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Abstract: With the acceleration of urbanization and the increasing demand for travel, current road
traffic is experiencing rapid growth and more complex spatio-temporal logic. Vehicle tracking on
roads presents several challenges, including complex scenes with frequent foreground–background
transitions, fast and nonlinear vehicle movements, and the presence of numerous unavoidable low-
score detection boxes. In this paper, we propose AM-Vehicle-Track, following the proven-effective
paradigm of tracking by detection (TBD). At the detection stage, we introduce the lightweight channel
block attention mechanism (LCBAM), facilitating the detector to concentrate more on foreground
features with limited computational resources. At the tracking stage, we innovatively propose
the noise-adaptive extended Kalman filter (NSA-EKF) module to extract vehicles’ motion informa-
tion while considering the impact of detection confidence on observation noise when dealing with
nonlinear motion. Additionally, we borrow the Byte data association method to address unavoid-
able low-score detection boxes, enabling secondary association to reduce ID switches. We achieve
42.2 MOTA, 51.2 IDF1, and 364 IDs on the test set of VisDrone-MOT with 72 FPS. The experimental re-
sults showcase our approach’s highly competitive performance, attaining SOTA tracking performance
with a fast speed.

Keywords: multi object tracking; vehicle tracking; intelligent transportation; motion model

1. Introduction

The field of computer vision (CV) encompasses a crucial study domain known as
multi-object tracking (MOT) [1]. The primary objective of this task is to accurately detect
and locate multiple objects within a given video and assign unique identities to them.
The tracked objects can encompass a wide range of entities, such as pedestrians on ur-
ban streets, athletes on sports fields, moving vehicles, and even cells under microscopic
observation [2].

In recent years, MOT research has experienced rapid development due to the suc-
cessful implementation of advanced target detectors and various correlation algorithms.
Pedestrians, being the main tracking objects in MOT methods, have gained significant at-
tention due to the abundance of pedestrian datasets and their commercial value. It has been
observed that 70% of current MOT methods specifically focus on pedestrians [2]. Pedestrian
MOT datasets often have the feature of relatively homogeneous scenes [3], slow pedestrian
movement, and few scene transitions [4]; in addition, the motion state of pedestrians is
relatively simple in most scenarios [3]. Therefore, treating pedestrians in multi-object
tracking as linear and uniformly moving objects is completely feasible in order to simplify
the motion model and reduce the computational complexity for short-term tracking.

The intelligent transportation field is rapidly developing, and trackers that only focus
on pedestrians are insufficient for the needs of intelligent transportation [5]. The multi-
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object tracking of vehicles on roads holds significant research importance and practical
value in constructing an integrated intelligent transportation system encompassing people,
vehicles, roads, and cloud collaboration. However, the traffic road scene of vehicles is
highly complex. The video frames of traffic roads contain numerous objects and intri-
cate backgrounds. Objects frequently undergo foreground–background switches, which
makes pre-tracking detection very challenging [6]. Consequently, there are numerous
low-confidence detection boxes. Moreover, there are significant disparities between the
motion states of vehicles and pedestrians. First, vehicles have much higher moving speeds
compared to pedestrians [7]. Then, the vehicles are influenced not only by their own power
systems and friction coefficients but also by various complex factors in their surround-
ings, including traffic conditions, traffic rules, and human driving factors on the road [8].
As a result, vehicles in motion often need to change lanes, execute large turns, encounter
overlapping obstructions with other vehicles, and perform frequent accelerations and
decelerations. The nonlinear nature of these factors renders the motion states of vehicles
extraordinarily complex, thereby making it challenging to describe them using simple
linear motion models [9] like the traditional Kalman filter (KF) [10], as mentioned in the
ByteTrack method [11], and this is the primary reason for tracking failures in autonomous
driving scenes. Although advanced multi-object tracking methods have exhibited excellent
performance on pedestrian datasets [1], only a few have ventured to tackle the difficult task
of tracking moving vehicles in road traffic datasets [12,13]. Consequently, we emphasize
that enhancing the robustness of detectors in traffic road scenes, extracting information
on the nonlinear motion of vehicles to estimate their positions, and effectively employing
low-confidence detection boxes to associate targets are crucial factors in improving the
performance of the TBD paradigm for moving vehicles.

Based on the analysis above, we propose a simple and effective MOT method called
AM-Vehicle-Track, which is designed to track vehicles on complex roads. Specifically, we
propose the lightweight convolutional block attention module (LCBAM) to mitigate the
impact of complex road traffic backgrounds and frequent foreground–background switches
on vehicle detection. This module incorporates two attention mechanisms: lightweight
channel attention mechanism (L-CAM) and spatial attention mechanism (SAM). By combin-
ing L-CAM and SAM, foreground feature weights are emphasized, enabling the detector
network to focus more on foreground objects without significant computational overhead.
Furthermore, we introduce the noise-adaptive extended Kalman filter (NSA-EKF) module
to address the nonlinear motion problem in vehicles. This module replaces the widely used
Kalman filter [11,14,15] applied to linear Gaussian motion models in many MOT methods.
The NSA-EKF module transforms the nonlinear problem into a linear one by retaining the
first-order Taylor expansion of the nonlinear function [16]. It also considers the influence
of detection confidence on observation noise to more accurately extract vehicle motion
information and predict their positions. Lastly, to handle inevitable low-score detection
boxes encountered in traffic road scenes, we apply the Byte association algorithm [11],
a straightforward and effective approach that performs a second match between low-score
detection boxes and trajectories in cases where the initial matching is unsuccessful. This
algorithm effectively identifies true targets and maintains trajectory tracking continuity.
To validate the effectiveness of AM-Vehicle-Track, we perform numerous experiments on a
challenging road scene benchmark dataset VisDrone-MOT [17]. The experimental results
reveal the superior effectiveness of our approach by achieving a favorable balance between
MOT accuracy and its real-time performance (Figure 1).

The main contributions of this paper are as follows:

1. We propose AM-Vehicle-Track, a simple and effective multi-object tracker, to address
the tracking problem of vehicles in complex traffic road scenes.

2. We design a novel attention module called LCBAM, helping our object detector extract
foreground features more effectively without incurring excessive computational costs.

3. To better predict the potential future positions of nonlinear moving targets, we design
the NSA-EKF module to extract their motion information.
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Figure 1. Comparative analysis of various trackers on the VisDrone-MOT test sets based on MOTA-
IDF1-FPS metrics. The x-axis represents the running speed (FPS), the y-axis represents the MOTA,
and the circle’s radius corresponds to IDF1. Our AM-Vehicle-Track achieves the best MOTA and IDF1
and comparable FPS performance.

2. Related Work
2.1. Object Detection

The field of CV has historically placed significant emphasis on the study of object
detection. Continuous progress in this field has been driven by the use of open benchmark
tests like COCO [18] and ImageNet VID. Object detection serves as a crucial foundation
for comprehending high-level semantic information present in images. Furthermore, it
is crucial in advancing other CV technologies, including image segmentation [19], styl-
ization [20], object tracking [2], and so on. Additionally, it finds widespread applications
in scene understanding [21], intelligent interaction [22], and autonomous driving [23].
Deep learning-based object detection methods can be broadly categorized as either anchor-
based or anchor-free approaches [24]. The former includes two-stage algorithms like
R-CNN [25] and Faster R-CNN [26], as well as single-stage methods such as SSD [27],
RetinaNet [28], and lightweight YOLO [29], which are currently more prevalent. In this
study, the YOLOv7 [30] object detector is used, due to its harmonious combination of model
accuracy, inference performance, and speed. Compared to other existing object detectors,
YOLOv7 offers higher detection accuracy without compromising on inference speed.

2.2. Tracking by Detection (TBD)

Tracking by Detection (TBD) is a detection-based framework for MOT. It employs
object detectors to identify target objects in each frame and then uses matching algorithms,
such as the Hungarian algorithm, to associate these targets and determine which objects,
at different times and positions in the video sequence, are the same. This enables the
extraction of object trajectories and identifiers [2]. The classic SORT [14] algorithm is a
multi-object tracking algorithm that is built upon TBD, which utilizes the Faster R-CNN two-
stage object detector to detect targets. It is the first method to employ Kalman filter based
on linear Gaussian motion model for predicting the position of each object in the next frame.
Additionally, the similarity and data association of the objects are determined by calculating
the IOU distance and employing the Hungarian algorithm [31]. With the advancements in
object detection, more powerful one-stage object detectors have become commonly used
for MOT. The ByteTrack algorithm, based on TBD, makes use of the popular one-stage
object detector YOLOX [32] to detect the objects of interest. It additionally performs a
second matching using low-scoring detection boxes to filter out background information,
effectively optimizing the tracking process by reducing excessive ID switching.
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The advantage of this multi-object tracking framework lies in its efficient handling
of changes in the number of targets. The framework typically exhibits a high tracking
speed, while its performance can be further enhanced through optimized object detection.
However, a notable disadvantage is the heavy reliance of this framework on the accuracy
and robustness of the object detector [2]. Complications arise when the background
becomes complex or when issues like object occlusion or crossing motion occur, potentially
resulting in missed detections or false detections by the object detector. Consequently,
the overall effectiveness of this MOT framework becomes limited.

2.2.1. Separation Detection and Embedding (SDE)

The method based on separation detection and embedding (SDE) separates detection
and feature extraction, using two independent networks for implementation. First, a de-
tection network is used to locate the target, followed by feature extraction from the target.
Finally, a data association algorithm calculates the affinity between targets, establishing
target associations. DeepSORT [15], a classic SDE algorithm, employs a two-stage object
detector based on Faster R-CNN [26] to output detection boxes for objects. It then utilizes
Kalman filter to extract object motion information and a re-identification (Re-ID) network
to further extract appearance features of objects within the detection boxes. Finally, it
computes the similarity between Re-ID features and uses the Hungarian algorithm to
generate trajectories. Subsequently, several methods incorporating feature pyramids and
deep affinity networks have emerged to enhance target discrimination and extraction of
target appearance features. Tracking algorithms that integrate motion and appearance
features typically depend on pre-existing detectors and Re-ID networks, resulting in im-
proved tracking accuracy and greater robustness against various challenges in complex
scenes [33,34]. However, this approach’s drawback is that the overall tracking speed of the
algorithm is relatively slower due to the high complexity and computational overhead of
the network.

2.2.2. Joint Detection and Embedding (JDE)

The joint detection and embedding (JDE) method, in contrast to the SDE method,
simultaneously produces the positional and appearance features of objects by incorporating
a parallel feature extraction branch into the detection network. By incorporating common
features, it avoids redundant computations, enhances the tracking speed of the model,
and ensures real-time performance [1]. The classical FairMOT algorithm [35], based on the
JDE framework, conducts object detection and identity embedding concurrently within
a single network. It abstains from using anchors and solely relies on detecting objects
through the center point. Furthermore, a balance between object detection and ReID tasks
is achieved through the utilization of a multi-layer feature aggregation approach. This
approach effectively combines features from diverse depths and receptive fields. These
optimizations have enabled FairMOT to achieve SOTA results on various public datasets.
The JDE method accelerates MOT speed and optimizes both detection and feature extraction
performance. However, a drawback of the JDE method is its often simplistic design for the
feature extraction branch, which leads to an inability to learn critical target representations
and lowers the overall robustness of the framework.

2.3. Motion Model

In multi-object tracking, object motion can be categorized as linear motion or nonlinear
motion based on patterns [2]. The linear motion refers to the approximate movement
trajectory of an object that can be represented by a straight line or a first-degree polynomial,
such as uniform linear motion or uniform acceleration/deceleration motion [36]. On the
other hand, nonlinear motion models encompass curved motion, accelerated or decelerated
motion, and so on. Currently, linear motion models are widely adopted in motion tracking
and serve as the foundation for most multi-object tracking algorithms. Assumptions of
linear motion simplify the model design, reduce computational complexity, and enable
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real-time tracking [37]. For instance, the classical multi-object tracking algorithm SORT
incorporates the Kalman filter (KF) to estimate object motion. The KF, based on Bayesian
theory [38], updates the position and velocity of objects by leveraging historical states and
current observations, providing inspiration for subsequent MOT research [11,14,15].

However, in reality, the motion of objects is rarely linear, especially for vehicles driving
on the road [39]. Nonlinear factors, such as friction, air resistance, nonlinear engine output
torque–vehicle speed relationship, and the interactions between the driver and the environ-
ment, significantly contribute to nonlinear vehicle motion. Lane changes, U-turns, frequent
acceleration, deceleration, and emergency stops unequivocally invalidate the possibility of
adopting a simple linear motion model for driving vehicles. For example, the experimental
results of the ByteTrack [11] algorithm on the BDD100K [40] road dataset demonstrate that
the poor performance of SORT [14], DeepSORT [15], MOTDT [33], and other algorithms in
road traffic scenes can be attributed to the utilization of the Kalman filter. Consequently,
a range of multi-object tracking systems have emerged, employing alternative methods to
extract target motion information. One such example is Tracktor [41], which uses Faster
R-CNN as the detector and leverages its regression module to predict the position of targets
in the subsequent frame. Furthermore, several MOT algorithms have been proposed that
utilize deep learning techniques like GCN [42] and Transformer [43,44] to handle target
motion and estimate target positions [1]. In contrast, the extended Kalman filter (EKF)
addresses the limitations of KF, which is only suitable for linear Gaussian systems, by adapt-
ing it for nonlinear systems. The main idea of EKF is to simplify the nonlinear problem by
focusing on the first-order terms of the Taylor expansion, disregarding the higher-order
terms. This transformation converts the problem from a nonlinear one to a linear one [38].
Besides overcoming the incorrect linear assumptions made by the KF, EKF also inherits the
advantages of low computational complexity and accurate prediction.

3. Methods
3.1. Architecture Overview

For a given video sequence in a road scene, our objective is to first detect vehicles in
each frame and track them by assigning unique identities. To accomplish this, we follow
the paradigm of tracking by detection, propose AM-Vehicle-Track, where we embed the
LCBAM attention mechanism in the detector network, and utilize the NSA-EKF algorithm
in the tracking phase to extract vehicle motion information and estimate their positions.
Specifically, in the detection phase, we employ the improved YOLOv7-LCBAM to obtain the
bounding boxes and confidences of targets in every frame of the input image. This detector,
with the LCBAM attention mechanism, effectively captures the features of foreground
objects and filters out irrelevant backgrounds, which significantly enhances subsequent
object tracking.

In the tracking phase, we use the NSA-EKF algorithm to process the motion informa-
tion of the vehicle’s nonlinear movement and predict the location, thereby obtaining the
predicted box of the target. Instead of discarding the low-score detection boxes like previ-
ous methods, the Byte data association algorithm is borrowed to handle the unavoidable
low-score detection boxes that are obtained from detection in complex scenes. The high-
score detection boxes are initially matched with the target trajectory boxes predicted by the
NSA-EKF algorithm. If a successful match is made, a unique identity is assigned, indicating
a successful tracking. For the detection boxes that did not successfully match in the initial
attempt and the low-score detection boxes, they undergo a second matching process with
the remaining target trajectory boxes. Next, we will present a comprehensive elucidation of
AM-Vehicle-Track along with the enhancements made.

3.2. Lightweight Convolutional Block Attention Module (LCBAM)

In the TBD paradigm, the performance of the detector significantly impacts the track-
ing results. To enhance the detection capability of the YOLOv7 detector, we introduce
LCBAM in the object detection stage, which is based on CBAM [45]. In the channel atten-
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tion, we replace two fully connected layers with a one-dimensional convolution having a
convolutional kernel length of k, enabling local cross-channel interaction. This approach
addresses the issues of computational complexity and low FPS caused by the use of fully
connected layers in CBAM. LCBAM consists of two attention mechanisms: lightweight
channel attention module (L-CAM) and spatial attention module (SAM).

The L-CAM primarily emphasizes the semantic information, specifically on the effec-
tive features within the feature map. To achieve this, first, the L-CAM module utilizes a
combination of global average pooling and global maximum pooling techniques to effec-
tively aggregate the spatial information from the input feature map F ∈ RW×H×C, allowing
it to capture more refined target features. The simultaneous use of these two pooling
operations not only reduces the size and computational cost of the feature map, but also
improves the network’s expressive power. Subsequently, the two one-dimensional vectors
resulting from the pooling operations are fed into a one-dimensional convolution with
a kernel length of k to extract features. This step is crucial, as it obtains the weights for
each channel of the feature map, facilitating local inter-channel interaction and captur-
ing interdependencies between channels. Then, the generated feature vectors undergo
element-wise addition and activation using a sigmoid function, obtaining the weight of
each channel of the input feature layer, denoted as Mc ∈ R1×1×C, and the channel weight
of the relevant information in the input feature map is large, while it is comparatively small
for the opposite. Finally, the normalized weights Mc are then element-wise multiplied with
the original input feature map F ∈ RW×H×C, resulting in the weighted output feature map
Fc ∈ RW×H×C, as shown in Figure 2. The kernel length k is determined using a formula,

k = ψ(C) =
∣∣∣∣ log2 (C)

m
+

n
m

∣∣∣∣
odd

, (1)

in the given equation, C corresponds to the number of channels in the input feature map,
|a|odd represents the nearest odd number to a, and m and n are assigned values of 2 and 1,
respectively.

Figure 2. Structural diagram of L-CAM.

The SAM serves as a complementary component to channel attention by focusing
on regions in the feature map that contain more effective features and paying greater
attention to their positional information. Given a feature map Fc ∈ RW×H×C from L-CAM,
the SAM applies both maximum pooling and average pooling to compress it. The resulting
two-dimensional feature maps are then concatenated to form a new feature map with
two channels. After that, the concatenated feature map is convolved with a one-channel
convolutional operation to ensure spatial consistency with the input. The sigmoid function
is then applied to activate the feature map, thereby obtaining the weight of each feature
point in the input feature layer, known as the spatial attention weight MS ∈ RW×H×1,
as shown in Figure 3.

Finally, the weight MS ∈ RW×H×1 of SAM is multiplied channel-wise with the input
feature map from L-CAM, represented as Fc ∈ RW×H×C, to produce the weighted final
feature map Fcs ∈ RW×H×C, as shown in Figure 4.
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Figure 3. Structural diagram of SAM.

Figure 4. Structural diagram of LCBAM.

In the detection end of our multi-object tracking method, the LCBAM attention mech-
anism is added to the YOLOv7 network structure, as shown in Figure 5.

When LCBAM is incorporated into the backbone network, it reduces some of the
original weights, resulting in inaccurate prediction outcomes. In order to tackle this matter,
we have opted to introduce LCBAM solely to the feature extraction component of YOLOv7,
ensuring the integrity of the originally extracted features.

Figure 5. Part of the structural diagram of the improved YOLOv7-LCBAM. The attention mechanism
is added to the feature extraction part of the YOLOv7 network.
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3.3. Noise-Adaptive Extended Kalman Filter (NSA-EKF)

After object detection, the tracking phase of the objects is initiated. The common
linear Kalman filter algorithm has been widely applied in object tracking. This algorithm
estimates the input signals based on the previous moment, updates the state variables
using observed system values, predicts the position for the next moment, and ultimately
outputs the estimated values as the system output [14]. However, assuming that vehicle
models on traffic roads only have linear and constant speed motion is not sufficiently
robust and can lead to considerable prediction errors. Therefore, we propose using the
extended Kalman filter [38] instead of the ordinary Kalman filter and enhancing it to
noise-adaptive extended Kalman filter (NSA-EKF). The extended Kalman filter can provide
more accurate predictions for the nonlinear variable speed motion of moving vehicles.
Additionally, our improved adaptation of the noise allows the measurement noise scale
to vary with the confidence of the detection, thereby aiding the algorithm in obtaining
more accurate motion states. Despite appearing as a simple improvement, NSA-EKF
significantly enhances the robustness and tracking performance of MOT, demonstrating
targeted enhancement and improvement.

The linear Kalman filter (KF) algorithm employed in DeepSort [15] will be discussed
first. DeepSort assumes that the state of the target can be represented by an eight-
dimensional vector, denoted as

xk =
[
cx, cy, r, h, vxk , vyk , vrk , vhk

]T , (2)

where cx and cy represent the center coordinates of the bounding boxes, r is the aspect ratio,
h is the height, and vxk ,vyk ,vrk ,vhk

represent the velocity change values for each respective
dimension. All velocity values are initialized to 0. DeepSort uses a constant velocity model
to describe the motion of the target, which can be mathematically expressed as:

xk = Fxk−1 + wk, (3)

where F represents the transition matrix, and wk denotes the process noise, which arises
from the inherent uncertainty associated with the movement of the target. DeepSort
makes the assumption that the process noise conforms to a Gaussian distribution with zero
mean, i.e.,

wk ∼ N (0, Q), (4)

where Q represents the covariance matrix associated with the process noise. Moreover,
DeepSort employs a linear measurement model to depict the detection outcomes of targets,
given by

zk = Hxk + vk, (5)

Here, zk denotes the bounding boxes’ coordinates, H represents the measurement
matrix, and vk signifies the measurement noise. The measurement noise can originate from
various sources, including loss, overlap, and uncertainty of the bounding boxes. DeepSort
assumes that the observation noise follows a zero-mean Gaussian distribution, i.e.,

vk ∼ N (0, R), (6)

where R is the covariance matrix of the observation noise.
Based on the given assumptions, the DeepSort algorithm utilizes the KF to estimate the

state and covariance. The algorithm follows specific steps: Prediction: To forecast the cur-
rent state and covariance, the linear system equation is employed using the estimated state
value x̂k−1 and covariance estimate value P̂k−1 from the previous timestamp. The predicted
state and covariance are denoted as follows:

x̂−k = Fx̂k−1, (7)

P̂−
k = FP̂k−1FT + Q. (8)
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Update: For each successfully matched track, the track state is updated by leverag-
ing the position of the match with the detection. The measurement matrix H maps the
mean vector x̂−k of the track to the detection space. Subsequently, utilizing the current
observation zk, the predicted value x̂−k and P̂−

k , the linear observation equation calculates
the observation residual Sk, Kalman gain Kk, and the updated optimal estimation value
as follows:

ỹk = zk − Hx̂−k , (9)

Sk = HP̂−
k HT + R, (10)

Kk = P̂−
k HTS−1

k , (11)

x̂k = x̂−k + Kk ỹk, (12)

P̂k = (I − Kk H)P̂−
k (13)

This section addresses the replacement of the linear Kalman filter, utilized in algo-
rithms like DeepSort, with a nonlinear extended Kalman filter (EKF), and adaptively adjusts
the noise scale based on the detection quality of objects. The fundamental concept behind
the extended Kalman filter involves approximating nonlinear problems as linear ones,
through the disregarding of higher-order terms in the Taylor expansion of the nonlinear
function and retaining solely the first-order Taylor series. In the scenario where a more intri-
cate nonlinear model is employed to describe target motion and observation, the following
equations can serve as an example:

xk = f (xk−1) + wk, (14)

zk = h(xk) + vk, (15)

where f (·) and h(·) represent arbitrary nonlinear functions. The EKF algorithm requires
performing a Taylor expansion on the nonlinear functions and approximating them to the
first order around the current state. Some simulation results demonstrate that optimal
filtering performance can be achieved by extending the Taylor series expansion up to
the second order. However, this considerably increases computational complexity and
runtime. Furthermore, the difference in results between the second-order and first-order
approximations is relatively small [16]. Consequently, the EKF generally employs the
first-order expansion, which can be expressed as follows:

f (xk−1) ≈ f (x̂k−1) + Fk(xk−1 − x̂k−1), (16)

h(xk) ≈ h
(
x̂−k

)
+ Hk

(
xk − x̂−k

)
, (17)

here, Fk and Hk are the Jacobian matrices of f (·) and h(·) evaluated at x̂k−1 and x̂−k , respec-
tively, and they can be expressed as:

Fk =
∂ f
∂x

|x=x̂k−1 , (18)

Hk =
∂h
∂x

|x=x̂−k
. (19)

It is noteworthy that the extended Kalman filter (EKF) utilizes Taylor expansion for
linearization. When linearizing a system, it is necessary to find an operating point to
perform linearization around it. In a nonlinear system, the true point serves as the optimal
choice. However, given the presence of numerous system errors, determining the true point
becomes infeasible. Hence, the subsequent alternative is to linearize f (xk) around x̂k−1.

Based on these approximations, we can now use the EKF algorithm to estimate the state
and covariance of the target. The particular steps are as described below: Prediction: Based
on the estimated state x̂k−1 and covariance P̂k−1 at the previous time step, the current state
and covariance are predicted using the nonlinear system equations. The state transition
matrix is also calculated as:
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x̂−k = f (x̂k−1), (20)

P̂−
k = Fk P̂k−1FT

k + Q, (21)

Fk =
∂ f
∂x

|x=x̂k−1 . (22)

Update: In this section, we propose improvements to the EKF. Unlike the KF algorithm
used in DeepSort, which treats the observation noise covariance matrix R as a constant
and does not consider detection performance, we suggest that the measurement noise
scale ought to be adjusted according to the confidence level of detecting the current state,
denoted as ck. This is because the observation noise reflects the noise scale of the current
frame, and increased uncertainty and detection noise should result in smaller weights
during the state updating step. Intuitively, different measurements should incorporate
noises of varying scales. To account for this, we introduce an adaptive noise covariance
formula:

R̃ = (1 − ck)R, (23)

enabling a more realistic and fair calculation of observation residuals. Finally, utilizing
the current observation value zk, the predicted value x̂−k , and P̂−

k , we employ a nonlinear
observation equation to calculate the observation residuals Sk, the Kalman gain Kk, and the
updated optimal estimation as follows:

ỹk = zk − h
(
x̂−k

)
, (24)

Sk = Hk P̂−
k HT

k + R̃, (25)

Kk = P̂−
k HT

k S−1
k , (26)

x̂k = x̂−k + Kk ỹk, (27)

Hk =
∂h
∂x

|x=x̂−k
, (28)

P̂k = (I − Kk Hk)P̂−
k , (29)

We have successfully replaced the Kalman filter (KF) with the noise-adaptive extended
Kalman filter (NSA-EKF) to capture object motion information and predict their potential
locations in multi-object tracking.

4. Experiments
4.1. Datasets and Metrics

We conduct experiments on the VisDrone-MOT dataset under the “private detection”
protocol. The VisDrone-MOT dataset is a widely used multi-class multi-object tracking
dataset that includes various target categories such as cars, buses, trucks, and pedestri-
ans [17]. These targets are captured in different scenarios using unmanned aerial vehicles
with a similar height and perspective to surveillance cameras on the traffic road, thus
rendering VisDrone-MOT highly valuable in practical applications. The dataset presents
challenging scenes with diverse environments and densities, including 56 video sequences
with 24,201 frames in the training set, 7 video sequences with 2819 frames in the valida-
tion set, and 33 video sequences with 12,968 frames in the test set, which is divided into
test-challenge (16 video sequences) and test-dev (17 video sequences) for debugging and
further verification purposes. Additionally, since we employ the YOLO object detector [30],
it is necessary to convert the dataset into the YOLO format.

In this experimental section, we adopted widely accepted CLEAR metrics [46] (MOTA,
FP, FN, IDs, etc.) to assess the performance. The MOTA evaluation metric is commonly
utilized for MOT, which is computed by integrating various measures including FP, FN,
and IDs, therefore MOTA provides a comprehensive assessment of factors such as false
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alarm rate, target loss, and target identity switching. Additionally, MOTA primarily empha-
sizes detection performance, as the number of FPs and FNs is larger than IDs. IDF1 aims to
map predicted trajectories to actual trajectories and emphasizes the algorithm’s correlation
performance. MT denotes the proportion of successfully tracked targets, which accounts
for more than 80% of the trajectories. ML represents the proportion of unsuccessfully
tracked targets, which accounts for less than 20% of the true trajectories. IDs indicate the
number of identity switches that occur for all tracked targets. FN denotes the count of false
negatives in the entire video sequence, whereas FP represents the count of false positives.
Additionally, we report FPS to measure tracking speed and the real-time performance of
the MOT tracker by indicating the number of frames processed per second.

4.2. Implementation Details

Our network is built upon PyTorch 1.7.0 and CUDA 11.0 [47]; the operating system is
Ubuntu 20.4. For training, we use our improved YOLOv7-LCBAM as the detection detector
with the parameters pre-trained on COCO [18]. We do not use additional training data,
the mini-batch size is set to 16 and the number of total training epochs is 80, the first epoch
is warmed up by cosine annealing method. We use SGD [48] as the optimizer, the initial
learning rate is set to 0.001, weight decay is set to 5 × 10−4, and momentum is 0.9. The input
size of VisDrone-MOT is 1088 × 640; data-augmentations include random resized cropping,
Mosaic [49], and Mixup [50]. For the sake of fair comparisons, we present the results
obtained by other previous methods that have also employed the same data-augmentation
strategy. In our study, we employ UniTrack as the Re-ID model. All of our experimental
procedures are executed on NVIDIA RTX3090 GPUs.

4.3. Ablative Studiess

In this section, we perform ablation experiments on the VisDrone-MOT dataset to
assess the reliability of each component in AM-Vehicle-Track. The DeepSort algorithm with
YOLOv7 target detector is employed as the baseline model for the ablation experiments.

4.3.1. The Effectiveness of LCBAM

In the TBD paradigm, the performance of the object detector plays a crucial role in
MOT algorithms [2]. It not only impacts tracking accuracy but also correlates closely with
the algorithm’s real-time capability. Hence, we chose the YOLOv5 [51] detector, commonly
utilized in previous MOT algorithms [52,53], along with YOLOv7 as the baseline object
detector. We also conducted ablation experiments by comparing them with the YOLOv7-
CBAM object detector and our improved YOLOv7-LCBAM object detector. As shown
in Table 1, the performance analysis in the table demonstrates that using YOLOv5 as the
object detector yields the worst algorithm performance, with both low algorithm accuracy
and frame rate. It is the only algorithm in the experiment that falls below 50 frames. Al-
though the inclusion of the CBAM in the YOLOv7 detector enhances the MOTA value
compared to YOLOv7, the addition of the attention module complicates the entire de-
tector network, resulting in a 17% decrease in the frame rate. However, utilizing the
improved YOLOv7-LCBAM as the detector enables us to achieve more competitive track-
ing performance with a slightly lower frame rate. As analyzed earlier, LCBAM utilizes
one-dimensional convolution to achieve inter-channel interaction. Not only does it prevent
information loss caused by feature compression in fully connected layers, but it also reduces
network complexity.

Table 1. Analysis of performance using different detectors (best in bold)..

Method MOTA (↑) FPS (↑)

YOLOv5s 30.4 45
YOLOv7 34.9 74

YOLOv7-CBAM 37.3 61
YOLOv7-LCBAM (Ours) 37.5 68
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4.3.2. The Effectiveness of NSA-EKF

To investigate the impact of different motion state models on vehicle tracking in
traffic scenarios, we compare the widely used KF and EKF in the baseline model with our
improved NSA-EKF, as shown in Figure 6.

We evaluate their effectiveness in obtaining motion information and predicting the
trajectories of road vehicles. Our findings indicate that the baseline model with KF exhibits
the lowest MOTA and IDF1 values. The simple KF algorithm proves ineffective in accu-
rately predicting and updating the complex motion of vehicles on the road, as noted in
ByteTrack [11]. By employing EKF, as shown in Table 2, the MOTA metric improves from
34.9 to 37.8, and IDF1 improves from 41.5 to 45.5. Additionally, the multi-object tracking
based on NSA-EKF further enhances the overall algorithm performance, with the MOTA
improving to 39.2 and IDF1 to 46.1. Moreover, the algorithm demonstrates improved real-
time capabilities compared with EKF. It is evident that the use of the improved adaptive
noise extended Kalman filter, as a replacement for the standard Kalman filter, enables better
extraction of motion information from nonlinear road vehicles and accurate estimation of
their future positions. From the perspectives of MOTA and IDF1, this approach indeed
enhances the prediction accuracy and association capability, making it more suitable for
road traffic scenarios compared to the standard Kalman filter.

Figure 6. Visualization of the prediction box location compared with the widely used KF (dashed
green) and our NSA-EKF (dashed yellow), the red box represents the bounding box of the object,
the object is a car that undergoes a sequential process starting with deceleration, then acceleration
and turning right. It seems that the prediction box location produced by the proposed NSA-EKF fits
more accurately to the potential motion patterns of an object. It is important to highlight that the
principles and effects of NSA-EKF remain consistent whether applied to a single car or multiple cars.
Consequently, in order to minimize visual redundancy, we exclusively showcase the visual effects of
NSA-EKF on a single car from the dataset.

Table 2. Analysis of different motion modules (best in bold).

Method MOTA (↑) IDF1 (↑) FPS (↑)

KF 34.9 41.5 74
EKF 37.8 45.5 62

NSA-EKF (Ours) 39.2 46.1 69

4.3.3. The Effectiveness of Byte

In complex road traffic scenarios characterized by frequent occlusions and overlaps
caused by vehicles, encountering multiple low-scoring detection boxes is inevitable. To ad-
dress this issue, we propose the Byte correlation algorithm for secondary correlation of
these low-scoring detection boxes. As demonstrated in Table 3, the introduction of the Byte
algorithm remarkably reduces the interchanging of object IDs, resulting in a decrease in
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the number of IDs from 1094 to 715 when employing the baseline model. This improve-
ment is significant. It is evident that directly discarding low-scoring detection boxes in
previous multi-object tracking algorithms leads to a substantial loss of information. There-
fore, the correlation of low-scoring detection boxes holds significant importance in road
traffic scenarios.

Table 3. Ablation studies on VisDrone-MOT test set (best in bold).

baseline +LCBAM +NSA-EKF +Byte MOTA (↑) IDF1 (↑) IDs (↓)
√

34.9 41.5 1104√ √
37.5 44.1 1162√ √ √
39.1 46.3 1094√ √ √ √
40.7 46.8 715

4.4. Comparison to State-of-the-Art

In this section, we compare our approach with classical and contemporary methods,
including the classical Sort method and ByteTrack [11] method based on the TBD paradigm,
the DeepSort [15] method based on the SDE paradigm, the FairMOT [35] method based on
the JDE paradigm, and the more advanced BoT-SORT [54] and SrongSORT [55] methods.
As presented in Table 4, our AM-Vehicle-Track method achieves highly competitive perfor-
mance across most key metrics. It secures the top rank in most metrics such as MOTA and
IDF1, and obtains the second rank in metrics like IDs and FPS. Our method is designed
to tackle the challenge of effectively tracking fast, nonlinearly moving, and frequently
occluded vehicles in complex road traffic scenarios. By doing so, it enhances the accuracy
of target association and strengthens the robustness of the tracker. Furthermore, our tracker
demonstrates superior performance, outperforming the second-best multi-object tracker
significantly in metrics that measure tracking accuracy and precision (i.e., +1.4 MOTA and
+3.5 IDF1). It only slightly trails behind the ByteTrack algorithm (i.e., −5 FPS) in terms of
identity switching and tracking speed, implying that the inclusion of more complex detec-
tion and tracking components does impact speed. Nonetheless, we believe that maintaining
a favorable balance between tracking accuracy and speed while ensuring an improvement
in accuracy is reasonable overall.

Table 4. Comparison with the state-of-the-art methods under the “private detector” protocol on the
VisDrone-MOT test set. The best results for each metric are shown in bold. AM-Vehicle-Track ranks
first in the most of metrics. (best in bold)

Method MOTA (↑) IDF1 (↑) MT (↑) ML (↓) IDs (↓) FP (↓) FN (↓) FPS (↑)

SORT [14] 38 44.2 24.1 42.9 702 10,073 60,996 69
DeepSORT [15] 38.9 44.9 25.7 35.4 655 12,548 61,534 49
FairMOT [35] 35.4 43.7 25.2 36.6 882 17,513 63,655 72
MOTDT [33] 34.7 42.8 23.5 37.3 754 15,301 60,072 53

ByteTrack [11] 37.5 43.7 28.4 43.6 377 6413 59,482 77
BoT-SORT [54] 40.6 47.1 27.2 38.4 396 6841 58,624 35

StrongSORT [55] 40.8 47.7 35.1 32.3 524 9072 62,583 55
Ours 42.2 51.2 35.4 33.1 364 6157 56,481 72

Figure 7 illustrates the tracking performance of our method on multiple vehicles
exhibiting nonlinear motion, despite experiencing significant occlusion during their move-
ment. The bounding boxes surrounding the vehicles are tracking boxes, and the top-left
corner ID of each tracking box represents the assigned ID for the corresponding vehicle
throughout the entire video stream. As shown in Figure 7, our tracker can perform ac-
curate tracking when multiple cars undergo nonlinear motions, such as significant turns,
and are occluded by foreground objects during the nonlinear motion process. For in-
stance, vehicle ID 24 in the figure is observed to be executing a turning maneuver in



Electronics 2024, 13, 242 14 of 17

Figure 7a,b, despite being significantly obstructed by a billboard in Figure 7c. Interestingly,
in Figure 7d, the tracking of the vehicle remains accurate and its identification number
remains unchanged.

Figure 7. Qualitative results on VisDrone-MOT benchmark for multi-object tracking. Subfigures (a–d)
display the tracking results of our tracker across various time sequences.

5. Conclusions

In this paper, we present AM-Vehicle-Track, a framework that follows the TBD
paradigm to enhance vehicle tracking in road traffic scenes. In the detection phase, we
introduce the LCBAM attention module, which is integrated into the Yolov7 detector for
enhanced foreground feature extraction and suppression of irrelevant features, particu-
larly in complex scenes and at higher frame rates. Subsequently, in the tracking phase,
we propose the NSA-EKF module as an innovative replacement for the conventional KF
module. This module effectively captures motion information for the vehicle’s nonlinear
motion and provides improved estimation of the vehicle’s position in the next frame for
tracking purposes. Additionally, we borrow the Byte data association method, which per-
forms secondary association for low-confidence detection boxes to enhance the detector’s
association capability and reduce ID switches. Experimental results on the VisDrone-MOT
road dataset demonstrate the competitive performance of our method, striking a balance
between tracking accuracy and execution speed.

6. Limitations and Future Work

The primary focus of our method is its reliance on extracting motion information
from vehicles to enable tracking; additionally, we employ existing Re-ID methods that
also rely on local object information, which effectively meet the requirements for vehicle
tracking in most of scenarios. However, video frames also contain valuable global infor-
mation [56]. Extracting and leveraging temporal and spatial global information holds
significant value [57]. In certain specific scenarios, particularly those involving highways,
it is reasonable to assume that vehicles have similar motion directions and speeds. This not
only simplifies detection and tracking but also reduces the likelihood of false matches and
tracking loss. In the future, we plan to explore this information in our AM-Vehicle-Track
to further improve the tracking performance. In addition, we aim to investigate various
approaches to mitigate the computational requirements of our tracker, thereby facilitating
its adoption in real-world scenarios with lower-tier hardware.
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