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Abstract: The dual-population differential evolution (DDE) algorithm is an optimization technique
that simultaneously maintains two populations to balance global and local search. It has been
demonstrated to outperform single-population differential evolution algorithms. However, existing
improvements to dual-population differential evolution algorithms often overlook the importance of
selecting appropriate mutation and selection operators to enhance algorithm performance. In this
paper, we propose a dual-population differential evolution (DPDE) algorithm based on a hierarchical
mutation and selection strategy. We divided the population into elite and normal subpopulations
based on fitness values. Information exchange between the two subpopulations was facilitated
through a hierarchical mutation strategy, promoting a balanced exploration–exploitation trade-off
in the algorithm. Additionally, this paper presents a new hierarchical selection strategy aimed at
improving the population’s capacity to avoid local optima. It achieves this by accepting discarded trial
vectors differently compared to previous methods. We expect that the newly introduced hierarchical
selection and mutation strategies will work in synergy, effectively harnessing their potential to
enhance the algorithm’s performance. Extensive experiments were conducted on the CEC 2017 and
CEC 2011 test sets. The results showed that the DPDE algorithm offers competitive performance,
comparable to six state-of-the-art differential evolution algorithms.

Keywords: mutation strategy; selection strategy; multi-population; differential evolution

1. Introduction

In recent years, nature-inspired optimization algorithms [1–5] have been extensively
researched for solving complex optimization problems. Storn and Price, inspired by
nature, proposed the differential evolution algorithm, which has been successfully ap-
plied to a broad spectrum of optimization challenges, ranging from multi-objective prob-
lems [6] to constrained optimization [7] and large-scale optimization [8,9]. Over the past
few years, many excellent differential evolution algorithms have been proposed [10–14].
This article primarily focuses on enhancing the performance of DE for single-objective
numerical optimization.

The single-population differential evolution algorithm requires the construction of
a population composed of multiple individuals and, then, iteratively evolving the indi-
viduals through the mutation, crossover, and selection operators to continuously find
better solutions. The mutation strategy has a significant impact on the performance of the
algorithm [15–18]. Improper setting of the mutation strategy may lead to two extremes:
(1) premature convergence and (2) inability to converge. For instance, the mutation strategy
DE/rand/1 is recognized for its robust exploration capabilities, because it does not depend
on specific individuals, but entirely on randomness to select vectors for driving evolution;
this method is conducive to the algorithm exploring different regions of the search space.
However, it is incapable of fully exploiting high-quality regions, leading to a need for more
iterations to find the global optimal solution. The mutation strategy DE/best/1 operates
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using the best individual in the population as the base vector, thus possessing significant
convergence capabilities. It efficiently guides the search process towards the direction of
optimized solutions. However, this inevitably leads to a rapid decline in the diversity of the
algorithm. In order to have a better balance between exploration and exploitation in these
algorithms, some researchers have proposed new mutation strategies. Zhang and Ander-
son [19] enhanced diversity and achieved a more-balanced exploration and exploitation of
evolutionary processes by introducing an external archive to guide the mutation operators.
However, this method does not fully leverage the potential of superior individuals. Yintong
Li [20] further proposed a new directional mutation strategy to ensure that the evolution
progresses in a better direction. Wang [21] introduced the DE/current-to-lpbest/1 mu-
tation strategy, which leverages a blend of the current individual’s information and the
elite solutions. This approach involves guiding the mutation process with insights from
multiple elite individuals, enhancing the algorithm’s ability to explore potential areas more
effectively. EFADE [22] introduced a new triangular mutation operator to better balance
exploration and exploitation tendencies. Some researchers have found that combining mul-
tiple mutation strategies can help further enhance the algorithm’s performance when faced
with different problems. Based on the above discussion, how to choose an appropriate
mutation strategy to balance exploration and exploitation is challenging.

Besides the mutation strategy, the survivor selection strategy also significantly impacts
the performance of the differential evolution algorithm. Most research tends to use a
greedy selection strategy. This strategy, based on the principle of natural selection, accepts
individuals with better fitness values and eliminates those with poorer ones. Although
this can make the population converge quickly to better values, this method overlooks the
information from the discarded trial individuals that could help improve the algorithm’s
performance, and it is inefficient when facing local optima. Some studies have shown that
improving survivor selection strategies can also enhance the performance of differential
evolution algorithms. Pravesh Kumar and Millie Pant [23] proposed a new selection
strategy where it is no longer a competition between the target vector and its corresponding
trial vector, but a screening of all candidate vectors from both, allowing better individuals to
enter the next generation. Tian [24] proposed a new selection strategy, in which the selection
of individuals is related not only to the fitness values, but also to their positions, enabling us
to fully utilize exploration information and enhance diversity. Guo [25] proposed a subset-
to-subset selection operator that divides the target population and the trial population into
multiple subsets and uses a rank-based selection operator in the corresponding subsets to
improve the convergence performance of DE. Zeng [26] introduced a new selection operator
designed to aid individuals in stagnation. When an individual is stuck, this operator first
uses the best vector previously discarded by the individual for replacement. If that does
not lead to evolution, it then uses the second-best vector, and so on. It continues with
all the vectors from the individual’s past successful updates. However, if none of these
methods help the individual improve, a drastic measure is taken. The operator replaces the
individual with the best individual of itself from its history. This strategy is employed with
the aim of assisting the individual to escape from local optima.

Based on the above discussion, previous studies have typically applied improved
mutation and selection strategies to single-population differential evolution algorithms.
However, due to the fact that single-population DE algorithms maintain only one popula-
tion, the inevitable exchange guidance between individuals during the evolution process
may lead to a decrease in population diversity, shifting the focus towards local search. This
can result in the algorithm prematurely converging to local optima, without fully exploring
other potential global optima in the search space.

In response to the limitations of single-population DE algorithms, many researchers
have attempted to improve DE algorithms using multi-population techniques, achieving
promising results [27–29]. Among them, the performance of dual-population algorithms
stands out, in particular. Pan [30] proposed a dual-population differential evolution algo-
rithm based on different combinations of mutation strategies. This approach enhances the
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robustness of populations when facing various problems by applying mutation strategies
with different exploration and exploitation capabilities to different populations. Li [31]
introduced a dual-population DE algorithm based on fitness stratification, utilizing a leader
population to guide an adjoint population in exploring more-promising regions while
maintaining good convergence properties. Furthermore, Wang [32] presented a DE algo-
rithm that co-evolves a population with an accompanying population. It stores suboptimal
solutions discarded by the main population in the previous generation and uses these indi-
viduals to assist in the subsequent evolution through mutation strategies, greatly enhancing
population diversity in this manner.

The study indicates that existing dual-population differential evolution algorithms
can be categorized into three types:

1. Dual-population with varied mutation strategies: This approach uses different muta-
tion strategies for exploration and exploitation to achieve a balance between global
and local searches. It enhances the algorithm’s convergence speed, global search
capability, and robustness across various problems, facilitating the discovery of high-
quality solutions more efficiently. However, it overlooks inter-population information
exchange, potentially impairing the algorithm’s full perception of target areas and
leading to performance decline. Moreover, its tendency to employ a greedy selection
strategy can result in stagnation when encountering local optima.

2. Hierarchical guidance in dual-populations: In this approach, a hierarchy is established
between two populations—an elite population guides a standard population. This
guidance aims to facilitate the exchange of information and strategies between the
two groups, leveraging the strengths of the elite population to improve overall perfor-
mance. However, this method has its pitfalls. The over-reliance on elite individuals
can lead to a decrease in diversity within the population, as the algorithm may focus
too narrowly on the solutions proposed by the elite. This reduced diversity can make
the algorithm susceptible to becoming trapped in local optima, where it repeatedly
explores suboptimal solutions without finding better alternatives.

3. Main and accompanying populations’ collaboration: This type involves creating
an accompanying population to support the main population’s evolution. The ac-
companying population is used to store individuals that are discarded by the main
population, which can later be reintegrated into the mutation strategies. This reintegra-
tion aims to increase the diversity within the main population, countering the natural
tendency of evolutionary algorithms to converge on similar solutions. However, this
approach also faces a significant challenge when dealing with local optima. The pres-
ence of too many stagnant individuals, who do not contribute to further evolution, in
both the main and auxiliary populations can severely hinder the evolutionary process,
making it difficult for the algorithm to progress beyond suboptimal solutions.

Based on the above discussion, we propose a dual-population differential evolution
algorithm (DPDE) based on a hierarchical mutation and selection strategy. On the one hand,
we divided the population into different subpopulations based on fitness and implemented
a hierarchical mutation strategy to better balance exploration and exploitation. On the other
hand, we introduced a new selection strategy to assist individuals in enhancing their ability
to escape local optima. This selection strategy consists of two main steps: (1) determining
individual stagnation using our proposed state definition and (2), if stagnation is detected,
applying the appropriate survivor selection strategy based on the individual’s population.
In this way, we hope to improve the performance of the DE algorithm when facing local
optima and to allow better cooperation with the mutation strategy.

This paper’s primary contributions are outlined as follows:

1. In this study, a hierarchical mutation strategy is proposed for the dual-population
differential evolution algorithm. Specifically, the population is divided into elite
and normal subpopulations based on the fitness values. The elite subpopulation
focuses on optimizing solutions, while the normal subpopulation is dedicated to
exploring the search space. By adopting this hierarchical mutation strategy, effective
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information exchange between subpopulations is facilitated, thereby enhancing the
overall performance of the algorithm.

2. An innovative selection strategy is proposed in this paper. Firstly, a new criterion
is introduced to identify whether an individual has fallen into a local optimum.
Subsequently, for individuals in stagnation, survivors in the selection strategy are
not limited to only those with superior fitness, but may include different individuals.
This approach enhances the performance of the dual-population differential evolution
algorithm when facing local optima.

3. Comprehensive evaluations were performed using the CEC 2017 and CEC 2011
benchmark suites. The results indicated that our proposed DPDE algorithm exhibited
superior performance in comparison to several state-of-the-art algorithms.

The rest of this paper is structured as follows. Section 2 introduces the traditional DE
algorithm. Section 3 details our proposed algorithm, DPDE. In Section 4, we present the
comparative results of DPDE with other algorithms on the CEC 2017 and CEC 2011 test
suites, along with an analysis of the parameter sensitivity and the method’s effectiveness.
Finally, Section 5 provides a summary of the paper.

2. Basic Differential Evolution

In this section, we will provide a detailed introduction to the structure of the differ-
ential evolution algorithm, mainly through the four operations of initialization, mutation,
crossover, and selection. The minimization problem considered in this article is as follows:

min( f (xi)), xi ∈ S (1)

In this formula, f (.) denotes the value of the objective function and x stands for the
individuals of the population. The search space S is defined as

S =
D

∏
j=1

[Xj,min, Xj,max] (2)

where Xj,min and Xj,max correspond to the lower and upper bounds of the j-th dimension
of the individual X, respectively. D represents the maximum dimension of the individual.

2.1. Initialization

The initialization operation is used to generate a population pop consisting of NP
individuals, pop = (X1, X2, . . . , XNP). The operation for initializing population individuals
is as follows:

Xi,j = Xj,min + rand(0, 1)× (Xj,max − Xj,min) (3)

where rand (0, 1) is a random number uniformly distributed in the range [0, 1] and Xi,j
represents the j-th dimension of individual i.

2.2. Mutation

In the g-th generation, the mutation strategy is used to generate a mutant vector Vg
i

based on the target vector Xg
i . The following are six widely used mutation strategies:

1. DE/rand/1:

Vg
i = Xg

r1 + F ×
(

Xg
r2 − Xg

r3

)
(4)

2. DE/rand/2:

Vg
i = Xg

r1 + F ×
(

Xg
r2 − Xg

r3

)
+ F ×

(
Xg

r4 − Xg
r5

)
(5)
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3. DE/best/1:

Vg
i = Xg

best + F ×
(

Xg
r1 − Xg

r2

)
(6)

4. DE/best/2:

Vg
i = Xg

best + F ×
(

Xg
r1 − Xg

r2

)
+ F ×

(
Xg

r3 − Xg
r4

)
(7)

5. DE/current-to-rand/1:

Vg
i = Xg

i + F ×
(

Xg
r1 − Xg

r2

)
+ F ×

(
Xg

r3 − Xg
r4

)
(8)

6. DE/current-to-pbest/1:

Vg
i = Xg

i + F ×
(

Xg
pbest − Xg

i

)
+ F ×

(
Xg

r1 − Xg
ra

)
(9)

Among them, Xg
best represents the best individual in the g-th generation of the popula-

tion, Xg
pbest represents a randomly selected individual from the top 100p% individuals with

the best fitness in the g-th generation of the population, ra is a randomly generated integer
from the set {1, 2, . . . , NP + |A|}, A is an archive that stores the parent vectors discarded in
the selection strategy, X̄g is the collection of the population and the archive A, the subscripts
r1, r2, r3, r4, and r5 are randomly generated integers from the set {1, 2, . . . , NP}, and the
subscripts are different from each other.

2.3. Crossover

After the mutation operation, the obtained mutation vector and the target vector are
crossed to obtain a trial vector. The definitions of commonly used crossover operations are
as follows:

Ug
i,j =

{
Vg

i,j if rand(0, 1) ≤ CR or j = jrand

Xg
i,j otherwise

(10)

where CR represents the crossover rate, rand (0, 1) is a random number uniformly dis-
tributed in the range [0, 1], jrand is a random integer randomly generated from the range [1,
D], and D is the maximum value of the individual’s dimension.

2.4. Selection

Following the crossover process, the selection mechanism decides between the trial
vector Ug

i and the associated target vector Xg
i , with the superior of the two progressing to

the subsequent generation. The formula based on the greedy survivor selection strategy is
as follows:

Xg+1
i =

{
Xg

i if f (Xg
i ) < f (Ug

i )

Ug
i otherwise

(11)

3. Dual-Population Differential Evolution Based on Hierarchical Mutation and
Selection Strategy

In differential evolution algorithms, achieving a balance between the exploration and
exploitation of the population, as well as assisting individuals in escaping local optima
pose significant challenges. However, traditional dual-population differential evolution
algorithms often struggle to effectively address these issues. On the one hand, the selection
of appropriate mutation strategies is a challenging task. On the other hand, when individu-
als become trapped in local optima, traditional greedy selection strategies often struggle to
efficiently drive further population evolution.

To overcome these challenges, this paper initially divides the population into two
subpopulations, then introduces a hierarchical mutation strategy to balance the exploration
and exploitation capabilities of the population. A new hierarchical selection strategy is
introduced to assist the dual-population differential evolution algorithm to better address
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the local optima issues. These two strategies work in tandem to enhance the overall
performance of the population. Ultimately, based on these strategies, the paper proposes
the DPDE algorithm.

3.1. Dual-Population Strategy

The dual-population differential algorithm has been extensively studied by researchers
in recent years. It can adopt different mutation strategies in various populations, thereby
facilitating the maintenance of good exploration and exploitation capabilities within the
populations. In this paper, we employed fitness-based grouping of the population, where
individuals ranking within the top bp% are classified as the elite population (ep), while
the remaining individuals are categorized as the normal population (np). Notably, the ep
focuses more on refining solution quality, whereas the np specializes in exploring potential
solution spaces. We introduce a novel hierarchical mutation strategy aimed at maximizing
information exchange between these two subpopulations, enhancing search capabilities
and preventing premature convergence. As illustrated in Figure 1, individuals within the
ep (depicted by red circles) represent the top-performing fraction, tasked with uncovering
superior solutions. In contrast, the np, guided by the ep, explores areas with untapped
potential within the solution space. This approach leverages the information from the ep to
guide the evolution of the np, thus promoting a balanced exploration–exploitation strategy.
Furthermore, we incorporated a novel hierarchical selection strategy designed to improve
the individual’s ability to escape local optima. Detailed explanations of the hierarchical
mutation and selection strategies will follow in subsequent sections. At the end of each
generation, individuals in these two subpopulations are reclassified based on their fitness
values, facilitating information exchange and ensuring the leadership of the ep.

Figure 1. The framework of DPDE.

The value of the bp influences the size of the np and ep, which, in turn, affects the
algorithm’s performance. We designed a larger bp value in the early stage, benefiting the
normal population in exploring more potential regions and, thus, boosting the exploration
capability. Later, we reduced the bp value, allowing both populations to learn from the
top-performing individuals in the entire population, thereby enhancing the algorithm’s
convergence capability. The formula for the bp is as follows:

bp = 0.29 × (1 − n f es
maxn f es

) + 0.11 (12)

Here, n f es represents the current number of function evaluations and maxn f es repre-
sents the maximum number of function evaluations.
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3.2. Hierarchical Mutation Strategy

In this section, we will introduce the hierarchical mutation strategy used in this
paper. The hierarchical mutation strategy consists primarily of two mutation strategies,
namely DE/current-to-pbest/1 and improved DE/current-to-pbest/1, employed for the
elite population and the normal population, respectively.

For the elite population: We adopted the DE/current-to-pbest/1 mutation strategy
from JADE. This strategy selects the top 100p% individuals from the population and
utilizes an external archive A to maintain diversity. This approach possesses an impressive
convergence rate. Through this strategy, we aimed for the individuals to search within the
best regions of the population, thereby finding improved solutions.

Vg
i = Xg

i + F × (Xg
pbest − Xg

i ) + F × (Xg
r1 − Xg

ra) (13)

where Xg
pbest represents an individual randomly selected from the 100p% best-fitness indi-

viduals of the population in the g-th generation. ra is a randomly generated integer from
the set {1, 2, . . . , NP + |A|}. A is an archive storing the parent vectors that are eliminated
in the selection strategy, and Xg is the union of the population and the archive A.

For the normal population: We employed the improved DE/current-to-pbest/1. This
strategy improves upon DE/current-to-pbest/1 by changing the selection of the top 100p%
individuals in the population to the selection from the elite population. Through this
strategy, we allow the less-proficient individuals in the population to accept guidance from
the superior individuals in the elite population, thereby exploring more-promising regions,
enhancing the algorithm’s exploration capabilities, while maintaining a certain degree
of convergence.

Vg
i = Xg

i + F × (Xg
ep1 − Xg

i ) + F × (Xg
r1 − Xg

ra) (14)

where Xep1 is an individual randomly selected from the elite population.

3.3. Hierarchical Selection Strategy

As mentioned earlier, we propose a dual-population DE algorithm. This approach
achieves a balance between exploration and exploitation through multiple mutation strate-
gies. However, during the evolutionary process, individuals often get stuck in local optima.
Traditional greedy selection strategies struggle to provide an effective solution. Therefore,
to address this issue more effectively, we designed a new selection strategy. This strategy
consists of two steps: (1) determining if an individual has fallen into a local optimum;
(2) deciding on the selection strategy based on the population to which the individual
belongs. We will now provide a detailed explanation of these two steps.

First phase: Determining whether an individual is trapped in a local optimum is
challenging. While many studies lean towards a simplified approach, i.e., considering
that the individual has stagnated when its fitness has not improved over a certain number
of generations, this method overlooks the probability of an individual getting trapped in
local optima at different stages of evolution. In the early stages of evolution, individuals
with poorer fitness are more likely to improve. If there is no significant improvement in
fitness over a long time, it is highly probable that they have fallen into a local optimum.
In contrast, in the later stages of evolution, individuals often focus on convergence, and
improving fitness becomes challenging. Therefore, a more-stringent stagnation judgment
criterion is required. To make a more-accurate judgment, we propose a new formula for
determining individual stagnation based on the iteration phase, as shown in Equation (15).

T =

{
T1 if n f es ≤ 0.5 × maxnfes
T1 + n f es−0.5×maxnfes

0.5×maxnfes (T2 − T1) if n f es > 0.5 × maxnfes
(15)

In the formula, T represents the threshold used for individual stagnation judgment.
T1 and T2 represent the minimum and maximum values of the threshold, respectively. nfes
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denotes the current iteration number, while maxnfes stands for the maximum number of
iterations. Specific settings will be discussed in detail in the experimental section. As the
formula suggests, in the early stages of evolution, we set a relatively small fixed stagnation
judgment value for the population. It is noteworthy that this value should not be set too
low to reduce misjudgments. In the later stages of evolution, we employed a linearly
increasing stagnation judgment, adapting to the increased difficulty in judging stagnation
during the evolutionary process and helping the population converge better.

Second phase: When an individual falls into a local optimum, we adopted a targeted
selection strategy based on the population’s characteristics.

For individuals in the normal population that fall into a local optimum, our first
approach was to accept the suboptimal trial individual they generate. If they remain
stagnant after accepting this for T3 generations, we concluded that the current individual
is in a difficult-to-improve area. At this time, we randomly selected the best discarded trial
vector from the historical data of an individual in the elite population. This approach has
two advantages. First, it reduces computational resource consumption due to stagnated
individuals in the normal population. Second, by incorporating a high-quality trial vector
with a good fitness value, we gain insights from superior regions. By employing this
strategy, we can better explore potentially promising regions. As illustrated in Figure 2,
when individual A from the normal population falls into a local optimum, we first accept
the inferior trial vector C, with a certain probability of disturbing to vector D, thereby
escaping the local optimum. When the perturbation range of A is small and we accept
experimental individual B, it is still difficult to get out of the local optimum. If after T3
generations, the fitness of the individual still has not improved, we then accept the unused
optimal discarded vector C from the history of the elite population. We hope to further
explore promising regions based on C and assist individual A to escape the local optimum.

Stagnant individuals in the elite population already possess relatively good fitness
values, so we focused more on whether the surrounding target landscape can help them
escape local optima. Therefore, we selected the discarded trial individuals generated in the
current generation. Through this method, we expected to better develop locally. With the
HS strategy, the population’s exploration and exploitation abilities are further enhanced. It
is worth noting that the best individuals still use a greedy selection strategy to improve the
algorithm’s stability.

Figure 2. Illustration of how the selection strategy helps to escaping from local optima.

3.4. Control Parameter

The efficiency of the differential evolution algorithm is significantly affected by its
parameters. For the parameter settings, Success-History Based Parameter Adaptation for
Differential Evolution (SHADE) has achieved widespread success. In this paper, we also
choose it for the parameter setting. The SHADE method maintains two historical memory
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sets, SCR and SF, which store the crossover rate CR and the scaling factor F values used
during successful updates, respectively. In the G-th generation, the F and CR values for
each individual in the population are generated using the following formulae:

Fi,G = randc(uFr, 0.1) (16)

CRi,G = randn(uCRr, 0.1) (17)

where randc represents the Cauchy distribution and randn represents the normal distribu-
tion. uFr and uCRr are randomly selected from MF and MCR, respectively, where r = 1, . . . ,
H. H is the pre-defined size of the set. Initially, MF and MCR are both set to 0.5 and are
updated at the end of each generation. The formulas for MF and MCR are as follows:

wk =
∆ fk

∑
|SCR |
k=1 ∆ fk

(18)


MCR = meanWL(SCR)

meanWL(SCR) =
∑
|SCR |
K=1 Wk×S2

CR,k

∑
|SCR |
K=1 Wk×SCR,k

(19)


MF = meanWL(SF)

meanWL(SF) =
∑
|SF |
K=1 Wk×S2

F,k

∑
|SF |
K=1 Wk×SF,k

(20)

where ∆ fk =
∣∣ f (Uk,G)− f (Xk,G)

∣∣, represents the improvement magnitude of the fitness
value for individual k that was successfully updated in the G-th generation. This method
effectively achieves the adaptive adjustment of the parameters. |S| denotes the size of the
set. In this paper, F will be truncated to 0.6 in the early stages and extended to the range
[0–1] in the later stages.

Reducing the population size during the iteration process can enhance the performance
of the algorithm. In this paper, we adopted the Linear Population Size Reduction strategy
(LPSR). Under this strategy, we used a linear formula to adjust the population size in each
generation. The specific formula for updating the population size is as follows:

NG+1 = round
[
(Nmin − Ninit)

maxnfes
× nfes + Ninit

]
(21)

where Ninit represents the initial population size and Nmin represents the predetermined
minimum population size. At the end of each generation, the (NG − NG+1) individuals
with the worst fitness in the population will be removed.

Based on the above discussion, the pseudocode for DPDE is shown as Algorithm 1.

Algorithm 1 DPDE algorithm.

1: Set NP = 18 · D, Nmin = 4, and initialize T1, T2, T3
2: Initialize p0 randomly according to Equation (3), p0 = X1, X2, . . . , XNP
3: Set MF = 0.5, MCR = 0.5, A = ∅, nfes = NP, and set all values in the count equal to 0,

H = 5
4: while nfes < maxnfes do
5: SF = ∅, SCR = ∅, CR = ∅, F = ∅
6: for i = 1 to NP do
7: r = randomly select from [1, H]
8: if Mr

CR < 0 then
9: CRi = 0

10: else
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Algorithm 1 Cont.

11: CRi = N(Mr
CR, 0.1)

12: end if
13: Fi = C(MF,r, 0.1)
14: if nfes < 0.6 · maxnfes and Fi ≥ 0.6 then
15: Fi = 0.6
16: end if
17: Calculate bp according to Equation (12)
18: Calculate T according to Equation (15)
19: if i ≤ bp · NP then
20: Compute Vg

i by mutation Equation (13)
21: else
22: Compute Vg

i by mutation Equation (14)
23: end if
24: Compute Ug

i by crossover Equation (10)
25: end for
26: Sort the population by the ascending fitness values
27: for i = 1 to NP do
28: if f (Ug

i ) < f (xg
i ) then

29: xg+1
i = ug

i , count(i) = 0, f lag(i) = 0
30: A ⇐ xg

i , SF ⇐ Fi, CRi ⇐ SCR
31: else
32: count(i) = count(i) + 1
33: if i < bp · NP and count(i) ≥ T then
34: xg+1

i = Ug
i

35: else if i ≥ bp · NP and count(i) ≥ T then
36: if f lag(i) == 0 then
37: xg+1

i = Ug
i

38: else
39: f lag(i) = f lag(i) + 1
40: end if
41: if f lag(i) ≥ T3 then
42: xg+1

i = the historical best discarded vector that individual i has never
used

43: end if
44: end if
45: end if
46: Update A if necessary
47: end for
48: Calculate NPnew according to Equation (21)
49: NP = NPnew
50: if SF ̸= ∅ then
51: Calculate Wk according to Equation (18)
52: Update MF,k and MCR,k according to Equations (19) and (20)
53: end if
54: nfes = nfes + NP
55: end while

4. Experiments’ Analysis and Comparison

In this section, we primarily discuss the performance of the proposed DPDE on the
CEC 2017 test set [33], comparing it with some of the advanced DE algorithms. Further,
this paper verifies the effectiveness of the new selection strategy proposed. Simultaneously,
a detailed discussion on some parameter settings involved in the method is conducted.
The test dimensions in this paper range from 10, 30, 50, to 100, with a search range
between [−100, 100]. For each function, the optimal value is known. Each algorithm was
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run independently 51 times, recording the mean and standard deviation of the fitness
error value f (Xbest)− f (X∗). Here, Xbest represents the optimal solution achieved by the
algorithm in a single run, while X∗ denotes the true global optimum of each function.
When the fitness error value is less than 10−8, it is considered as 0. For the CEC2011 test
set [34], the maximum number of evaluations in this paper was set to 150,000, and each
algorithm was run 25 times on each instance. Moreover, to better assess the algorithm’s
performance, this study conducted non-parametric statistical tests at a 5% significance level,
namely the Wilcoxon signed-rank test and the Friedman test.

The programming language used was MATLAB, compiled with MATLAB 2021. The
experiments were executed on a system powered by an AMD Ryzen 7 5800H with Radeon
Graphics 3.20 GHz and equipped with 16 GB RAM.

4.1. Experimental Setup

In this subsection, we delve into the specifics of the DPDE algorithm on the CEC 2017
test set. The CEC 2017 test suite includes unimodal functions (f1–f3), simple multi-modal
functions (f4–f10), hybrid functions (f11–f20), and composition functions (f21–f30). The
symbols “+”, “−”, and “=” are used to indicate whether DPDE performed better, worse, or
similarly, respectively, compared to the corresponding algorithm. The algorithms taken
for comparison were JADE, LSHADE, jSO [35], MEPDE [36], HIP-DE [37], and PaDE [38].
JADE is a classic differential evolution algorithm. LSHADE was the champion of the CEC
2014 real-parameter single-objective optimization competition. jSO was the top performer
in the CEC 2017 competition. MEPDE is a classic multi-population differential evolu-
tion algorithm. Both the HIPDE and PaDE are recent competitive differential evolution
algorithms. The specific parameter settings are displayed in Table 1. For DPDE, some
parameters were set as follows: T1 was 48 for 10D and 24 for 30D, 50D, and 100D. T2 was
208 for 10D, 30 D, and 50D, while it was 160 for 100D. T3 was consistently set to 16.

Table 1. Parameter settings.

Algorithm Year Parameters’ Initial Settings

MPEDE 2016 N = 250, ng = 20, λ1 = λ2 = λ3 = 0.2

JADE 2009 N = 100, uF = 0.5, uCR = 0.5, p = 0.05, c = 0.1

LSHADE 2014 Nmax = 18 × D, Nmin = 4, H = 6, rarc = 2.6, MF = 0.5, MCR = 0.5

jSO 2017 Nmax = 25 × log(D)× sqrt(D), H = 5, MF = 0.3, MCR = 0.8, rarc = 2.6,
pmin = 0.125, pmax = 0.25

PaDE 2019 25 × log(D)× sqrt(D), uF = 0.8, uCR = 0.6, k = 4, p = 0.11, rarc = 1.6
T0 = 70

HIP-DE 2021 Nmax = 15 × D, Nmin = 4, MF = 0.6, MCR = 0.8, τF = τCR = 0.9, K = 6,

DPDE Nmax = 18 × D, Nmin = 4, H = 6, rarc = 2.6, MF = 0.5, MCR = 0.5

4.2. Optimization Accuracy

To thoroughly validate the DPDE algorithm’s effectiveness, this study conducted an
extensive analysis using the CEC2017 test suite. The results are showcased in Tables A1–A4.
In these tables, the lowest average error values for each function are highlighted in bold.
For 10D, among the 30 benchmarks, our algorithm performed significantly better than
HIP-DE for 11 functions, outperformed PaDE for 8, surpassed jSO for 12, was superior
to LSHADE for 10, exceeded JADE for 14, and outshone MPEDE for 19. Our approach
achieved the best performance for the functions f5, f7, f10, f17, and f29. For 30D, among
the 30 benchmarks, our algorithm outperformed HIP-DE for 12 functions, PaDE for 12,
jSO for 15, LSHADE for 17, JADE for 21, and MPEDE for 17. Our method secured the best
results for functions f5, f7, f8, f10, f16, f17, f21, and f29. For 50D, out of 30 benchmarks, our
technique surpasses HIP-DE in 17 instances, PaDE in 15, jSO in 14, LSHADE in 16, JADE in
26, and MPEDE in 23. Notably, our method achieved optimal performance for functions
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f5, f6, f7, f8, f10, f16, f17, f20, f21, f26, and f29. For 100D, among the 30 benchmarks, our
algorithm stood out by besting HIP-DE on 16 functions, PaDE on 21, jSO on 14, LSHADE on
19, JADE on 22, and MPEDE on 23. In this dimension, our technique excelled for functions
f5, f7, f8, f10, f16, f17, f20, f21, f22, f23, f24, f26, f28, and f29.

As depicted in the Table 2, based on the CEC 2017 benchmark functions, the table lists
the rankings of different algorithms under the Friedman test. A lower ranking denotes
better algorithmic performance. The top-ranked algorithm is emphasized in bold. It can
be observed that, for 10 dimensions, the PaDE algorithm ranked first, while our proposed
technique came in a close second. In the 30D, 50D, and 100D settings, our method clinched
the top ranking. This underscores the observation that, as the dimensionality increased, the
performance of our algorithm became more pronounced.

Table 2. Average rankings between DPDE and the other algorithms according to the Friedman test at
the 0.05 significance level.

Algorithm 10D 30D 50D 100D

DPDE 3.2333 2.7667 2.5000 2.5000
HIP-DE 3.4500 3.4667 3.7333 3.8000

PaDE 3.1500 3.1833 3.6000 3.7333
jSO 3.5333 3.7333 2.9333 2.7667

LSHADE 3.9000 4.2000 3.2667 3.6000
JADE 5.7167 5.8000 6.2000 5.9000

MPEDE 5.0167 4.8500 5.7667 5.7000
The top-ranked algorithm is emphasized in bold.

4.3. Comparison on Convergence Speed

To better analyze the convergence characteristics of DPDE, this paper presents the
convergence curves of the algorithm for functions f5, f10, f21, and f24 across the dimensions
10D, 30D, 50D, and 100D. As shown in Figures 3–6, for the function f24, the convergence
curve of our algorithm was fairly comparable to the other algorithms. However, for
functions f5, f10, and f21, it can be observed that our algorithm did not converge as quickly
during the early iterations. Yet, in the later stages, it managed to converge to a value
better than the other algorithms. This indicates that our method can identify promising
regions and converge to more-optimal solutions, reflecting its robust exploration and
exploitation capabilities.

Figure 3. Convergence curves of the mean fitness on certain test functions for 10D.
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From the above analysis, we can conclude that the performance of the algorithm
proposed in this paper had an advantage compared to the six outstanding differential
evolution algorithms that were examined as a point of comparison.

Figure 4. Convergence curves of the mean fitness on certain test functions in 30D.

Figure 5. Convergence curves of the mean fitness on certain test functions in 50D.
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Figure 6. Convergence curves of the mean fitness on certain test functions in 100D.

4.4. Effectiveness of HS Strategy and New Stagnation Detection Formula

This paper introduces a new selection strategy (HS) and a new stagnation detection
formula. To demonstrate the effectiveness of these two strategies, ablation experiments
were conducted. As shown in Table 3, DPDE-1 represents the DPDE algorithm without
the new selection strategy. The ranking results of the two algorithms after the Friedman
test are presented in the figure. The DPDE algorithm showed significant improvements
across all four dimensions, with the smallest improvement in the 10-dimensional space.
Table 4 illustrates the validity of the new stagnation detection formula. We set up three
comparative experiment groups, namely DPDE-fixed24, DPDE-fixed48, and DPDE-fixed96,
representing the use of a fixed number of 24, 48, and 96 consecutive non-updated indi-
viduals to determine if an individual is stagnant. Our method outperformed the DPDE
approach using fixed counts across all four dimensions. Among them, the performance gap
was the smallest between DPDE-fixed96 and DPDE in 10D and between DPDE-fixed24 and
DPDE in 30D, 50D, and 100D. Therefore, it was deduced that the novel HS strategy and
the formula for detecting stagnation contributed positively to improving the differential
evolution algorithm’s performance.

Table 3. Comparison of average ranks between DPDE and DPDE-1 using the Friedman test.

10D 30D 50D 100D Average

DPDE 1.3333 1.1333 1.2000 1.3000 1.2417
DPDE-1 1.6667 1.8667 1.8000 1.7000 1.7583

The top-ranked algorithm is emphasized in bold.

Table 4. Comparison of average ranks between DPDE and its variants using the Friedman test.

10D 30D 50D 100D Average

DPDE 2.2167 2.0167 2.0000 1.9667 2.0500
DPDE-fixed24 2.7667 2.3167 2.2000 2.3667 2.4125
DPDE-fixed48 2.6500 2.6167 2.5333 2.7667 2.6417
DPDE-fixed96 2.3667 3.0500 3.2667 2.9000 2.8958

The top-ranked algorithm is emphasized in bold.
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4.5. Parameter Analysis

The settings of T1 and T2 play a significant role in determining whether an individual
is stagnant. Specifically, T1 and T2 represent the minimum and maximum values for the
stagnation threshold, respectively. To investigate the impact of the settings of T1 and T2 on
the algorithm performance, three values were set for each: T1 at 24, 48, and 96 and T2 at
160, 208, and 256. Combining these yielded nine variants, the ranking results based on the
Friedman test are displayed in Table 5. It was revealed that that DPDE-T5 performed best
in 10D, DPDE-T2 in 30D and 50D, and the DPDE-T1 setting in 100D. T3 played a crucial
role in helping individuals stuck in local optima in the normal population. It represents the
maximum stagnant count after which an individual can accept a worse trial solution. In our
experiments, we tested T3 values of 8, 16, and 32. The results in Table 6 show that T3 = 8
performed best in 10D, while T3 = 16 was optimal in 30D, 50D, and 100D. The chosen value
for T3 in this paper was 16.

Table 5. Comparison of average ranks between DPDE and its variants using the Friedman test.

10D 30D 50D 100D

DPDE-T1 5.7500 3.9500 3.6333 3.0833
DPDE-T2 5.2500 3.6667 3.5333 4.4500
DPDE-T3 5.7500 4.1000 3.7667 3.3167
DPDE-T4 4.3833 4.1833 5.6667 5.3833
DPDE-T5 4.3000 4.5333 4.8000 4.5500
DPDE-T6 4.7833 4.8667 4.6000 5.1000
DPDE-T7 5.0833 6.6667 6.2667 6.2333
DPDE-T8 4.8833 6.2500 6.1333 6.8667
DPDE-T9 4.8167 6.7833 6.6000 6.0167

The top-ranked algorithm is emphasized in bold.

Table 6. Comparison of average ranks between DPDE and its variants using the Friedman test under
different values of T3.

10D 30D 50D 100D Average

DPDE_8 1.9333 2.1000 2.0667 1.9667 2.0167
DPDE_16 1.9500 1.8667 1.8667 1.8667 1.8875
DPDE_32 2.1167 2.0333 2.0667 2.1667 2.0958

The top-ranked algorithm is emphasized in bold.

4.6. Comparison Results for the Real-World Problems on CEC 2011

To validate the effectiveness of the algorithm proposed in this paper in real-world
problems, we selected four bounded problems for testing: problem 1, problem 5, problem
6, and problem 7. The dimensions of these problems are 30, 30, 30, and 20, respectively. As
shown in Table 7, it can be observed that the DPDE algorithm significantly outperformed
or was at least comparable to six of the most-advanced DE variants. Notably, our method
outshone all other approaches for problem 7. Moreover, JADE, PaDE, HIP-DE, MPEDE,
and jSO performed significantly worse than the DPDE algorithm on half of the problems.
The experimental results suggested that the DPDE algorithm had potential for solving
real-world problems.
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Table 7. Comparison results for the real-world problems.

Problem MPEDE JADE LSHADE jSO PaDE HIP-DE DPDE

problem 2 −2.17E+01 −2.33E+01 −2.62E+01 −2.59E+01 −2.62E+01 −2.64E+01 −2.64E+01
(+) (+) (=) (+) (=) (=)

problem 5 −3.41E+01 −3.59E+01 −3.62E+01 −3.57E+01 −3.61E+01 −3.61E+01 −3.59E+01
(+) (=) (=) (=) (=) (=)

problem 6 −2.82E+01 −2.90E+01 −2.92E+01 −2.91E+01 −2.60E+01 −2.11E+01 −2.83E+01
(=) (=) (−) (−) (+) (+)

problem 7 1.29E+00 1.17E+00 1.15E+00 1.14E+00 1.08E+00 1.13E+00 7.43E-01
(+) (+) (+) (+) (+) (+)

Total +/−/= 3/0/1 2/0/2 1/1/2 2/1/1 2/0/2 2/0/2
The top-ranked algorithm is emphasized in bold.

5. Conclusions

In this paper, we introduced the application of hierarchical mutation and selection
strategies to the dual-population differential evolution algorithm. This aimed to address
the challenge of balancing exploration and exploitation in the algorithm and mitigating the
issue of evolution stagnation. As a result, we proposed the DPDE algorithm. In the hierar-
chical mutation strategy, the DE/current-to-pbest/1 and improved DE/current-pbest/1
strategies were applied separately to the elite population and the normal population. Due
to the guiding role of the elite population in the mutation strategy, we facilitated informa-
tion exchange between these two subpopulations, further achieving a balance between
exploration and exploitation. In the novel hierarchical selection strategy, when individuals
were trapped in local optima, elite subpopulation individuals accepted discarded vectors
from the current generation, while the normal subpopulation individuals accepted both
discarded vectors and historical optimal discarded vectors from the elite subpopulation.
This strategy makes full use of historically generated trial vectors, thus enhancing indi-
viduals’ ability to escape local optima and improving the overall algorithm performance.
Additionally, we employed adaptive parameter techniques and population size adjust-
ment strategies to enhance the algorithm’s exploration and exploitation capabilities at
different stages.

Experimentally, we rigorously tested our approach on the CEC 2017 benchmark suite
and compared it with six state-of-the-art differential evolution algorithms, namely HIP-
DE, PaDE, jSO, LSHADE, JADE, and MPEDE. The experimental results indicated that
the algorithm presented in this paper significantly outperformed the other compared
differential evolution algorithms. The ablation study demonstrated the effectiveness of the
HS strategy and the new stagnation detection formula introduced in this paper. The results
on the CEC 2011 benchmark further demonstrated the potential of our method to solve
real-world problems.

Lastly, while the algorithm in this paper primarily targets single-objective parameter
problems, it will be meaningful to explore the feasibility of employing the DPDE algorithm
for multi-objective optimization challenges in the future.
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Appendix A

Table A1. Mean errors of the algorithms under 10D of CEC 2017.

DPDE HIP-DE PaDE jSO LSHADE JADE MPEDE

F1 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.46E-09
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.65E-09

F2 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.75E-10 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.82E-09 0.00E+00

F3 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F4 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.28E-08
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.33E-08

F5 Mean 3.13E-01 1.68E+00 2.27E+00 2.11E+00 2.89E+00 3.76E+00 6.13E+00
Std 4.67E-01 8.78E-01 9.75E-01 7.87E-01 8.02E-01 1.07E+00 1.50E+00

F6 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.25E-05
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.62E-06

F7 Mean 1.11E+01 1.18E+01 1.25E+01 1.21E+01 1.23E+01 1.35E+01 1.78E+01
Std 4.30E-01 5.40E-01 1.22E+00 4.84E-01 7.24E-01 1.85E+00 1.82E+00

F8 Mean 3.71E-01 1.93E+00 2.36E+00 2.28E+00 2.54E+00 3.81E+00 6.41E+00
Std 5.96E-01 8.99E-01 7.95E-01 7.78E-01 1.04E+00 1.04E+00 1.85E+00

F9 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F10 Mean 1.18E+00 3.86E+01 2.77E+01 2.89E+01 1.91E+01 1.34E+02 2.74E+02
Std 1.63E+00 7.55E+01 4.38E+01 4.90E+01 3.34E+01 1.07E+02 1.08E+02

F11 Mean 0.00E+00 4.54E-01 5.29E-01 0.00E+00 5.37E-01 1.50E+00 2.25E+00
Std 0.00E+00 7.77E-01 7.62E-01 0.00E+00 7.46E-01 1.10E+00 6.39E-01

F12 Mean 1.19E+02 2.67E+01 2.37E+01 1.45E+01 5.22E+01 8.14E+02 1.10E+01
Std 6.49E+01 5.03E+01 4.79E+01 3.89E+01 7.07E+01 3.24E+03 1.42E+01

F13 Mean 4.20E+00 1.37E+00 1.92E+00 4.34E+00 4.40E+00 4.70E+00 5.56E+00
Std 2.02E+00 2.34E+00 2.37E+00 1.71E+00 1.73E+00 2.93E+00 2.01E+00

F14 Mean 4.31E-01 7.41E-01 1.72E-01 9.75E-02 3.07E-01 2.45E+00 4.32E+00
Std 2.80E+00 7.13E-01 3.59E-01 2.99E-01 4.04E-01 5.96E+00 1.81E+00

F15 Mean 3.67E-01 1.68E-01 1.06E-01 2.21E-01 1.77E-01 2.84E-01 7.72E-01
Std 1.75E-01 2.04E-01 1.67E-01 2.19E-01 1.96E-01 2.09E-01 2.29E-01

F16 Mean 6.96E-01 4.62E-01 3.18E-01 4.45E-01 3.57E-01 5.22E+00 2.35E+00
Std 2.09E-01 2.03E-01 1.48E-01 3.80E-01 2.04E-01 2.33E+01 7.68E-01

F17 mean 1.30E-01 2.56E-01 1.62E-01 4.09E-01 1.64E-01 1.67E+00 7.15E+00
Std 1.72E-01 2.90E-01 1.60E-01 3.66E-01 2.02E-01 5.48E+00 2.44E+00

F18 mean 7.64E-01 2.39E-01 2.49E-01 2.64E-01 1.88E-01 6.68E+00 2.75E+00
Std 2.81E+00 2.08E-01 2.05E-01 2.07E-01 1.95E-01 9.38E+00 1.50E+00

F19 mean 2.76E-02 1.38E-02 1.02E-02 1.33E-02 1.44E-02 6.28E-02 6.05E-01
Std 3.28E-02 2.67E-02 1.07E-02 1.25E-02 1.12E-02 2.93E-01 1.93E-01

F20 mean 2.75E-01 0.00E+00 0.00E+00 3.55E-01 6.12E-03 4.90E-01 1.05E+00
Std 1.35E-01 0.00E+00 0.00E+00 1.08E-01 4.37E-02 2.79E+00 6.60E-01

F21 mean 1.38E+02 1.61E+02 1.31E+02 1.59E+02 1.58E+02 1.81E+02 1.21E+02
Std 4.96E+01 5.01E+01 4.76E+01 5.57E+01 5.14E+01 4.46E+01 4.28E+01

F22 mean 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 9.24E+01 9.41E+01
Std 0.00E+00 6.43E-14 1.48E-13 1.48E-13 4.85E-02 2.64E+01 2.38E+01

F23 mean 3.03E+02 3.01E+02 3.02E+02 3.03E+02 3.04E+02 3.06E+02 3.06E+02
Std 1.98E+00 1.43E+00 1.63E+00 1.63E+00 1.07E+00 2.05E+00 1.64E+00

F24 mean 2.41E+02 3.09E+02 3.03E+02 2.95E+02 3.05E+02 3.11E+02 2.35E+02
Std 1.13E+02 6.08E+01 6.80E+01 8.49E+01 7.31E+01 7.03E+01 1.19E+02

F25 mean 4.11E+02 4.19E+02 4.18E+02 4.03E+02 4.15E+02 4.23E+02 4.05E+02
Std 2.09E+01 2.30E+01 2.28E+01 1.49E+01 2.23E+01 2.33E+01 1.67E+01

F26 Mean 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.00E+02 3.05E+02 3.00E+02
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 3.60E+01 1.52E-08

F27 Mean 3.89E+02 3.93E+02 3.93E+02 3.89E+02 3.89E+02 3.91E+02 3.89E+02
Std 1.39E-01 1.74E+00 1.96E+00 1.67E-01 1.39E-01 7.65E+00 3.65E-01

F28 Mean 3.67E+02 3.56E+02 3.11E+02 3.76E+02 3.82E+02 4.35E+02 3.11E+02
Std 1.24E+02 1.15E+02 5.56E+01 1.30E+02 1.35E+02 1.49E+02 5.56E+01

F29 Mean 2.31E+02 2.33E+02 2.32E+02 2.34E+02 2.35E+02 2.53E+02 2.51E+02
Std 3.34E+00 4.46E+00 3.66E+00 3.23E+00 3.41E+00 1.26E+01 5.67E+00

F30 Mean 1.64E+04 4.01E+02 4.00E+02 4.85E+04 3.25E+04 1.06E+05 3.96E+02
Std 1.14E+05 1.67E+01 1.57E+01 1.94E+05 1.60E+05 2.94E+05 9.56E-01
+ 11 8 12 10 14 19
− 9 11 4 6 3 7
= 10 11 14 14 13 4

The top-ranked algorithm is emphasized in bold.
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Table A2. Mean errors of the algorithms under 30D of CEC 2017.

DPDE HIP-DE PaDE jSO LSHADE JADE MPEDE

F1 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F3 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.74E+03 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F4 Mean 5.86E+01 5.63E+01 5.62E+01 5.86E+01 5.86E+01 5.08E+01 5.35E+01
Std 2.72E-14 1.15E+01 1.44E+01 2.69E-14 2.72E-14 2.14E+01 1.77E+01

F5 Mean 2.95E+00 7.35E+00 8.05E+00 8.58E+00 6.84E+00 2.68E+01 2.74E+01
Std 1.87E+00 1.18E+00 1.46E+00 1.91E+00 1.45E+00 4.60E+00 7.32E+00

F6 Mean 0.00E+00 8.75E-09 0.00E+00 4.62E-08 1.38E-09 0.00E+00 0.00E+00
Std 0.00E+00 3.28E-08 0.00E+00 1.61E-07 6.88E-09 0.00E+00 0.00E+00

F7 Mean 3.48E+01 3.62E+01 3.87E+01 3.93E+01 3.80E+01 5.50E+01 5.62E+01
Std 1.33E+00 9.40E-01 1.64E+00 2.29E+00 1.20E+00 3.53E+00 7.25E+00

F8 Mean 3.35E+00 7.42E+00 9.12E+00 9.55E+00 7.53E+00 2.55E+01 2.72E+01
Std 1.93E+00 1.23E+00 1.75E+00 1.90E+00 1.52E+00 4.04E+00 7.26E+00

F9 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.91E-03 1.42E-02
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 6.36E-02 6.64E-02

F10 Mean 1.16E+02 1.52E+03 1.54E+03 1.40E+03 1.44E+03 1.92E+03 2.63E+03
Std 1.23E+02 1.78E+02 2.89E+02 2.71E+02 1.94E+02 2.01E+02 3.58E+02

F11 Mean 2.34E+01 1.42E+01 1.27E+01 1.41E+01 1.76E+01 3.12E+01 2.30E+01
Std 2.74E+01 2.14E+01 1.79E+01 2.20E+01 2.41E+01 2.54E+01 1.77E+01

F12 Mean 1.12E+03 1.14E+03 1.00E+03 3.13E+02 1.05E+03 1.25E+03 8.99E+02
Std 3.73E+02 4.07E+02 3.95E+02 2.42E+02 3.44E+02 4.05E+02 4.01E+02

F13 Mean 1.48E+01 1.52E+01 1.39E+01 1.95E+01 1.85E+01 3.71E+01 2.17E+01
Std 6.56E+00 7.09E+00 7.04E+00 3.59E+00 6.58E+00 1.55E+01 8.49E+00

F14 Mean 1.93E+01 2.14E+01 2.11E+01 2.16E+01 2.16E+01 5.22E+03 1.66E+01
Std 4.74E+00 3.99E+00 4.79E+00 2.33E+00 3.16E+00 9.17E+03 1.05E+01

F15 Mean 2.85E+00 3.08E+00 3.08E+00 1.51E+00 3.86E+00 6.50E+02 8.86E+00
Std 2.28E+00 1.74E+00 1.78E+00 1.15E+00 1.53E+00 2.11E+03 3.28E+00

F16 Mean 1.47E+01 1.16E+02 1.09E+02 4.05E+01 3.89E+01 4.12E+02 4.01E+02
Std 2.08E+00 9.12E+01 9.92E+01 5.39E+01 3.82E+01 1.55E+02 1.76E+02

F17 Mean 2.19E+01 3.10E+01 2.90E+01 3.23E+01 3.28E+01 7.58E+01 5.38E+01
Std 5.86E+00 7.28E+00 7.00E+00 6.76E+00 7.11E+00 3.12E+01 1.46E+01

F18 Mean 2.20E+01 2.28E+01 2.14E+01 2.09E+01 2.22E+01 2.14E+04 2.24E+01
Std 1.52E+00 1.64E+00 2.98E+00 4.16E-01 1.43E+00 5.90E+04 8.71E+00

F19 Mean 5.20E+00 5.08E+00 5.22E+00 5.36E+00 6.20E+00 1.39E+03 7.13E+00
Std 1.64E+00 2.03E+00 1.90E+00 1.70E+00 1.98E+00 3.35E+03 1.94E+00

F20 Mean 2.16E+01 3.40E+01 4.04E+01 2.73E+01 3.13E+01 1.11E+02 7.82E+01
Std 3.99E+00 7.35E+00 2.40E+01 6.30E+00 4.65E+00 5.48E+01 5.66E+01

F21 Mean 2.05E+02 2.07E+02 2.08E+02 2.10E+02 2.08E+02 2.26E+02 2.28E+02
Std 1.95E+00 1.62E+00 1.43E+00 1.86E+00 1.58E+00 4.77E+00 7.39E+00

F22 Mean 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02 1.00E+02
Std 1.44E-14 1.44E-14 1.44E-14 6.39E-14 1.44E-14 1.44E-14 1.44E-14

F23 Mean 3.51E+02 3.44E+02 3.45E+02 3.57E+02 3.54E+02 3.73E+02 3.76E+02
Std 4.69E+00 3.69E+00 3.68E+00 3.73E+00 3.66E+00 6.11E+00 1.02E+01

F24 Mean 4.25E+02 4.18E+02 4.20E+02 4.28E+02 4.26E+02 4.47E+02 4.49E+02
Std 1.63E+00 1.98E+00 2.49E+00 2.74E+00 2.24E+00 4.84E+00 8.17E+00

F25 Mean 4.50E+02 4.48E+02 4.48E+02 4.49E+02 4.48E+02 4.58E+02 4.59E+02
Std 1.44E-02 2.05E-02 2.74E-02 7.98E-03 2.46E-02 1.35E-01 1.32E+00

F26 Mean 4.74E+02 4.71E+02 4.72E+02 4.72E+02 4.71E+02 4.79E+02 4.80E+02
Std 3.54E+01 4.06E+01 4.24E+01 3.94E+01 2.85E+01 6.98E+01 1.07E+02

F27 Mean 4.98E+02 4.94E+02 4.95E+02 4.95E+02 4.94E+02 5.00E+02 5.01E+02
Std 3.37E+00 4.99E+00 5.09E+00 5.59E+00 4.34E+00 7.49E+00 6.27E+00

F28 Mean 1.90E+03 1.91E+03 1.91E+03 1.90E+03 1.90E+03 1.97E+03 1.98E+03
Std 5.22E+01 4.90E+01 4.89E+01 4.36E+01 5.40E+01 5.51E+01 4.92E+01

F29 Mean 1.96E+03 1.96E+03 1.96E+03 1.96E+03 1.96E+03 2.02E+03 2.02E+03
Std 9.65E+00 6.29E+00 1.06E+01 1.40E+01 9.46E+00 2.73E+01 2.77E+01

F30 Mean 2.01E+03 2.07E+03 2.04E+03 1.96E+03 2.00E+03 2.36E+03 2.02E+03
Std 6.47E+01 7.30E+01 5.33E+01 2.79E+01 5.98E+01 1.06E+03 8.62E+01
+ 12 12 15 17 21 17
− 6 4 6 0 1 4
= 12 14 9 13 8 9

The top-ranked algorithm is emphasized in bold.
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Table A3. Mean errors of the algorithms under 50D of CEC 2017.

DPDE HIP-DE PaDE jSO LSHADE JADE MPEDE

F1 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F3 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 4.31E+04 7.77E-04
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.70E+04 3.38E-03

F4 Mean 6.82E+01 9.54E+01 7.51E+01 5.42E+01 6.69E+01 7.24E+01 5.97E+01
Std 4.75E+01 4.79E+01 5.07E+01 4.97E+01 5.22E+01 4.79E+01 4.47E+01

F5 Mean 3.53E+00 1.48E+01 1.69E+01 1.58E+01 1.18E+01 8.11E+01 5.37E+01
Std 1.66E+00 2.01E+00 1.98E+00 3.39E+00 2.28E+00 8.11E+00 1.21E+01

F6 Mean 9.64E-09 6.52E-08 8.41E-04 5.07E-07 3.31E-05 5.59E-06 6.97E-04
Std 3.03E-08 1.06E-07 2.54E-03 9.51E-07 2.36E-04 6.29E-06 2.09E-03

F7 Mean 6.05E+01 6.11E+01 6.47E+01 6.70E+01 6.35E+01 1.36E+02 1.07E+02
Std 1.98E+00 1.67E+00 2.53E+00 3.19E+00 1.84E+00 7.67E+00 1.13E+01

F8 Mean 3.10E+00 1.53E+01 1.78E+01 1.55E+01 1.23E+01 8.24E+01 5.53E+01
Std 1.81E+00 1.99E+00 2.43E+00 3.50E+00 2.25E+00 7.36E+00 1.23E+01

F9 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 5.51E-02 9.35E-01
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.64E-01 8.92E-01

F10 Mean 7.18E+02 3.22E+03 3.09E+03 3.04E+03 3.20E+03 5.40E+03 4.85E+03
Std 2.79E+02 2.46E+02 2.97E+02 4.46E+02 2.79E+02 2.57E+02 7.28E+02

F11 Mean 4.20E+01 5.03E+01 6.52E+01 2.87E+01 4.95E+01 1.32E+02 1.04E+02
Std 7.73E+00 1.05E+01 1.28E+01 2.82E+00 9.93E+00 7.75E+01 2.51E+01

F12 Mean 2.61E+03 2.28E+03 2.23E+03 2.09E+03 2.37E+03 4.10E+03 9.81E+03
Std 6.31E+02 5.45E+02 4.12E+02 5.32E+02 5.96E+02 2.33E+03 7.02E+03

F13 Mean 6.04E+01 6.19E+01 5.91E+01 3.72E+01 5.66E+01 1.15E+02 9.52E+01
Std 3.23E+01 2.33E+01 2.29E+01 1.92E+01 2.81E+01 4.50E+01 3.51E+01

F14 Mean 2.47E+01 3.23E+01 3.01E+01 2.37E+01 3.15E+01 6.53E+03 6.14E+01
Std 2.57E+00 4.05E+00 3.58E+00 2.11E+00 3.86E+00 2.61E+04 1.64E+01

F15 Mean 5.35E+01 5.76E+01 4.14E+01 2.39E+01 4.90E+01 1.54E+02 7.83E+01
Std 1.68E+01 1.58E+01 1.17E+01 2.65E+00 1.56E+01 7.93E+01 4.32E+01

F16 Mean 1.42E+02 3.99E+02 3.59E+02 4.02E+02 3.70E+02 1.00E+03 9.67E+02
Std 3.35E+01 1.08E+02 1.12E+02 1.48E+02 1.35E+02 1.58E+02 2.91E+02

F17 Mean 5.51E+01 3.07E+02 2.92E+02 2.55E+02 2.15E+02 7.98E+02 5.88E+02
Std 4.06E+01 7.49E+01 7.34E+01 9.18E+01 7.57E+01 1.43E+02 1.99E+02

F18 Mean 4.96E+01 5.57E+01 4.05E+01 2.54E+01 4.94E+01 1.20E+04 1.21E+02
Std 2.24E+01 2.20E+01 1.10E+01 2.36E+00 1.81E+01 8.43E+04 9.31E+01

F19 Mean 4.69E+01 4.07E+01 2.75E+01 1.46E+01 3.48E+01 1.01E+02 4.44E+01
Std 1.95E+01 1.35E+01 8.62E+00 2.56E+00 1.17E+01 3.20E+01 1.86E+01

F20 Mean 4.28E+01 1.80E+02 1.72E+02 1.17E+02 1.55E+02 6.25E+02 3.50E+02
Std 5.64E+00 6.97E+01 7.29E+01 6.75E+01 5.55E+01 1.17E+02 1.74E+02

F21 Mean 2.05E+02 2.17E+02 2.18E+02 2.19E+02 2.14E+02 2.83E+02 2.53E+02
Std 3.13E+00 1.92E+00 2.51E+00 2.75E+00 2.58E+00 8.76E+00 1.37E+01

F22 Mean 4.40E+02 1.00E+02 4.69E+02 2.23E+03 2.29E+03 4.31E+03 3.68E+03
Std 2.51E+02 1.37E+00 1.11E+03 1.53E+03 1.67E+03 2.58E+03 2.67E+03

F23 Mean 4.28E+02 4.29E+02 4.28E+02 4.36E+02 4.32E+02 5.05E+02 4.81E+02
Std 6.23E+00 6.68E+00 6.76E+00 5.57E+00 3.49E+00 1.28E+01 1.39E+01

F24 Mean 5.05E+02 5.07E+02 5.04E+02 5.19E+02 5.11E+02 5.55E+02 5.43E+02
Std 2.68E+00 5.73E+00 5.25E+00 4.14E+00 3.17E+00 8.80E+00 1.34E+01

F25 Mean 4.82E+02 4.82E+02 4.98E+02 4.81E+02 4.82E+02 5.18E+02 4.98E+02
Std 1.17E+01 4.26E+00 2.95E+01 3.31E+00 3.77E+00 3.52E+01 3.44E+01

F26 Mean 1.08E+03 1.12E+03 1.12E+03 1.22E+03 1.19E+03 1.79E+03 1.56E+03
Std 4.83E+01 5.92E+01 8.05E+01 4.36E+01 4.73E+01 1.07E+02 1.68E+02

F27 Mean 5.37E+02 5.36E+02 5.40E+02 5.37E+02 5.35E+02 5.34E+02 5.43E+02
Std 1.18E+01 1.33E+01 1.35E+01 2.05E+01 1.11E+01 1.72E+01 2.41E+01

F28 Mean 4.70E+02 4.91E+02 4.99E+02 4.59E+02 4.64E+02 4.85E+02 4.89E+02
Std 5.08E+00 5.14E+00 5.28E+00 1.59E+01 6.06E+00 2.63E+01 1.22E+01

F29 Mean 3.32E+02 3.65E+02 3.53E+02 3.58E+02 3.49E+02 5.12E+02 4.39E+02
Std 3.07E+01 3.32E+01 3.36E+01 4.78E+01 3.39E+01 5.40E+01 6.45E+01

F30 Mean 6.46E+05 6.19E+05 6.11E+05 6.41E+05 6.57E+05 6.59E+05 6.80E+05
Std 5.72E+04 3.27E+04 3.88E+04 6.82E+04 7.53E+04 6.39E+04 9.69E+04
+ 17 15 14 16 26 23
− 2 5 8 1 0 0
= 11 10 8 13 4 7

The top-ranked algorithm is emphasized in bold.
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Table A4. Mean errors of the algorithms under 100D of CEC 2017.

DPDE HIP-DE PaDE jSO LSHADE JADE MPEDE

F1 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Std 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F2 Mean 3.38E+05 4.63E+01 6.85E+00 2.85E+04 4.08E+04 1.72E+03 9.32E+14
Std 2.10E+06 1.30E+02 4.13E+01 1.27E+05 2.39E+05 1.23E+04 6.66E+15

F3 Mean 2.46E-04 1.65E-07 6.49E-08 3.83E-06 4.66E-06 2.08E+05 1.73E+01
Std 6.27E-04 1.49E-07 1.02E-07 5.03E-06 6.55E-06 2.08E+05 5.49E+01

F4 Mean 1.99E+02 1.96E+02 1.30E+02 2.01E+02 1.98E+02 1.28E+02 8.84E+01
Std 6.04E+00 5.40E+00 6.87E+01 9.20E+00 6.58E+00 5.71E+01 6.43E+01

F5 Mean 4.53E+00 4.00E+01 4.60E+01 3.55E+01 2.79E+01 2.55E+02 1.57E+02
Std 1.82E+00 3.83E+00 5.37E+00 5.58E+00 5.66E+00 1.77E+01 2.75E+01

F6 Mean 1.01E-03 1.18E-03 1.60E-02 2.36E-05 1.52E-03 2.66E-05 1.69E-01
Std 9.28E-04 1.07E-03 1.58E-02 2.12E-05 1.17E-03 1.66E-04 1.40E-01

F7 Mean 1.22E+02 1.31E+02 1.42E+02 1.40E+02 1.36E+02 3.78E+02 2.98E+02
Std 8.61E+00 3.14E+00 4.77E+00 6.63E+00 4.35E+00 2.14E+01 3.50E+01

F8 Mean 3.78E+00 4.20E+01 4.63E+01 3.34E+01 2.83E+01 2.60E+02 1.46E+02
Std 1.69E+00 4.09E+00 4.31E+00 6.68E+00 4.62E+00 2.10E+01 2.33E+01

F9 Mean 2.30E-02 1.15E-01 1.07E+00 8.78E-03 1.13E-01 1.64E+00 3.59E+01
Std 8.06E-02 2.41E-01 9.39E-01 2.69E-02 1.94E-01 1.12E+00 2.36E+01

F10 Mean 3.59E+03 1.04E+04 9.56E+03 9.68E+03 1.02E+04 1.70E+04 1.11E+04
Std 6.55E+02 5.14E+02 5.89E+02 5.61E+02 5.12E+02 4.77E+02 1.05E+03

F11 Mean 2.92E+02 4.47E+02 5.79E+02 1.02E+02 3.89E+02 1.31E+04 7.82E+02
Std 8.17E+01 8.65E+01 9.38E+01 3.29E+01 1.02E+02 1.18E+04 2.24E+02

F12 Mean 3.15E+04 2.20E+04 1.93E+04 1.93E+04 2.53E+04 1.88E+04 3.43E+04
Std 1.35E+04 8.16E+03 7.46E+03 8.28E+03 1.02E+04 6.88E+03 2.26E+04

F13 Mean 2.46E+03 2.03E+03 9.79E+02 2.23E+02 1.16E+03 2.24E+03 6.46E+02
Std 5.58E+02 8.66E+02 7.06E+02 5.66E+01 7.54E+02 1.85E+03 7.56E+02

F14 Mean 2.45E+02 2.51E+02 2.73E+02 7.28E+01 2.54E+02 4.24E+02 4.83E+02
Std 3.35E+01 3.86E+01 3.76E+01 1.25E+01 2.92E+01 1.06E+02 1.26E+02

F15 Mean 2.47E+02 2.45E+02 2.50E+02 2.17E+02 2.58E+02 3.01E+02 3.32E+02
Std 4.21E+01 4.50E+01 4.20E+01 5.48E+01 4.90E+01 6.15E+01 1.25E+02

F16 Mean 1.96E+02 1.84E+03 1.48E+03 1.68E+03 1.54E+03 3.56E+03 2.83E+03
Std 1.17E+02 2.46E+02 2.61E+02 3.63E+02 2.80E+02 3.20E+02 5.86E+02

F17 Mean 1.27E+02 1.27E+03 1.17E+03 1.14E+03 1.06E+03 2.68E+03 1.92E+03
Std 5.70E+01 2.03E+02 1.76E+02 2.53E+02 1.78E+02 2.60E+02 4.57E+02

F18 Mean 2.00E+02 2.12E+02 2.27E+02 1.99E+02 2.19E+02 3.01E+02 1.41E+03
Std 3.69E+01 3.92E+01 4.80E+01 3.96E+01 4.26E+01 8.51E+01 1.23E+03

F19 Mean 1.69E+02 1.76E+02 1.84E+02 1.41E+02 1.80E+02 2.07E+02 2.39E+02
Std 1.96E+01 2.10E+01 3.04E+01 1.93E+01 2.34E+01 5.28E+01 6.49E+01

F20 Mean 1.89E+02 1.60E+03 1.56E+03 1.26E+03 1.43E+03 2.81E+03 1.85E+03
Std 6.55E+01 1.87E+02 1.81E+02 2.55E+02 2.20E+02 2.29E+02 3.75E+02

F21 Mean 2.32E+02 2.66E+02 2.71E+02 2.62E+02 2.58E+02 4.80E+02 3.64E+02
Std 3.05E+00 5.17E+00 5.33E+00 5.48E+00 4.83E+00 2.13E+01 2.45E+01

F22 Mean 2.62E+03 1.12E+04 1.08E+04 9.71E+03 1.09E+04 1.81E+04 1.22E+04
Std 5.64E+02 2.19E+03 6.04E+02 6.55E+02 5.90E+02 4.76E+02 1.11E+03

F23 Mean 5.58E+02 6.12E+02 5.94E+02 5.65E+02 5.62E+02 7.42E+02 6.94E+02
Std 9.45E+00 1.13E+01 1.78E+01 9.24E+00 7.62E+00 1.12E+01 2.85E+01

F24 Mean 9.04E+02 9.28E+02 9.25E+02 9.25E+02 9.17E+02 1.10E+03 1.03E+03
Std 6.51E+00 1.53E+01 1.50E+01 1.00E+01 6.32E+00 1.60E+01 2.67E+01

F25 Mean 7.51E+02 7.33E+02 7.30E+02 7.21E+02 7.50E+02 7.42E+02 7.41E+02
Std 2.52E+01 3.67E+01 4.04E+01 4.36E+01 2.95E+01 4.26E+01 6.04E+01

F26 Mean 3.15E+03 3.36E+03 3.36E+03 3.37E+03 3.40E+03 5.00E+03 4.51E+03
Std 8.58E+01 8.98E+01 1.21E+02 1.30E+02 1.12E+02 2.12E+02 2.89E+02

F27 Mean 6.36E+02 6.41E+02 6.50E+02 6.25E+02 6.54E+02 6.60E+02 7.00E+02
Std 1.89E+01 1.34E+01 1.85E+01 2.03E+01 1.70E+01 2.02E+01 3.69E+01

F28 Mean 5.23E+02 5.34E+02 5.27E+02 5.34E+02 5.31E+02 5.37E+02 5.26E+02
Std 1.60E+01 3.51E+01 3.34E+01 2.87E+01 3.05E+01 3.23E+01 3.59E+01

F29 Mean 9.85E+02 1.25E+03 1.21E+03 1.46E+03 1.42E+03 2.41E+03 2.43E+03
Std 1.30E+02 1.55E+02 1.72E+02 2.11E+02 1.64E+02 2.31E+02 4.55E+02

F30 Mean 2.42E+03 2.55E+03 2.58E+03 2.50E+03 2.40E+03 3.39E+03 2.55E+03
Std 1.42E+02 1.38E+02 1.84E+02 2.20E+02 1.40E+02 1.03E+03 1.93E+02
+ 16 21 14 19 22 23
− 3 5 10 4 5 2
= 11 4 6 7 3 5

The top-ranked algorithm is emphasized in bold.
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