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Abstract: Cross-domain named entity recognition (NER) is a crucial task in various practical appli-
cations, particularly when faced with the challenge of limited data availability in target domains.
Existing methodologies primarily depend on feature representation or model parameter sharing
mechanisms to enable the transfer of entity recognition capabilities across domains. However, these
approaches often ignore the latent causal relationships inherent in invariant features. To address this
limitation, we propose a novel framework, the Causal Structure Alignment-based Cross-Domain
Named Entity Recognition (CSA-NER) framework, designed to harness the causally invariant fea-
tures within causal structures to enhance the cross-domain transfer of entity recognition competence.
Initially, CSA-NER constructs a causal feature graph utilizing causal discovery to ascertain causal
relationships between entities and contextual features across source and target domains. Subse-
quently, it performs graph structure alignment to extract causal invariant knowledge across domains
via the graph optimal transport (GOT) method. Finally, the acquired causal invariant knowledge
is refined and utilized through the integration of Gated Attention Units (GAUs). Comprehensive
experiments conducted on five English datasets and a specific CD-NER dataset exhibit a notable
improvement in the average performance of the CSA-NER model in comparison to existing cross-
domain methods. These findings underscore the significance of unearthing and employing latent
causal invariant knowledge to effectively augment the entity recognition capabilities in target do-
mains, thereby contributing a robust methodology to the broader realm of cross-domain natural
language processing.

Keywords: cross-domain named entity recognition; transfer learning; causal inference; feature
interactions; causally invariant knowledge

1. Introduction

Named entity recognition (NER) is a fundamental task in natural language processing
(NLP), aimed at identifying entities with specific semantic meanings from text, such as
names of people, locations, organizations, and institutions. It plays a significant role in
knowledge graphs, information extraction, and text understanding [1–3]. In practical appli-
cations, the considerable variance in text genres and terminologies across diverse domains
presents a substantial challenge, frequently leading to a scarcity of annotated data within
specific target domains. Consequently, the adaptation of named entity recognition (NER)
models for cross-domain scenarios, specifically cross-domain named entity recognition
(CD-NER), has garnered significant research attention in recent years. This is particularly
relevant in resource-constrained environments where the availability of labeled data is
limited [4].
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The current research on CD-NER has primarily focused on three distinct strategies.
First, some researchers [5,6] have explored multi-task joint learning approaches, enhancing
cross-domain entity recognition by simultaneously training models on both source and
target domains to obtain refined feature representations across tasks. Second, a group of
scholars [7,8] have proposed innovative model architectures aimed at understanding the
complex semantic dynamics between domains, thus improving cross-domain performance.
Third, another set of researchers [9,10] have leveraged pre-trained language models (PLMs)
to develop models in data-rich domains, establishing robust source domain models. They
have further improved cross-domain performance by transferring feature knowledge from
the source domain to the target domain through fine-tuning and domain parameter sharing
techniques. A notable example of current state-of-the-art CD-NER models is Cp-NER [10],
which utilizes a frozen PLM while employing collaborative domain prefix adjustments
to enhance the PLM, obtaining a significant improvement in cross-domain performance,
as demonstrated by its superior performance on the CrossNER benchmark. However, it is
important to note that existing methodologies often depend on inter-domain generalized
knowledge for cross-domain transfer, which may inadvertently introduce out-of-domain
knowledge that may not align with the specific task requirements during transfer. This
observation underscores the need for a more informed approach to CD-NER, a challenge
our proposed Causal Structure Alignment-based Cross-Domain Named Entity Recognition
(CSA-NER) model aims to address.

To effectively harness domain-invariant knowledge, our CSA-NER model employs a
strategy that extracts causal invariant knowledge between domains. This is achieved by
constraining domain-invariant knowledge through causal learning, ultimately enhancing
the performance of the target domain. Specifically, Figure 1 illustrates the acquisition of
cross-domain causal invariant knowledge from similar syntactic structures in contexts and
entities, where an ellipsis in the target domain denotes the omitted text “good way to”.
This process requires causal inference to learn causal relationships between entities and
hidden syntactic structures. Subsequently, causal invariant knowledge hidden in syntactic
structures and entities is extracted by aligning similar causal structures using GOT. This
approach serves to alleviate the impact of out-of-domain knowledge on the task within
the target domain. In various scientific domains, the concept of causal invariance has been
extensively explored. For instance, Chevalley [11] designs a unified invariant learning
framework that expertly utilizes distribution matching to enrich the acquisition of causal
invariant knowledge, leading to a noteworthy enhancement in the model’s performance.
Chen [12] introduced causally inspired invariant graph learning to discern and leverage
causally invariant knowledge pertaining to graph data. This is achieved by constructing
causal graphs to represent shifts in the distribution of graphs, enabling the model to
concentrate solely on the subgraphs that encapsulate the most pertinent information about
the underlying causes of the labels. Furthermore, Arjovsky [13] argued that there is no
causal relationship between the spurious correlation resulting from the transfer from the
source domain to the target domain and the prediction target, and proposed an invariance
risk minimization algorithm to mitigate the model’s over-reliance on data bias by using
causality tools to characterize the spurious correlation and invariance in the data. Through
previous researchers’ studies in these scientific domains, this paper finds that extracting
domain-invariant knowledge with causal relationships can sufficiently enhance cross-
domain migration, thereby constraining the introduction of extraterritorial knowledge
that is inconsistent with a given task. The contributions of this paper are summarized
as follows:

• This paper proposes a novel method that utilizes causally invariant knowledge be-
tween features to improve cross-domain named entity recognition (CD-NER). By lever-
aging the stability of causally invariant knowledge across domains, this method aids
in the effective transfer of knowledge across different data environments.
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• The proposed cross-domain named entity recognition model with causal structure
alignment incorporates a causal alignment module in the embedding layer to build a
causal feature graph by identifying causal relationships between features. Through
alignment metrics via graph optimal transport (GOT), it obtains causal invariant
knowledge, mitigating the negative transfer effects between domains. Additionally,
Gated Attention Units (GAUs) are used in the hidden layer to enhance the utilization of
causally invariant knowledge, thereby extracting more efficient feature representations
in the target domain

• The proposed method and modeling approach are validated through rigorous ex-
periments conducted on a variety of data sources, including five English datasets
and a proprietary cross-domain NER dataset. The experimental results confirm the
effectiveness of including causal invariant information within features, demonstrat-
ing its significant role in facilitating knowledge transfer for cross-domain named
entity recognition.

Figure 1. Cross-domain causal similarity structure.

2. Related Work
2.1. Cross-Domain Named Entity Recognition

Cross-domain named entity recognition, which aims to utilize knowledge learned from
resource-rich source domains to improve entity recognition in target domains, has received
increasing research attention because it can alleviate the problems of data dependency and
insufficient training data. Zhang [5] proposed a Multi-Cell Composition LSTM structure
that models each entity type as a separate cell state, thus solving the problems of data
annotation scarcity and entity ambiguity. These methods need to be trained on a large
amount of source domain data to adapt to each domain, making them time consuming
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and inefficient. Hu [8] proposed a new auto-regressive modeling framework that exploits
semantic relationships between domains to migrate semantic features with the same label in
the source domain to the target domain to jointly predict entity labels. Zheng [9] constructed
a labeled graph by pre-training a language model and solved the cross-domain label
semantic feature mismatch problem by dynamic graph matching. Chen [10] utilized frozen
PLMs and conducted collaborative domain-prefix tuning to stimulate the potential of PLMs
to handle NER tasks across various domains. In contrast, previous methods based on the
transfer of semantic feature knowledge do not solve the negative transfer problem well and
thus fail to produce more stable predictions by exploiting the causally invariant knowledge
present in the source domain. Therefore, the method in this paper constructs causal feature
graphs using causal relationships between features in the source and target domains,
and performs graph matching through GOT to learn the causal invariant knowledge in the
source domain to mitigate the possible negative effects of using the source task knowledge
in the target task. In addition, the model has fewer training parameters, takes less time,
and can be combined with different backbone models for better adaptability.

2.2. Few-Shot Named Entity Recognition

Few-shot named entity recognition (FS-NER) aims to identify new classes in resource-
poor scenarios and also highlights good cross-domain capabilities. Fritzler [14] used
prototype networks to achieve entity recognition for few-shot. Tong [15] proposed mining
undefined classes to improve the robustness of the model and thus better adapt to few-shot
learning. Cui [16] combined prompted learning templates and BART models for guided
entity recognition to improve model performance and cross-domain applications. The
authors of [17] do not even need a richly resourced source domain to accomplish small-
sample learning without template tuning using prompted learning. The authors of [9]
improve domain adaptation in low-resource domains by extracting semantic information of
labels in resource-rich source domains. Although the above methods have been significantly
improved in small-sample learning, they only improve the model domain adaptation [18]
and generalization ability through few-shot training, but do not take into account the fact
that the migrated causally invariant knowledge plays a key role in the downstream task.
Therefore, the main difference between this paper’s method and the above methods is
that it is not only applicable to both resource-rich and resource-poor domains, but also
more effectively utilizes the causal invariant knowledge to improve the recognition ability
of few-shot.

2.3. Causal Invariant Learning

Causal invariant learning is a common solution for domain adaptation and domain
generalization in solving cross-domain migration problems, where domain generalization
is crucial for learning causal invariant knowledge in the domain. For example, Li [19] intro-
duces a method called Distortion Invariant representation Learning (DIL) to enhance the
generalization ability of deep neural networks in image restoration by addressing various
types and degrees of image degradation from a causal perspective. Rojas-Carulla [20] pro-
posed a transfer learning method based on causal modeling, which aims to find predictors
that lead to invariant conditions through tasks with known underlying causal structure
and tasks involving interventions on variables other than the target variable. Yang [21]
proposed a causal self-encoder that learns causal representations by integrating them into
a unified model using self-encoder and causal structure learning in the source domain,
and utilizes this medium causal representation in the target domain for prediction. How-
ever, the method lacks the extraction and utilization of causal invariant knowledge. In this
paper, we argue that cross-domain transfer takes full advantage of the causal relationships
that exist between different features, such as words, utterances, and chapters, to design a
causal structural alignment mechanism using causal differences between features and be-
tween domains, and to improve cross-domain entity recognition by GOT learning causally
invariant knowledge in the source domain in the target domain.
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3. Methodology
3.1. Model Architecture

The CSA-NER architecture consists mainly of 2 key modules, as shown in Figure 2.
The first module is the causal alignment module, which constructs causal feature maps
through causal learning and statistical analysis, and extracts causal invariant knowledge in
the causal feature graph using GOT. The second module is the feature interaction module,
which captures the correlation information between domains through GAU to further
strengthen the causal invariant knowledge learned in the target domain.

Figure 2. The framework of our CSA-NER model.

3.2. Causal Alignment Module

In order to precisely identify and effectively transfer causal invariant knowledge em-
bedded in feature representations, CSA-NER incorporates a sophisticated causal alignment
mechanism. This mechanism serves the purpose of meticulously constructing and aligning
causal feature graphs within the embedding layer. The utilization of this module is driven
by the imperative to enhance the model to capture and transfer causal relationships, thereby
contributing to the overall robustness and performance of the NER system.

3.2.1. Causal Feature Graph

In this section, we introduce the construction of a causal feature graph to elucidate the
causal relationships among features. The primary objective behind building the causal fea-
ture graph is to discern and leverage the inherent causal connections between entity features
and contextual features within a sentence. Conceptually, a causal graph is represented as
a directed graph, where nodes corresponding to features and edges signify dependencies
between these features. These dependencies can be approximated by the existence of causal
relationships [21,22].

The causal feature graph is denoted as G = {V, F}, V = {v1, v2, . . . , vn}, V ∈ RN×h,
and F = { f1, f2, . . . , fn}, where h represents the feature dimension. Each node νi ∈ V
signifies a feature representation of the entity and context in the sentence, while each
directed edge fi ∈ F represents a causal relationship between two nodes. To encode these
causal relations within G, we use the adjacency matrix W( f ) ∈ RN×N . The construction of
the causal feature graph is pivotal for understanding and capturing the intricate causal
dependencies between features, providing a foundational structure for subsequent stages
of the proposed methodology.

The causal structure [23] present in the feature space is represented by the existing
causal learning framework in using directed acyclic graphs (DAGs), under the condition
of independent homogeneous distribution, given the sequence X ∈ RN×h, where N is the
number of node features. The goal of causal learning is to infer the causal structure of the
node feature space, and in particular to extract causal relationships between entities and
syntactic structures hidden between nodes. This process requires the construction of a
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causal feature graph in order to understand the causal links and thus obtain the acquisition
of higher order feature representations between nodes. In this paper, by extending the
Structural Equation Model (SEM) [24,25] to causal learning so as to better understand the
causal relationships between variables in order to facilitate the recovery of W( f ), a DAG
structure, from the sequence X, the calculations are as follows:

f−1(X) = W( f )T f−1(X) + g(Z) (1)

where Z ∈ RN×h denotes the corresponding noise matrix, and f and g are parameterized
functions of X and Z.

Causal learning based on variational Bayes [26] approximates the true posterior distri-
bution qψ(Z | X) by minimizing the Kullback–Leibler (KL) dispersion of the variational
posterior distribution pθ(Z | X) to approximate the true posterior distribution. In this
context, KL scatter is a measure of the difference between two probability distributions.
By minimizing the KL scatter, the variational posterior distribution pθ(Z | X) can be made
as small as possible in terms of the difference between it and the true posterior distribution
qψ(Z | X). This means that we want the variational posterior to be as close as possible to
the true posterior in order to better obtain the approximate causality, which is computed
as follows:

argminθ,ϕ DKL
[
qϕ(Z|X)∥pθ(Z|X)

]
= arg min

θ,ϕ

∫
qϕ(Z|X)log

qϕ(Z|X)

pθ(Z)pθ(X|Z)dZ

= argmin
θ,ϕ

DKL
[
qϕ(Z|X)∥pθ(Z)

]
− Eqρ(Z|X)

[
log pθ(X|Z)

] (2)

where DKL is the KL scatter, and θ = (MX, SX) and ϕ = (Mz, Sz) are the generating and
variational parameters, respectively.

The cost function obtained in Equation (2) is known as the expected lower bound,
and its negative form is known as the variational lower bound or evidence lower bound,
and, given a distribution of Z and a set of sequences X1, X2, . . . , XN , the loss can be defined
as an average negative lower bound, which can be expressed as:

LELBO = DELBO − EELBO

DELBO = − 1
n

n

∑
k=1

DKL

(
qϕ

(
Z | Xk

)
∥pθ(Z)

)
EELBO = Eqθ(Z|Xk)

[
log pθ

(
Xk | Z

)] (3)

By using the probabilistic encoder and decoder of Bayesian Neural Networks (BNNs),
the density functions qϕ(Z | Xk) and pθ(Xk | Z) can be obtained. Specifically, the uncer-
tainty distribution of the latent variable Z is obtained by mapping the input data Xk into
the latent space Z and obtaining the parameters MZ and SZ of the variational posterior
distribution parameter qϕ(Z | Xk) when the encoder uses the BNNs to instantiate f−1 and
the constant mapping g. The decoder decodes the latent variable Z into the generated
or reconstructed input data X using the inverse functions of f and g, and obtains the
parameters MZ and SZ of the true posterior distribution pθ(Xk | Z). The true posterior
distribution represents the uncertainty distribution of the generated or reconstructed input
data X, given the latent variable Z.

Considering the acyclicity constraints, causal learning [27] is transformed into the
following optimization problem by using the augmented Lagrangian method with L1
regularization, which is computed as follows:(

W( f ), Θ
)
= arg min

W(0),Θ
(−LELRO + L1) (4)
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L1 = λ
∥∥∥W( f )

∥∥∥
1
+ αh

(
W( f )

)
+

ρ

2

∣∣∣h(W( f )
)∣∣∣2 (5)

s.t.h
(
W( f )) = tr[

(
I + αW( f ) ◦ W( f ))S]− S = 0 (6)

where tr is the trace of the matrix
(

I + αW( f ) ◦ W( f )
)S

, θ is a set of parameters of the BNNs
in the variational self-coder, α is a Lagrange multiplier, and ρ is a penalty parameter.

Optimization is performed using Equations (4)–(6) to update α and increase ρ, af-
ter which a stochastic optimization solver is used to obtain the adjacency matrices W( f )

and θ . Therefore, in this paper, by using V to determine the feature representation of a
node and W( f ) to describe the causal relationship between features, not only can we obtain
the node representation VS and the causal edge representation W( f )

S in the source domain

causal graph, but the node representation VT and causal edge representation W( f )
T in the

target domain causal graph can also be obtained.

3.2.2. Causal Structural Alignment

The causal structure alignment in the feature representation aligns not only the node
features in the causal graph but also the similar causal relationships between the node
features, allowing the model to capture the causal structure information between token
features and thus learn causally invariant features that are more representative of the
original semantic information.

The model uses GOT [28] as a causal alignment method at the embedding layer to
obtain causally invariant knowledge in the feature representation, as shown in Figure 3.
Graph optimal transmission targets two optimal transmission distances, a Wasserstein
distance (denoted as WD) for node (token) matching and a Gromov-WD (GWD) for edge
(causal) matching, using two forms of optimal transfer frameworks to convert cross-domain
transfer into causal representations from one domain distribution to another domain
distribution. The GWD is a self-normalizing alignment that improves the efficiency of
reasoning about interpretable causal relationships with feature information. The model
obtains the cross-domain causal similarity matrix W( f )

ST by using the causal feature graph to

obtain the causality matrix W( f )
S and W( f )

T , which is computed as follows:

W( f )
ST = 1 − W( f )

S

(
W( f )T

T

)⊤
(7)

Figure 3. Causal alignment layers.
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The distance between the nodes is then measured using WD, which is used for node
alignment of semantic features to obtain feature knowledge that is more compatible with
the target domain, as calculated below:

Dwd(µ, ν) = inf
γϵΠ(µ,ν)

E(x,y)≻γ[c(x, y)]

= min
Tϵ ∏(µ,ν)

n

∑
i=1

m

∑
j=1

Tij · c(xi, yj)
(8)

where µ and v are two discrete distributions, formulated as ∑n
i=1 uiδxi , ν = ∑m

j=1 νjδyj ,
and δx is the Dirac function on x. Π(µ, ν) denotes all the joint distributions γ(x, y) with
marginal distributions µ(x) and ν(y); µ and ν represent the weight vectors, respectively; x
and y denote the semantic features of the incoming source and target domains, respectively;
x = VS and y = V T denote the semantic features of the incoming source and target
domains, respectively. c(xi, yj) is the cost function for evaluating xi and yi, and the cosine
function is chosen in this case.

GWD is used for edge-structure alignment by measuring the distance between edges
in the graph. For GWD the specific formula is as follows:

Dgwd(µ, ν) = inf
γ∈Π(µ,ν)

E(x,y)∼γ,(x′ ,y′)∼γ

[
L
(
x, y, x′, y′)]

= min
r̂∈Π(µ,v)

∑
i,i′ ,j,j′

T̂ ijT̂ i′ L
(

xi, yj, x
′
i, y

′
j
)
,

(9)

where (xi, x′i) and (yj, y′j)
′ represent the edge structure between different nodes in the

source and target domains, respectively, L(·) is the causal similarity depletion function
that evaluates the causal similarity of node pairs between different domains for (xi, x′i)
and (yj, y′j)

′, for example, L(xi, yj, x
′
i , y

′
j) = ∥w1(xi, x

′
i)− w2(yi, y

′
i)∥, c1 and c2 are the causal

correlations between evaluation nodes in the same graph, and the matrices are obtained by
learning to align edges in different graphs to learn the causal invariant knowledge present
in the source domain. In summary, the two distances computed by graph-optimized
transmission are used as a loss function for causal structure alignment to learn causal
invariant knowledge in causal feature graphs. The loss function is computed as follows:

LGOT = Dgw + Dgwd (10)

3.3. Feature Fusion Module

To facilitate the fusion of source and target domains for the enhancement of CD-NER
capabilities, this paper presents the design of a feature fusion module, which comprises an
attention unit and a gating unit. The attention unit is responsible for focusing on the most
pertinent information, thereby augmenting the utilization of causal invariant knowledge.
In contrast, the gating unit compensates for the neglect of other relevant knowledge within
the source domain. Through the integration of the attention unit and the gating unit,
a more comprehensive and precise fusion feature representation is obtained. Figure 4
shows how attention units and gate units collaborate to enhance the utilization of causal
invariance knowledge.

The attention unit focuses on the extent to which interactions between different lo-
cations and utilization of causally invariant knowledge between domains enhance the
utilization of causally invariant knowledge in the target domain. As in the attention unit
in Figure 4, causal invariant knowledge is learnt through GOT to output the relevant
adaptation features, which are input to the unit, where the query matrix is the adaptive
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feature VT of the target domain, and the key matrix and the value matrix are the adaptive
feature VS of the source domain; the attention unit can be formalized as follows:

Ae = MultiAttention(V TWϱ
i , V SWκ

i , V SWν
i ) (11)

WQ
i ∈ Rh×dk , WK

i ∈ Rh×dk , WV
i ∈ Rh×dk denotes the training projection parameter

dk = h/n, n is the number of heads of attention, where Ae denotes the features generated
by the target domain through the interaction of the attention unit with the source domain.
Although the attentional mechanism can continue to learn causally invariant knowledge in
the target domain that is not learned in the source domain, some useful information may
be missed by low attentional weights or not fully captured due to inherent limitations in
the allocation of attention. Interaction gating units are therefore introduced to compensate
for the lack of attention to weakly relevant causally invariant features by the attentional
mechanism and to improve the model’s ability to model inter-domain interactions.

Figure 4. Domain collaboration.

As in the gate unit in Figure 4, the gating unit performs finer-grained modeling in
terms of local structure and change by adjusting the input stream point by point, selectively
emphasizing or attenuating the contribution of particular locations or features, filtering out
confounding information in the source domain, and retaining as much causally invariant
knowledge as possible. Adaptive features from the source domain are fed into interaction
gates in the target domain to generate interaction features for the task.

ge = σ(H
′
Wg + bg)

Ge = ge ⊙ Vs

(12)

where ge ∈ RN×h denotes the interaction gate for entity recognition in the target domain,
Ge ∈ RN×h denotes that the target domain learns the relevant features from the source
domain through the gating unit, and Wg ∈ Rl×h and bs ∈ Rh denote the training weights
and biases. After the attention unit and the interaction gating unit in the feature fusion
module have acted, each unit generates feature representations Ae and Ge from different
perspectives that are beneficial to the task of entity recognition, and then the two features
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are integrated using absolute difference and element-wise product [29] to obtain interactive
feature representations for entity recognition in the target domain. Finally, the task adapta-
tion features and interaction features are connected to obtain the task feature representation
of the whole feature fusion module:

I′e = MLP([Ae; |Ae − Ge|; Ae ⊙ Ge; Ge]) (13)

where MLP(•) denotes the multilayer perceptron and I′e ∈ RN×h denotes the interaction
features of the target domain task. As shown in Figure 4, this module integrates the
specificity and sharing between domain features, and enhances the causally invariant
knowledge concern learnt from GOT as much as possible through the interactions between
domains, so as to generate richer feature representations.

3.4. Optimization Goals

The training process uses variational Bayes in the embedding layer to calculate the
variational loss LELBO to optimize the causal relationships existing between the domains,
after which the alignment loss LGOT is completed by graph-optimal transmission, and finally
the cross-entropy loss function (CE ) is introduced in the coding layer to calculate the loss
LGAU of the GAU, which is computed as follows:

LGAU = CE(I′eWG, YT) (14)

where WG ∈ Rh×c , where c denotes the number of categories of labels and YT represents
the true labels in the target domain.

In summary, the overall loss function of CSA-NER can be expressed as the following:

L = LGAU + λ1 ∗ LELBO + λ2 ∗ LGOT (15)

4. Experiments
4.1. Datasets and Settings

The source domain dataset is ConLL-2003 [30], which is a generic dataset containing
the common names of persons (PER), locations (LOC), and organizations (ORG). The cross-
domain datasets are CrossNER [4], BioNLP13PC (PC), and BioNLP13CG (CG) [31]. Cross-
NER is a specialized cross-domain NER dataset containing five domains, namely Politics
(Pol.), Natural Sciences (Sci.), Music (Mus.), Literature (Lit.), and Artificial Intelligence (AI),
and each domain contains not only the same entity types as ConLL-03 but also specific entity
types. For example, the political field contains political parties, politicians, and elections;
the science field contains scientists, disciplines, and chemical compounds; the music field
contains musical genres, musical instruments, songs, and so on; the Lit. field contains
authors, poems, and journals; and the AI field contains algorithms, researchers, and so on.
The PC and CG datasets belong to the medical and biological domains, respectively, and the
entity types mainly including simple chemical (CHEM), cellular component (CC), gene
and gene product (GGP), species (SPE), and cell (CELL) are also included in BioNLP13CG.
Specific dataset statistics are shown in Table 1. According to the difference in the distribution
of the datasets in the relevant domains, they can be divided into two major groups of
experiments. In the first group, ConLL-2003 is chosen as the source domain dataset for
CD-NER experiments, and PC, CG, and Cross-NER are the target domain datasets. In
the second group, given the above English dataset to perform the cross-domain transfer
few-shot experiments, ConLL-2003 is chosen as the source domain dataset and Cross-NER
as the target domain dataset.
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Table 1. Target domain datasets.

Domain Size Train Dev Test

PC
Sentence

Entity
2.5 K
7.9 K

0.6 K
1.2 K

1.7 K
5.3 K

CG
Sentence

Entity
3.0 K

10.8 K
0.8 K
1.6 K

1.9 K
6.9 K

Pol.
Sentence

Entity
0.2 K
1.3 K

0.5 k
3.4 k

0.6 k
4.2 k

Sci.
Sentence

Entity
0.2 K
1.0 K

0.4 k
2.5 k

0.5 k
3.0 k

Mus.
Sentence

Entity
0.1 K
0.6 K

0.3 k
2.6 k

0.4 k
3.3 k

Lit.
Sentence

Entity
0.1 K
0.5 K

0.4 k
2.1 k

0.4 k
2.2 k

AI
Sentence

Entity
0.1 K
0.5 K

0.3 k
1.5 k

0.4 k
1.8 k

Table 2 shows the parameter settings for the experiment. The BERT-based model [32]
is selected as the backbone model for the experiment, where the model is placed in the
Pytorch [33] framework to complete the experiment and the version number of this pytorch
is 1.8.0. The experimental model parameters are set as follows: SGD is selected as the
optimizer, the learning rate is set to 1 × 10−4, the batch size is 8, the epoch is 50, the hidden
variable is 768, and dropout is set to 0.5 to prevent over-fitting.

Table 2. Hyperparameters.

Parameter Value

Hidden variable 768
Batch size 8

Epoch 50
Dropout 0.5

Learning rate 1 × 10−4

Optimizer SGD

4.2. Evaluation Protocols

In the present study, we employ a metric that aligns with and is analogous to prior re-
search endeavors. This metric evaluates the precision of predictions in terms of the accurate
identification of both the entity’s category and its boundaries. The key evaluative factors
utilized for the computation of the ultimate score are the accuracy (Precision), the recall
(Recall), and associated values (F1). This computation follows a formulaic derivation:

P =
TP

TP + FP
(16)

R =
TP

TP + FN
(17)

F1 = 2 × P × R
P + R

(18)

where TP represents the number of correctly identified entities, FP represents the number
of incorrectly identified entities, and FN represents the number of unidentified entities.
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4.3. Baseline Models

To verify the effectiveness of this model on cross-domain NER, comparative experi-
ments are conducted on different datasets with related models.

Coach: [7] a framework of domain adaptation, which divides the task into two stages,
first detecting entities and then classifying them to solve the problem of data.

BERT-tag: [32] proposed the BERT-based baseline model which fine-tunes the BERT
model with a label classifier.

LSTM: [5] proposed a multicellular LSTM structure based on Bert representation to
model diverse entity types separately and perform cross-domain knowledge transfer at the
entity level to solve the problem that entities have different meanings in different domains.

Tem-NER: [16] proposed a template-based approach to named entity recognition,
which reduces the need for labeled data by embedding predefined templates into the
pre-trained BERT model, guiding the model to generate entity labels more accurately.

LST-NER: [9] transformed the cross-domain problem into a graph matching problem
to alleviate the problems of entity type mismatch and domain knowledge not being be
effectively transferred to the target domain.

Cp-NER: [10] proposed a NER task that can simultaneously handle multiple do-
mains in a single model by adding vocabulary and specific terms from different domains
as prefixes to the model parameters and automatically adjusting these prefixes through
collaborative training and optimization to improve cross-domain NER performance.

4.4. Result Analysis

The results of the CD-NER experiments on the CrossNER dataset, the PC dataset
and the CG dataset were compared with other related methods as shown in Table 3, and
the results of the FS-NER experiments on the CrossNER dataset were compared with
other relevant methods as shown in Table 4. Overall the CSA-NER proposed in this paper
achieves good results in different datasets.

Table 3. Experiment results table of resource-abundant English dataset (%), Bold indicates best results
in this domain. * Indicates results reproduced in this domain.

Method Pol. Sci. Mus. Lit. AI PC CG

Coach 61.50 52.09 51.66 48.25 45.15 - -
BERT-tag 68.71 64.97 68.30 63.63 58.88 - -

LSTM 70.56 66.42 70.52 66.96 58.28 86.26 80.74
LST-NER 70.44 66.83 72.08 67.12 60.32 87.14 * 82.48 *

Cp-ner 73.41 74.65 78.08 70.84 64.53 88.48 * 84.53 *
Ours 73.58 72.12 78.53 69.42 64.58 88.82 85.45

Table 4. Experiment results table of resource-scarce English dataset (%), Bold indicates best results in
this domain.

Sample k = 20 k = 50

Method Pol. Sci. Mus. Lit. AI Pol. Sci. Mus. Lit. AI

Coach 46.15 48.71 43.37 41.64 41.55 60.97 52.03 51.56 48.73 51.15
Bert-tag 61.01 60.34 64.73 61.79 53.78 66.13 63.93 68.41 63.44 58.93
LSTM 59.58 60.55 67.12 63.92 55.39 68.21 65.78 70.47 66.85 58.67

Tem-NER 63.39 62.64 62.00 61.84 56.34 65.23 62.84 64.57 64.49 56.58
LST-NER 64.06 64.03 68.83 64.94 57.78 68.51 66.48 72.04 66.73 60.69

Ours 65.14 66.27 70.12 65.83 58.15 69.32 68.21 73.26 67.32 61.02

The full samples of the PC, CG, and CrossNER datasets are given for CD-NER experi-
mental validation, and the results are shown in Table 1. LST-NER improves the median
values of five different domains in CrossNER compared to LSTM. LSTM utilizes a multi-
task learning approach to improve the cross-domain entity recognition performance in the



Electronics 2024, 13, 67 13 of 18

target domain by training both the source and target domains simultaneously, and then
capturing the feature knowledge that is useful for the target domain, but CD-NER is single-
task, using MULTI-CELL-LSTM is not able to better mine the causal invariant knowledge
existing in the cross-domain, and the multi-task training cycle is long. LST-NER builds the
network with a specific training architecture based on a single task and, after the source
domain model is trained, the model migrates the causally invariant knowledge to the
target domain by fine-tuning the source domain model and combines it with the target
domain features, and the training period is short. Although the values of Cp-NER relative
to LST-NER are also improved in different areas, the methodology of this paper mainly
uses the same base framework as LST-NER; this is because Cp-NER mainly utilizes the base
framework of the large model; therefore, choosing the same base framework as LST-NER is
to highlight that the improvement of the effectiveness of the model in this paper is not on
the basis of the framework but due to the validity of the proposed methodology.

The results show that our model consistently outperforms all the compared models
in both low- and rich-resource settings. It is well illustrated that the model achieves
better performance in both resource-rich and resource-poor environments by constructing
causal feature graphs to establish causal relationships in token features, and then further
constraining the causal feature graphs using graph matching to further learn the causal
invariant knowledge present in the feature information.

The experimental results also show that there is no significant improvement in model
effectiveness when comparing our model with Cp-NER and there is a difference in the
selection of PLMs. We believe that the reason for this may be that Cp-NER chooses the
T5 model with stronger learning capability and uses an external domain-related corpus
for model pre-training, while the latter chooses the basic BERT-base model. In addition,
CpNER adopts a multi-source domain learning framework, while CSA-NER is unfair to
CpNER in terms of domain adaptation capability. However, CpNER does not explore
the feature knowledge representation in depth and does not make full use of the causal
invariant knowledge in the features. Meanwhile, CpNER fails to mitigate the negative
migration problem caused by migration. In contrast, CSA-NER makes full use of such
causal invariant knowledge to migrate the causally related invariant knowledge (e.g.,
knowledge of grammatical structures) from the source domain to the target domain, which
greatly reduces the migration of spurious relational features. Therefore, even in the case of
a relatively weak base model, CSA-NER has a certain performance improvement compared
to Cp-NER.

4.5. Ablation Study

To rigorously evaluate the robustness and effectiveness of our model’s causally in-
variant knowledge, we conducted an ablation study under two distinct resource settings.
For the low-resource scenario, we selected the Politics and Music datasets with a modest
sample size of K = 50. Conversely, in the high-resource context, we employed the more
extensive PC and CG datasets, utilizing their full sample populations.

1. Removal of the causal graph construction task loss LELBO.
2. Omission of LGOT , which is crucial for the graph matching task.
3. Absence of both LELBO and LGOT , to assess their combined effect.
4. Exclusion of the gate mechanism in LGAU .
5. Simultaneous elimination of LELBO, LGOT , and the gate mechanism in LGAU .

Each above setting was methodically analyzed to determine its contribution to the
overall performance, offering insights into the significance of each component in achieving
causally invariant knowledge under different resource constraints.

As a result of Table 5 results show that both the causal alignment module and the feature
interaction module are beneficial for learning better NER models. Combining causal graph
construction and graph matching can yield good results when the model utilises the causal
structure alignment module. In combination with learning causally invariant knowledge in
graph structures (i.e., source graphs), causally invariant knowledge becomes more effective
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when attention is locked onto the structure. Furthermore, when eliminating the gating
units in the causal alignment module and the feature interaction module, and utilising
only Bert-base as the primary model, the approach in this paper is able to significantly
improve upon Bert-base, suggesting that transferring causal invariant knowledge in the
source domain is crucial and beneficial for cross-domain NERs.

Table 5. Ablation study on low and high resources (%).

T Low Resources High Resources

Datasets Politics Music PC CG
Ours 69.32 73.26 88.82 85.45
w/o LELBO 68.80 72.13 87.82 83.95
w/o LGOT 68.65 71.10 86.55 83.68
w/o gate 68.12 72.56 86.84 84.77
w/o LELBO + LGOT 67.78 70.89 85.16 83.13
w/o LELBO + LGOT + gate 68.12 69.13 85.02 82.21

4.6. Performance with Different Data

We evaluate the performance of our model with different amounts of target domain
labeled data on the CG domain and make comparisons with baselines LST-NER,the specific
results are shown in Figure 5. We use the same few-shot sampling strategy as in the
low-resource setting. We find that even when in a highly low-resource scenario (K = 5,
10), the proposed model shows competitive performance with the few-shot NER model
LST-NER.When more data are available,our model consistently outperforms LST-NER.In
contrast, the performance of the LST-NER model flattens out when there is relatively
enough data. We suggest that the reason for this may be that while LST-NER improves
domain adaptation, it lacks the emphasis on causal invariant knowledge. The results
suggest that the method in this paper improves the model’s emphasis on causal invariant
knowledge compared to the small-sample approach.

Figure 5. Comparisons when utilizing different amounts of data for training in CG domain.

4.7. Hyperparameter Discussion

In our study, we conducted a detailed exploration of the impact of two weight param-
eters, λ1 and λ2, on the model’s performance. Both parameters are integral in modulating
different aspects of the learning process:
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• λ1 is designed to control the uncertainty distribution within the causal feature graph.
This is achieved by adjusting LELBO, the loss associated with the causal graph construc-
tion task. By tuning λ1, we effectively manage how the model accounts for uncertainty
in the causal relationships it identifies and represents.

• λ2, on the other hand, is pivotal in aligning causally invariant knowledge within the
causal features. It does this by adjusting LGOT, which is instrumental in the graph
matching task, ensuring that the causally relevant features are accurately aligned
across different domains.

The experiment’s results, as depicted in Figure 6, provide insightful observations
regarding these parameters, especially in the context of political data. When we analyzed
the effect of these parameters on the F1 score, a metric commonly used to evaluate the
accuracy of a model, we found that these parameters, surprisingly, did not play a major
role in enhancing the model’s performance. This outcome is particularly significant as it
reinforces the validity of the method proposed in our paper.

Figure 6. The impact of weight parameters λ1 and λ2 on the performance in the politics domain.

4.8. Fine-Grained Analysis

In order to further analyze the prediction effect of CAS-NER on different entity types,
a fine-grained analysis was performed on the PC dataset for the CD-NER task, and the
main entity types in the PC dataset were CCP, GCP, CHEM, and Complex; Figure 7 shows
the prediction results in the CD-NER task. In the entity identification task, CAS-NER is
more effective than CP-NER in almost all entity types, although the results are similar
to those of Cp-NER in the CCP type, but this better highlights the effectiveness of this
paper’s method because the data samples of the CCP type are small, only 6. 1% of the total
number, but this also better illustrates that this paper’s method is also comparable to the
large model-based Cp-NER approach, and that this paper is able to extract causal invariant
knowledge hidden in entities and contexts for cross-domain migration regardless of the
amount of data.

Figure 7. Comparison of F1 values for different entity types.
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4.9. Case Study

As shown in Figure 8, the CSA-NER method enhances the performance of prediction
in the target domain by extracting the causal invariant knowledge embedded in the features.
When compared with the LST-NER model in a low-resource environment, the method is
able to more accurately mark entities in text as correct, and the target domain improves
the generalization ability of the model by learning causal invariant knowledge from the
source domain and better enriching the causal invariant knowledge by combining with the
attention gating mechanism. For Cp-NER, the semantic features of multiple source domains
are used and the source domains are trained under a large language model, which is more
of a generalization of multiple source domains, whereas the model in this paper is trained
in a single source domain and mainly extracts causally invariant knowledge to enhance the
effect of entity recognition, so the model of this paper can achieve a similar effect to that of
Cp-NER in comparison with the model of Cp-NER. For example, for Joseph, our method
can also accurately label him as a researcher instead of a person. In summary, CSA-NER
shows good performance improvement in cross-domain named entity recognition.

Figure 8. Prediction comparison of different models in different fields.

5. Conclusions

In this paper, we propose a cross-domain named entity recognition model based on
causal structure alignment (CAS-NER) by investigating the enhanced capability of causal
invariant knowledge in cross-domain named entity recognition. By aligning similar causal
structures, the model effectively improves the entity recognition ability in the target domain
and achieves better cross-domain knowledge transfer. Experimental results show that CAS-
NER performs better than current cross-domain approaches, which further demonstrates
that the use of causal invariant knowledge can also facilitate cross-domain knowledge
transfer. In the future, we will further optimize the model and investigate the effect of the
causal learning mechanism on the target domain migration mechanism under multiple
source domains based on other cross-domain sequence annotation tasks.
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