is shown in Figure 6. It
can be found that the PKTLS2C model is applicable to a wide range of λ1, λ2, λ3 values.

4.3.4. Effects of the Number of Samples

To evaluate the impacts of different sizes of sample datasets on the final clustering
results, we run PKTLS2C on the PenDights dataset with different sample numbers; the
results are shown in Figure 7. It can be seen that the PKTLS2C model has stable ACCs and
NMIs that are not sensitive to the number of samples. So we can use small datasets to train
the deep encoder and greatly shorten the training time. This experiment has also achieved
similar effects on other datasets, but due to space constraints, it will not be presented
here. This experiment has also achieved similar effects on other datasets, but due to space
limitations, they are not presented in this paper.

4.4. Comparison with Other Models

In this subsection, we compare the clustering performance of the PKTLS2C model
with other models on the six datasets, where results for small datasets, medium datasets,
and large datasets are shown in Tables 3, 4 and 5, respectively. In addition, we add seven
traditional subspace clustering methods on small-scale datasets (i.e., K-means [2], SSC [9],
LRR [10], LKGr [45], JMKSC [46], LLMKL [47], and LRMKSC [39]) for comparison. Since
these traditional methods are not applicable to medium and large datasets, we only use
them on small datasets. We present the average and standard deviations of ACCs and NMIs
in ten runs, where the optimal values of different algorithms are presented in bold font.



Electronics 2024, 13, 83 14 of 20

Figure 6. Parameter sensitivity of the PKTLS2C model on the PenDights dataset.

Table 3. Clustering results and execution times (in seconds) for small datasets.

Dataset COIL20 MNISTSC2000

Number of Samples n = 500 n = 500

Evaluation Indicators ACC NMI Time ACC NMI Time

K-means 60.63 ± 1.2 75.78 ± 0.39 0.21 56.69 ± 0.1 55.79 ± 0.18 0.58
SSC 45.64 ± 2.35 57.32 ± 0.98 6.18 79.3 ± 0.48 81.04 ± 0.36 14.28
LRR 64.58 ± 3.24 76.95 ± 1.78 215.94 75.92 ± 2.53 76.30 ± 1.24 41.49

Conventional LKGr 61.8 ± 3.13 76.6 ± 2.31 118.68 15.7 ± 2.03 5.6 ± 1.39 150.79
methods JMKSC 62.1 ± 3.54 69.3 ± 1.53 40.88 76.5 ± 2.23 70.06 ± 1.53 60.39

LLMKL 63.6 ± 1.02 80.6 ± 0.41 216.32 38.4 ± 0.96 23.6 ± 1.32 230.42
LRMKSC 53.28 ± 3.25 62.27 ± 0.36 381.54 14.5 ± 1.53 1.4 ± 0.05 555.08



Electronics 2024, 13, 83 15 of 20

Table 3. Cont.

Dataset COIL20 MNISTSC2000

Number of Samples n = 500 n = 500

Evaluation Indicators ACC NMI Time ACC NMI Time

LSC-K 70.35 ± 4.38 80.69 ± 2.1 0.62 80.64 ± 0.35 75.99 ± 0.63 0.83
SSSC 32.72 ± 4.56 58.85 ± 3.3 11.71 — — —

PLrSC 74.15 ± 4.13 85.62 ± 2.70 1.02 80.11 ± 4.58 76.36 ± 2.85 0.86
LS2C methods RPCM∗ 82.7 ± 1.8 89.36 ± 1.3 7.03 95.45 ± 0.38 89.95 ± 0.73 4.26

RPCM2
F 84.79 ± 2.14 90.8 ± 1.36 0.76 95.55 ± 0.33 90.26 ± 0.6 1.02

ours 86.06 ± 1.0 91.17 ± 0.78 0.55 95.69 ± 0.24 90.17 ± 0.26 0.52

—indicates NAN or INF.

Figure 7. Effects of different scale sample data on clustering results on the PenDights dataset.

Table 4. Clustering results and execution times (in seconds) for medium datasets.

Dataset PenDigits MNIST

Number of Samples n = 500 n = 500

Evaluation Indicators ACC NMI Time ACC NMI Time

K-means 68.51 ± 0.13 68.79 ± 0.02 1.78 54.51 ± 1.85 49.23 ± 1.03 41.23
SEC 75.3 ± 4.20 70.3 ± 2.43 11.8 57.43 ± 2.58 52.86 ± 1.26 14.68

Nyström 66.7 ± 6.93 65.4 ± 2.70 35.9 52.7 ± 1.46 47.4 ± 0.38 60.15
LSC-R 77.7 ± 3.18 74.9 ± 2.61 5.6 59.74 ± 1.89 57.06 ± 1.36 6.45
LSC-K 79.9 ± 2.73 76.4 ± 0.58 7.9 65.74 ± 2.59 62.06 ± 1.76 10.86
SSSC 76.20 ± 0 68.88 ± 0 4.03 54.9 ± 1.89 49.9 ± 1.15 35.01
SLRR 74.59 ± 0.12 67.18 ± 0.00 3.36 50.0 ± 3.87 49.1 ± 2.27 38.76

Methods SLSR 68.83 ± 0.1 62.94 ± 0.05 3.2 54.1 ± 1.56 48.1 ± 0.87 31.23
PLrSC 77.47 ± 3.04 76.43 ± 2.39 2.59 65.18 ± 4.37 61.55 ± 1.62 12.77

RPCMl1+F2 85.71 ± 1.4 80.5 ± 1.6 6.15 66.36 ± 3.0 58.93 ± 2.48 21.44
RPCMl1 80.99 ± 2.5 72.36 ± 2.1 7.27 — — —
RPCM∗ 85.5 ± 0.8 80.75 ± 1.5 2.91 64.17 ± 3.21 58.86 ± 2.71 22.09
RPCM2

F 85.7 ± 1.63 79.94 ± 1.7 2.23 66.43 ± 3.38 61.3 ± 1.7 19.95
ours 86.68 ± 0.19 81.14 ± 0.53 1.07 74.68 ± 3.1 66.57 ± 0.62 18.73

—indicates NAN or INF.



Electronics 2024, 13, 83 16 of 20

Table 5. Clustering results and execution times (in seconds) for large datasets.

Dataset CovType PokerHand

Number of Samples n = 1000 n = 500

Evaluation Indicators ACC NMI Time ACC NMI Time

K-means 20.8 ± 0.00 3.7 ± 0.00 156.6 10.47 ± 0.05 0.04 ± 0.00 169.3
SEC 21.1 ± 0.01 3.6 ± 0.00 84.9 10.5 ± 0.06 0.1 ± .0.01 130.2

Nyström 24.0 ± 0.59 3.8 ± 0.03 70.6 10.91 ± 0.15 0.08 ± 0.03 184.4
LSC-R 22.0 ± 0.47 3.8 ± 0.06 154.5 12.6 ± 0.17 0.1 ± 0.04 205.7
LSC-K 22.0 ± 0.52 3.6 ± 0.10 955.4 12.32 ± 0.51 0.1 ± 0.02 1736.8
SSSC 27.8 ± 0.16 4.56 ± 0.04 173.5 15.34 ± 0.42 0.1 ± 0.01 212.15
SLRR 27.24 ± 0.00 6.35 ± 0.02 120.11 15.40 ± 0.41 0.07 ± 0.10 217.7

Methods SLSR 26.53 ± 0.00 4.2 ± 0.00 168.8 12.79 ± 0.44 0.06 ± 0.01 194.2
PLrSC 24.87 ± 1.03 5.31 ± 0.36 53.89 12.71 ± 0.32 0.01 ± 0.03 152.05

RPCMl1+F2 26.2 ± 0.28 2.32 ± 0.16 354.62 11.65 ± 0.28 0.1 ± 0.00 962.98
RPCMl1 23.76 ± 1.72 2.41 ± 0.15 309.15 13.08 ± 0.14 0.1 ± 0.00 751.55
RPCM∗ 26.01 ± 0.09 1.35 ± 0.63 514.26 11.35 ± 0.08 0.1 ± 0.00 928.04
RPCM2

F 23.66 ± 0.53 3.75 ± 0.11 360.97 11.92 ± 0.92 0.1 ± 0.00 926.97
ours 28.37 ± 1.3 3.2 ± 0.1 73.44 16.46 ± 0.2 0.5 ± 0.03 167.48

In this paper, the size of the sample dataset is 500, except for the CovType dataset. This is because the comparison
method needs 1000 samples on CovType to obtain the result, as in [1]. To obtain a fair comparison, we set the
sample number to 1000 for CovType.

Overall. From Tables 3–5, we find that the PKTLS2C method achieves the best results
compared to the other methods in the six datasets. In particular, the average ACC and NMI
values of PKTLS2C improve by up to 8.25% and 4.97% compared to the suboptimal values
on the MNIST dataset. In addition, the running time of the PKTLS2C method is shorter
than all other methods on the four medium and large datasets. It is also shorter than all
other methods except for K-means on the two small datasets,

Small datasets. From Table 3, we find that PKTLS2C achieves significant improvement
compared with the traditional methods. For example, compared with the best one achieved
by the traditional methods, PKTLS2C increases the average ACC and NMI by 19.48%
and 19.22%, respectively, on the COIL20 dataset, and 16.39% and 9.15%, respectively, on
the MNISTSC2000 dataset. This is because PKTLS2C uses a secondary denoising method,
which can effectively highlight the structural feature of the dataset and minimize the impact
of noise on the clustering task. This is also demonstrated in the following robustness and
visualization experiments. Except for K-means, the other traditional subspace clustering
methods are based on spectral clustering, which leads to high computational complexity.
However, PKTLS2C learns the feature information of the original dataset from a trained
deep encoder with a small sample dataset, greatly reducing the computational complexity.
For example, the running times of LRR on the COIL20 and MNISTSC2000 datasets are
about 400 times longer than PKTLS2C’s. For the same reason, all LS2C methods require
considerably less time than traditional methods on both datasets.

Medium datasets. From Table 4, we find that PKTLS2C also achieves the best ACCs
and NMIs compared to other state-of-the-art LS2C-based methods. For example, on the
PenDigits dataset, PKTLS2C increases the average ACC and NMI values by 0.9% and 0.39%
compared with the other best ones, even reaching 8.25% and 4.97% on the MNIST dataset.
Among the compared methods, RPCMl1+F2 , RPCMl1 , RPCM∗, RPCMF2 , and PKTLS2C
all use deep encoders to predict the feature information of the original large dataset and
they perform better than other LS2C-based methods. This indicates the effectiveness of
using deep self-encoders for the prediction of large dataset feature information. Moreover,
during the process of selecting a small sample dataset to train the deep encoder, we use
MKL to deal with the nonlinear structure of datasets, and we use to tensor to capture the
higher-order correlations among datasets. So, PKTLS2C allows the trained deep encoder



Electronics 2024, 13, 83 17 of 20

to obtain the data feature information as comprehensively as possible, guaranteeing the
reliability of its clustering performance.

Large datasets. Table 5 shows the experiments on large datasets, even reaching
1,000,000 units in the PokerHand dataset. Different from the four datasets in Tables 3 and 4,
these two datasets are more challenging. From Table 5, we find that all methods perform
very poor on NMI for both datasets, which is caused by the highly imbalanced cluster-
ing. Therefore, we only compare ACC. PKTLS2C, on average, improves ACC by 0.57%
compared to the suboptimal one on the CovType dataset, and it reaches 1.06% on the Pok-
erHand dataset. The running time of PKTLS2C is also the shortest among all the compared
methods and takes substantially less time to perform the clustering task. This indicates that
PKTLS2C can be applied to LS2C tasks with high clustering efficiency.

4.5. Robustness Analysis

In this section, we verify the robustness of PKTLS2C. We select the robust LS2C
methods (RPCM∗ and RPCMF2 ) and conventional methods (SSC and LRR) as the compared
methods. As shown in Figure 8, we add a certain percentage (5%, 10%, 15%, 20%, 25%,
and 30%) of random noises to the COIL20 dataset. Then, we perform clustering tasks
on them separately and use ACC to evaluate the clustering performance of the methods
with different proportions of noises. According to Figure 9, we find that the clustering
performance of all methods decreases as the proportion of noise increases. But PKTLS2C
achieves the best clustering results in all cases. It shows that our proposed quadratic
denoising method in PKTLS2C can efficiently enhance the clustering robustness. This
experiment also achieved similar effects on other datasets, but due to space limitations,
they are not presented in this paper.

Figure 8. Visualization of the COIL20 data with different noise ratios.

Figure 9. Effects of different proportions of noises on the clustering performance on the COIL20
dataset.

4.6. Visualization

In this section, we use the small-scale dataset, COIL20, to show the prediction results
of the feature information by the trained deep encoder. We compare the affinity matrix
generated by PKTLS2C with SSC and LRR, as shown in Figure 10. From Figure 10, we find
that PKTLS2C can efficiently process the structure of the original dataset. The inter-cluster
structure in the low-rank representation matrix of the original data generated by PKTLS2C is
more clearly visible than the other two, which provides the basis for accurate identification
in subsequent clustering tasks. This also ensures that PKTLS2C is applicable to large



Electronics 2024, 13, 83 18 of 20

datasets. In addition, the low-rank representation matrix data generated by PKTLS2C
is purer than those generated by SSC and LRR, further demonstrating the robustness of
PKTLS2C.

(a) (b) (c)
Figure 10. Comparison of visualizations on the COIL20 dataset. (a) SSC; (b) LRR; (c) PKTLS2C.

4.7. Convergence Analysis

According to Equation (2), solving the SE matrix C of the sample dataset is related to
the training of the deep encoder. In PKTLS2C, to guarantee fast convergence in training the
deep encoder, we simply constrain the solved residual values of the sample dataset’s SE
matrix C. Therefore, we set the following convergence condition:

max
(∥∥∥Ct+1 − Ct

∥∥∥
∞

)
≤ 1e − 4. (33)

When the residual is less than 1e − 4, the model meets the convergence condition and
the iteration stops. The setting of this parameter belongs to the setting of experience value.
Figure 11 shows the residuals of the MNIST dataset in each iteration of the solving process
of PKTLS2C. We find that PKTLS2C converges and smooths out within a relatively small
number of iterations. This experiment also achieved similar effects on other datasets, but
due to space limitations, they are not presented in this paper.

Figure 11. Convergence curve variation of the PKTLS2C method on the MNIST dataset.

It is normal that residuals do not decrease during the first three iterations. The reason
is that we use the gradient descent method in the optimization process, which may lead
to escaping local optimal solutions in the iterative search space to find a better solution,
which may result in instances where the residual does not decrease.

5. Conclusions

In this paper, we propose an efficient LS2C method—PKTLS2C. PKTLS2 uses a small
sample dataset to train the deep encoder, and then applies it to the original large dataset,
which can quickly obtain a projection sparse-coded representation of the large dataset.
Extensive experiments on large datasets show that PKTLS2C achieves higher accuracy and
a higher convergence rate compared to existing LS2C methods. In addition, we propose



Electronics 2024, 13, 83 19 of 20

purity kernel tensor learning and secondary denoising methods, which help PKTLS2C
capture more valid information and further improve the robustness of the model. Moreover,
we executed extensive experiments to analyze the parameters of the learned deep encoder,
verifying its feasibility in performing subspace clustering tasks. Future work will focus
on optimizing the processing of the sample dataset to obtain more useful information for
training the deep encoder.

Author Contributions: Y.Z.: conceptualization, software, writing—original draft. S.Z.: experi-
ment, examination, methodology, supervision. X.Z.: examination, experiment. Y.X.: supervision.
L.P.: survey literature, editing. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
(grant no. 62102331), the Natural Science Foundation of Sichuan Province (grant no. 2022NSFSC0839),
and the Doctoral Program Fund of the University of Science and Technology of Southwest China
(grant no. 22zx7110).

Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Peng, X.; Tang, H.; Zhang, L.; Yi, Z.; Xiao, S. A unified framework for representation-based subspace clustering of out-of-sample

and large-scale data. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 2499–2512. [CrossRef] [PubMed]
2. MacQueen, J. Classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on

Mathematical Statistics and Probability, San Diego, CA, USA, 21 June–18 July 1967; pp. 281–297.
3. Li, Q.; Xie, Z.; Wang, L. Robust Subspace Clustering with Block Diagonal Representation for Noisy Image Datasets. Electronics

2023, 12, 1249. [CrossRef]
4. Fan, L.; Lu, G.; Liu, T.; Wang, Y. Block Diagonal Least Squares Regression for Subspace Clustering. Electronics 2022, 11, 2375.

[CrossRef]
5. Yin, L.; Lv, L.; Wang, D.; Qu, Y.; Chen, H.; Deng, W. Spectral Clustering Approach with K-Nearest Neighbor and Weighted

Mahalanobis Distance for Data Mining. Electronics 2023, 12, 3284. [CrossRef]
6. Liu, M.; Liu, C.; Fu, X.; Wang, J.; Li, J.; Qi, Q.; Liao, J. Deep Clustering by Graph Attention Contrastive Learning. Electronics 2023,

12, 2489. [CrossRef]
7. Ng, A.; Jordan, M.; Weiss, Y. On spectral clustering: Analysis and an algorithm. Adv. Neural Inf. Process. Syst. 2001, 14, 849–856.
8. Hou, C.; Nie, F.; Yi, D.; Tao, D. Discriminative embedded clustering: A framework for grouping high-dimensional data. IEEE

Trans. Neural Netw. Learn. Syst. 2014, 26, 1287–1299. [PubMed]
9. Elhamifar, E.; Vidal, R. Sparse subspace clustering: Algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell.

2013, 35, 2765–2781. [CrossRef]
10. Liu, G.; Lin, Z.; Yan, S.; Sun, J.; Yu, Y.; Ma, Y. Robust recovery of subspace structures by low-rank representation. IEEE Trans.

Pattern Anal. Mach. Intell. 2012, 35, 171–184. [CrossRef]
11. Lu, C.Y.; Min, H.; Zhao, Z.Q.; Zhu, L.; Huang, D.S.; Yan, S. Robust and efficient subspace segmentation via least squares regression.

In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 347–360.

12. Fan, J. Large-Scale Subspace Clustering via k-Factorization. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, Singapore, 14–18 August 2021; pp. 342–352.

13. Pourkamali-Anaraki, F. Large-scale sparse subspace clustering using landmarks. In Proceedings of the 2019 IEEE 29th
International Workshop on Machine Learning for Signal Processing (MLSP), Pittsburgh, PA, USA, 13–16 October 2019; IEEE: New
York, NY, USA, 2019; pp. 1–6.

14. Wang, S.; Tu, B.; Xu, C.; Zhang, Z. Exact subspace clustering in linear time. In Proceedings of the AAAI Conference on Artificial
Intelligence, Quebec, QB, Canada, 27–31 July 2014; Volume 28.

15. Zhang, X.; Tan, Z.; Sun, H.; Wang, Z.; Qin, M. Orthogonal Low-rank Projection Learning for Robust Image Feature Extraction.
IEEE Trans. Multimed. 2021, 24, 3882–3895. [CrossRef]

16. Wang, H.; Kawahara, Y.; Weng, C.; Yuan, J. Representative selection with structured sparsity. Pattern Recognit. 2017, 63, 268–278.
[CrossRef]

17. Li, J.; Liu, H.; Tao, Z.; Zhao, H.; Fu, Y. Learnable subspace clustering. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 1119–1133.
[CrossRef] [PubMed]

18. Li, J.; Tao, Z.; Wu, Y.; Zhong, B.; Fu, Y. Large-scale subspace clustering by independent distributed and parallel coding. IEEE
Trans. Cybern. 2021, 52, 9090–9100. [CrossRef] [PubMed]

http://doi.org/10.1109/TNNLS.2015.2490080
http://www.ncbi.nlm.nih.gov/pubmed/26540718
http://dx.doi.org/10.3390/electronics12051249
http://dx.doi.org/10.3390/electronics11152375
http://dx.doi.org/10.3390/electronics12153284
http://dx.doi.org/10.3390/electronics12112489
http://www.ncbi.nlm.nih.gov/pubmed/25095267
http://dx.doi.org/10.1109/TPAMI.2013.57
http://dx.doi.org/10.1109/TPAMI.2012.88
http://dx.doi.org/10.1109/TMM.2021.3109442
http://dx.doi.org/10.1016/j.patcog.2016.10.014
http://dx.doi.org/10.1109/TNNLS.2020.3040379
http://www.ncbi.nlm.nih.gov/pubmed/33306473
http://dx.doi.org/10.1109/TCYB.2021.3052056
http://www.ncbi.nlm.nih.gov/pubmed/33635812


Electronics 2024, 13, 83 20 of 20

19. Li, B.; Zhang, Y.; Lin, Z.; Lu, H. Subspace clustering by mixture of gaussian regression. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Boston, MA, USA, 7–11 June 2015; pp. 2094–2102.

20. Nie, F.; Zeng, Z.; Tsang, I.W.; Xu, D.; Zhang, C. Spectral embedded clustering: A framework for in-sample and out-of-sample
spectral clustering. IEEE Trans. Neural Netw. 2011, 22, 1796–1808. [PubMed]

21. Chen, W.Y.; Song, Y.; Bai, H.; Lin, C.J.; Chang, E.Y. Parallel spectral clustering in distributed systems. IEEE Trans. Pattern Anal.
Mach. Intell. 2010, 33, 568–586. [CrossRef] [PubMed]

22. Fowlkes, C.; Belongie, S.; Chung, F.; Malik, J. Spectral grouping using the Nystrom method. IEEE Trans. Pattern Anal. Mach. Intell.
2004, 26, 214–225. [CrossRef]

23. Cai, D.; Chen, X. Large scale spectral clustering via landmark-based sparse representation. IEEE Trans. Cybern. 2014, 45, 1669–1680.
24. Yan, D.; Huang, L.; Jordan, M.I. Fast approximate spectral clustering. In Proceedings of the 15th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Virtual Event, 6–10 July 2009; pp. 907–916.
25. Wright, J.; Yang, A.Y.; Ganesh, A.; Sastry, S.S.; Ma, Y. Robust face recognition via sparse representation. IEEE Trans. Pattern Anal.

Mach. Intell. 2008, 31, 210–227. [CrossRef]
26. You, C.; Li, C.G.; Robinson, D.P.; Vidal, R. Oracle based active set algorithm for scalable elastic net subspace clustering. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 3928–3937.

27. You, C.; Li, C.; Robinson, D.P.; Vidal, R. Scalable exemplar-based subspace clustering on class-imbalanced data. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 67–83.

28. Kang, Z.; Lin, Z.; Zhu, X.; Xu, W. Structured graph learning for scalable subspace clustering: From single view to multiview.
IEEE Trans. Cybern. 2021, 52, 8976–8986. [CrossRef]

29. Bourlard, H.; Kamp, Y. Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 1988,
59, 291–294. [CrossRef]

30. Ranzato, M.; Poultney, C.; Chopra, S.; Cun, Y. Efficient learning of sparse representations with an energy-based model. Adv.
Neural Inf. Process. Syst. 2006, 19, 819006.

31. Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with denoising autoencoders. In
Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103.

32. Sprechmann, P.; Bronstein, A.M.; Sapiro, G. Learning efficient sparse and low rank models. IEEE Trans. Pattern Anal. Mach. Intell.
2015, 37, 1821–1833. [CrossRef] [PubMed]

33. Gregor, K.; LeCun, Y. Learning fast approximations of sparse coding. In Proceedings of the 27th International Conference on
International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 399–406.

34. Li, J.; Liu, H. Projective low-rank subspace clustering via learning deep encoder. In Proceedings of the IJCAI, Melbourne,
Australia, 19–25 August 2017.

35. Ripley, B.D. Pattern Recognition and Neural Networks; Cambridge University Press: Cambridge, UK, 2007.
36. Haykin, S. Neural Networks and Learning Machines, 3/E; Pearson Education: Chennai, India, 2009.
37. Liu, X.; Zhou, S.; Wang, Y.; Li, M.; Dou, Y.; Zhu, E.; Yin, J. Optimal neighborhood kernel clustering with multiple kernels. In

Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31.
38. Gönen, M.; Alpaydın, E. Multiple kernel learning algorithms. J. Mach. Learn. Res. 2011, 12, 2211–2268.
39. Zhang, X.; Xue, X.; Sun, H.; Liu, Z.; Guo, L.; Guo, X. Robust multiple kernel subspace clustering with block diagonal representation

and low-rank consensus kernel. Knowl. Based Syst. 2021, 227, 107243. [CrossRef]
40. Nene, S.A.; Nayar, S.K.; Murase, H. Columbia Object Image Library (Coil-20); Columbia University: New York, NY, USA, 1996.
41. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
42. Alimoglu, F.; Alpaydin, E. Combining multiple representations and classifiers for pen-based handwritten digit recognition. In

Proceedings of the Fourth International Conference on Document Analysis and Recognition, Ulm, Germany, 18–20 August 1997;
IEEE: New York, NY, USA, 1997; Volume 2, pp. 637–640.

43. Dua, D.; Graff, C. UCI Machine Learning Repository. Available online: http://archive.ics.uci.edu/ml (accessed on 1 December
2023)

44. Blackard, J.A.; Dean, D.J. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest
cover types from cartographic variables. Comput. Electron. Agric. 1999, 24, 131–151. [CrossRef]

45. Kang, Z.; Wen, L.; Chen, W.; Xu, Z. Low-rank kernel learning for graph-based clustering. Knowl. Based Syst. 2019, 163, 510–517.
[CrossRef]

46. Yang, C.; Ren, Z.; Sun, Q.; Wu, M.; Yin, M.; Sun, Y. Joint correntropy metric weighting and block diagonal regularizer for robust
multiple kernel subspace clustering. Inf. Sci. 2019, 500, 48–66. [CrossRef]

47. Ren, Z.; Li, H.; Yang, C.; Sun, Q. Multiple kernel subspace clustering with local structural graph and low-rank consensus kernel
learning. Knowl. Based Syst. 2020, 188, 105040. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://www.ncbi.nlm.nih.gov/pubmed/21965198
http://dx.doi.org/10.1109/TPAMI.2010.88
http://www.ncbi.nlm.nih.gov/pubmed/20421667
http://dx.doi.org/10.1109/TPAMI.2004.1262185
http://dx.doi.org/10.1109/TPAMI.2008.79
http://dx.doi.org/10.1109/TCYB.2021.3061660
http://dx.doi.org/10.1007/BF00332918
http://dx.doi.org/10.1109/TPAMI.2015.2392779
http://www.ncbi.nlm.nih.gov/pubmed/26353129
http://dx.doi.org/10.1016/j.knosys.2021.107243
http://dx.doi.org/10.1109/5.726791
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1016/S0168-1699(99)00046-0
http://dx.doi.org/10.1016/j.knosys.2018.09.009
http://dx.doi.org/10.1016/j.ins.2019.05.063
http://dx.doi.org/10.1016/j.knosys.2019.105040

	Introduction
	Related Work
	Large-Scale Spectral Clustering
	Scalable Subspace Clustering
	 Autoencoder-Based Subspace Clustering

	PKTLS2C Model
	Notations
	Design of the Deep Self-Encoder
	PKTLS2C Model
	Optimization
	Computational Complexity Analysis

	Experimental Analysis
	Dataset Settings
	Comparison Methods and Evaluation Metrics
	Parameter Settings and Analysis
	The Setting of Kernel Parameters
	The Settings of Hidden Units and Layers
	Setting of Balance Parameters
	Effects of the Number of Samples

	Comparison with Other Models
	Robustness Analysis
	 Visualization
	 Convergence Analysis

	Conclusions
	References

