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Abstract: This study addresses the complex challenges associated with road traffic flow prediction
and congestion management through the enhancement of the attention-based spatiotemporal graph
convolutional network (ASTGCN) algorithm. Leveraging toll data and real-time traffic flow infor-
mation from Orange County, California, the algorithm undergoes refinement to adeptly capture
abrupt changes in road traffic dynamics and identify instances of acute congestion. The optimiza-
tion of the graph structure is approached from both macro and micro perspectives, incorporating
key factors such as road toll information, node connectivity, and spatial distances. A novel graph
self-learning module is introduced to facilitate real-time adjustments, while an attention mechanism
is seamlessly integrated into the spatiotemporal graph convolution module. The resultant model,
termed AASTGNet, exhibits superior predictive accuracy compared to existing methodologies, with
MAE, RMSE, and MAPE values of 8.6204, 14.0779, and 0.2402, respectively. This study emphasizes
the importance of incorporating tolling schemes in road traffic flow prediction, addresses static graph
structure limitations, and adapts dynamically to temporal variations and unexpected road events.
The findings contribute to advancing the field of traffic prediction and congestion management,
providing valuable insights for future research and practical applications.

Keywords: graph neural network traffic flow forecasting; deep learning; graph adaptive

1. Introduction

Presently, in economically developed regions, the growth in user demand for trans-
portation services exceeds the capacity expansion in road infrastructure supply. This
imbalance has given rise to an increasingly severe issue of traffic congestion. In tack-
ling recurrent road traffic congestion, the application of congestion tolling represents a
viable approach to alleviate this challenge [1–12]. Conversely, for the effective manage-
ment of unforeseen road traffic congestion, a pivotal requirement lies in the capability to
discern instances and locations of sudden congestion through rigorous scientific method-
ologies [13,14]. Both knowledge-driven and data-driven methodologies can be employed
to address this complex issue [15–21]. Drawing upon traffic flow theory, knowledge-driven
algorithms are developed to establish models for the dissipation of congestion [14]. These
models deduce information about congested nodes, queue lengths, and the times required
for congestion dissipation, utilizing insights derived from transient changes in road ser-
vice levels resulting from unforeseen circumstances. Knowledge-driven methodologies
encompass a myriad of theoretical assumptions, giving rise to specific divergences be-
tween anticipated outcomes and real-world scenarios. With the advancement of artificial
intelligence, employing data-driven methods to analyze abrupt changes in road traffic
volume and infer the location and timing of congestion occurrences is a preferable choice,
which shares similarities with data-driven road traffic flow prediction tasks [22]. Both
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tasks involve making judgments about the future road traffic state based on real-time data
collected from the current road conditions. Traffic flow prediction tasks primarily focus on
inferring the future road traffic volume over a specific time period, while the diagnostic
task for sudden road traffic congestion emphasizes capturing the abrupt changes in road
traffic flow. The field of road traffic flow prediction has evolved over several decades,
providing an opportunity to transfer the research achievements in this domain toward the
direction of sudden congestion identification. Detecting sudden changes in road traffic
flow can significantly address the issue of predicting unexpected road traffic congestion.

The evolution of road traffic flow prediction tasks can be delineated into three stages:
employing time series methods, adopting machine learning methodologies, and embrac-
ing deep learning approaches. Time series methods primarily encompass the historical
average model [23], the auto-regressive integrated moving average [24], and the vector
autoregressive model [25]. Time series methods rely on data exhibiting relatively strong
stationarity; however, traffic flow data typically demonstrate pronounced seasonality and
periodicity. Hence, machine learning and deep learning methods remain unaffected by
stationarity and can model the intricate non-linear relationships within road traffic flow.
Methods such as k-nearest neighbors (KNNs) [26], support vector regression (SVR) [27],
recurrent neural networks (RNNs) [28], convolutional neural networks (CNNs) [29], and
graph neural networks (GNNs) [30] have been proposed for application in this domain.
Davis et al. [31] indicated that the traditional KNN did not exhibit significant enhancement
compared with the time series methods. Jeong et al. [32] proposed an enhanced SVR algo-
rithm for short-term road traffic flow prediction. However, the algorithm exhibits a strong
dependence on data from the nearest time points and does not account for the mutual
influences between adjacent nodes. As a remedy, the CNN and RNN were used to extract
the correlation of data in the temporal dimension, and the KNN, CNN, and GNN were used
to the correlation of data in the spatial dimension. Luo et al. [33] employed LSTM and the
KNN to, respectively, capture the temporal and spatial features of traffic flow. In the context
of spatial traffic information, the KNN can only identify the most relevant traffic stations.
Yao et al. [34] employed a CNN to extract spatial relationships within the data and LSTM
to capture temporal relationships. However, a comprehensive explanation for the efficacy
of a CNN was not provided. GNNs are better suited for handling non-Euclidean spatial
relationships among road sensors. Li et al. [35] used a GNN combined with an RNN to deal
with the complexity of traffic data in time-space. Guo et al. [36] used a GNN combined
with a CNN accompanied by an attention mechanism to process traffic data for road traffic
flow prediction. Long et al. [37] proposed USTAN, a unified spatiotemporal attention
network, which addresses challenges by employing a unified attention component and a
gated fusion module for adaptive external factor modeling, demonstrating outstanding
performance in practical tasks.

The road traffic flow prediction algorithm based on graph neural networks is currently
a high-precision, data-driven, and short-term traffic flow forecasting method. However,
it has two main shortcomings. Firstly, the generation of the road traffic graph structure
relies primarily on prior theoretical knowledge, which may not adequately reflect the
connectivity between nodes. If the relationship between nodes relies on the distance of the
nodes, this relationship will deviate significantly from the actual situation, as shown in
Figure 1. In Figure 1, while the distance between areas B and C appears short, there is a
diversion area between them that may weaken their connection relative to the connection
between A and B. Similarly, the presence of a toll station between C and D can significantly
affect the relationship between them, with this influence manifesting at both static or macro-
levels and dynamic or micro-levels. Zhang et al. [38] addressed this issue by proposing
a self-learning graph structure that leverages multiple sources of prior knowledge as the
starting point for graph structure self-learning. During the model training process, they
performed alternating iterative optimization of graph structure parameters and traffic
flow prediction model parameters based on the loss function. The judicious selection of
prior knowledge holds significant importance in the process of self-learning for graphs.
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Inappropriately chosen prior knowledge may lead the model into inappropriate local
optima during self-learning, constraining the ultimate precision achievable by the model.
Given the context of employing a time-based tolling strategy for the proactive regulation of
recurrent road traffic congestion, incorporating the tolling strategy as prior knowledge in
the self-learning graph is anticipated to enhance the model’s training effectiveness. The
second issue lies in the static nature of the graph structure of the road traffic network,
which fails to adapt dynamically to temporal changes and respond effectively to unforeseen
events on the roads. Figure 2 further illustrates how the relationship between areas can be
influenced by various factors and can change over time. In Figure 2a, it is evident that the
interregional traffic relationships are subject to the influence of changes in toll collection
status, whereby the price change of toll collection at specific road sections may alter traffic
flows and, consequently, impact traffic relationships. In Figure 2b, the time-varying nature
of traffic relationships is demonstrated, whereby the relationships between areas can be
modified by traffic management policies, such as road repair or road closures. Finally,
Figure 2c shows how traffic congestion or road construction can affect the relationships
between areas over time, leading to changes in traffic patterns and potentially altering
the dynamics of traffic flow. To address this concern, Ta et al. [39] proposed a solution by
introducing a micro-level self-learning graph structure. This approach involves real-time
adjustments to the graph structure based on the fluctuations in node traffic flow, thereby
enhancing the model’s ability to accommodate temporal variations and promptly react to
unexpected road conditions. Additionally, with regard to the road traffic flow prediction
module of the graph neural network, in the context of employing tolling schemes to regulate
recurrent road traffic congestion, the current tolling policies on the roads can significantly
influence the travel strategies adopted by users. Therefore, in the process of road traffic flow
prediction, due consideration should be given to the impact of the prevailing congestion
pricing schemes on the road traffic volume.
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Figure 1. The distribution of the road sensor.

To address these issues, this study enhances the road traffic flow prediction algorithm
based on attention-based spatiotemporal graph convolutional networks (ASTGCNs) using
toll data and real-time traffic flow data from Orange County, California, USA. The primary
focus is on refining the algorithm to effectively capture sudden changes in road traffic
flow and diagnose instances of acute road traffic congestion. For the graph structure,
optimization is conducted from both macro and micro perspectives. At the macro level,
road toll information, connectivity between nodes, and the spatial distances among nodes
are utilized as prior knowledge to construct an initial graph structure. During the model
training process, synchronous optimization is applied to the macro-level graph structure.
On the micro level, the current moment’s micro-level graph structure is generated using
node traffic flow data. It is then concatenated with the macro-level graph structure, enabling
real-time optimization of the graph structure. In the traffic flow prediction model module,
a spatiotemporal graph convolution module, incorporating an attention mechanism, is
employed to forecast road traffic flow for a future time horizon. Building on this, the current
service level of the road is assessed based on the present road capacity. The algorithm
comprises a graph self-learning module, a time-attention module, and a spatiotemporal
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graph convolutional neural network module, collectively referred to as a spatiotemporal
graph neural network with graph adaptive and attention mechanisms (AASTGNet).
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2. Methods
2.1. Initial Graph Structure

The efficacy of convolutional operations is directly influenced by the quality of the
graph structure. To enhance the quality of the graph structure and mitigate the risk of
the model prematurely converging to inappropriate local optima during iterative training,
three pre-defined graph structures are introduced in this section. These include the node
connectivity graph structure, the distance graph structure, and the toll graph structure.
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2.1.1. Node Connectivity Graph Structure

The node connectivity graph structure specifically refers to the physical connectivity
between detectors in the real world by connecting node sensors in both directions in which
traffic could flow. The connections between detectors in freeway junction areas are of
particular importance. In this study, the two junction areas between SR241 and SR261, and
SR241 and SR133, were considered. Figure 3 depicts the spatial position information and
connection relations of the detectors, with the key nodes in (a) and (b) being numbered and
their connections are described in the figure.
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are numbered, and the connection between these nodes is described in word order in the figure.
(c) represents the geographical location of the road.

2.1.2. Distance Graph Structure

The distance graph structure refers to the spatial distance between node detectors,
regardless of their actual connection in the real world. Unlike the node connectivity graph
structure, the distance graph structure also includes nodes that are not directly connected
but are located close to each other in space. The purpose of including such nodes is to
enable the model to capture the potential spatial relationship between nodes, which can
enhance its performance in analyzing the traffic flow and toll data. For distances between
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node sensors Si and Sj, normalization was performed using the Gaussian kernel weighting
function [40].

A(i,j)
2 =

 exp
(
− |dist(i,j)|2

2θ2

)
if dist(i, j) ≤ T

0 else
(1)

where A(i,j)
2 represents the weight between Si and Sj, dist(i, j) is the spatial geometric

distance between Si and Sj, θ represents the standard deviation of distance data, and T
represents the threshold for performing data filtering.

2.1.3. Toll Graph Structure

The toll graph structure involves describing the toll scheme between nodes. In many
cities, the toll scheme for toll roads varies depending on the time and section of the road.
Toll fees are determined by the administrative departments by setting certain toll stations
on toll roads. Typically, users are required to pay the corresponding road toll each time
they pass through a toll station. As these toll nodes are distributed among the detector
nodes, we convert the road toll information provided by the toll stations into a connection
relationship between the detector nodes. Using Orange County as an illustrative example,
this issue is elaborated in detail in Figure 4 and Table 1 in the scientific context. Figure 4
shows the distribution of toll stations in Orange County and Table 1 is a portion of the toll
rates for roads, which were obtained from https://www.thetollroads.com (accessed on
21 January 2023).
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Table 1. Toll rates of SR261 in Orange County. It can be clearly seen that the toll varies with different
sections, directions, and time. Similar changes also exist on SR241 and SR133.

Toll Point Monday through
Friday—Southbound Account Toll Rate Non-Account Toll Rate

Irvine Ranch

12:00 a.m.–6:59 a.m. USD 2.69 USD 3.32
7:00 a.m.–7:29 a.m. USD 3.16 USD 3.32
7:30 a.m.–8:29 a.m. USD 3.32 USD 3.32
8:30 a.m.–8:59 a.m. USD 3.16 USD 3.32

9:00 a.m.–11:59 p.m. USD 2.69 USD 3.32

Chapman/Santiago Cyn Rd 12:00 a.m.–11:59 p.m. No Toll No Toll

Irvine Blvd—West NB On 12:00 a.m.–11:59 p.m. USD 2.69 USD 2.69

Irvine Blvd—West NB Off 12:00 a.m.–11:59 p.m. USD 2.12 USD 2.12

Irvine Blvd—West SB On 12:00 a.m.–11:59 p.m. USD 2.12 USD 2.12

Irvine Blvd—West SB Off 12:00 a.m.–11:59 p.m. No Toll No Toll

Portola Pkwy—West NB On 12:00 a.m.–11:59 p.m. USD 2.69 USD 2.69

Portola Pkwy—West NB Off 12:00 a.m.–11:59 p.m. No Toll No Toll

Portola Pkwy—West SB On 12:00 a.m.–11:59 p.m. USD 2.69 USD 2.69

Portola Pkwy—West SB Off 12:00 a.m.–11:59 p.m. USD 2.69 USD 2.69

The computation of the edge weight A(i,j)
3 between nodes Si and Sj is based on the

presence of toll stations and the spatial disparity among toll stations at different locations.
This is determined by the following formula:

A(i,j)
3 =

{
sigmoid(toll(i, j)) if toll(i, j) > 0
0 else

(2)

where A(i,j)
3 represents the weight between Si and Sj, and toll(i, j) is the tolling situation

between Si and Sj.

2.2. AASTGNet

The structure of AASTGNet is shown in Figure 5. The method consisted of two main
components: a graph self-learning module for constructing the optimal graph structure,
as illustrated in the left portion in Figure 5, and a spatiotemporal graph convolutional
neural network model with a temporal attention mechanism for traffic flow prediction,
as illustrated in the right portion in Figure 5. The first component constructs the optimal
graph structure from both macroscopic and microscopic perspectives. At the macro level,
the module takes three pre-defined graph structures as inputs and constructs them into the
specified graph structures using Formulas (4)–(6). In each training epoch, the self-learning
graph structure is built with learnable parameters according to Formula (7), adjusting the
initial graph structure to generate the macroscopic graph structure for the current epoch.
An initialized graph structure is constructed using the a priori relationships between the
nodes, and the graph structure is fine-tuned during each round of training iterations until
the macroscopically optimal graph structure is found. At the micro level, a micro-level
graph structure was constructed using node information to characterize the current traffic
conditions. Formulas (12) and (13) delineate the specific methodology for constructing
the microscopic graph structure based on node information. Formula (14) combines the
two graph structures into an optimal graph structure.
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These two levels of graph structure are combined into the optimal graph structure. The
second component uses a spatiotemporal graph convolutional neural network with multi-
ple spatiotemporal convolutional layers and an attention mechanism to capture complex
spatial and temporal relationships and predict traffic flow. The optimal graph structure pri-
marily guides the computations of the GCN in this section, extracting spatial relationships
among nodes. Combined with a temporal attention mechanism, it assists one-dimensional
convolution operations in predicting future traffic volume. Formulas (15) and (16) illus-
trate the implementation process of the temporal attention mechanism, denoted as Tatt in
Figure 5. Formulas (17) and (18) describe the internal operations of the GCN, while
Formula (19) outlines the implementation process of spatiotemporal convolution, corre-
sponding to the GCN + Conv module in Figure 5.

Its specific operation process can be expressed as:

A∗ = g(X ,A) (3)

ŷ = h(X , A∗) (4)

where g(X ,A) is designed to find the optimal graph structure A∗, which can best reflect the
relationship between nodes after considering the price factor, A = (A1, A2, A3) represents
a collection of graph adjacency matrices constructed based on prior knowledge, X denotes
the node traffic data, and h(X , A∗) is tailored for predicting future traffic flow ŷ based on
node data X and the optimal graph adjacency matrix A∗.

2.2.1. Model the Optimal Graph Structure

This section provides a detailed exposition of the construction methodology for the
optimal graph structure, categorized into macroscopic graph structure construction, micro-
scopic graph structure construction, and the amalgamation of these two graph structures.
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Macroscopic Graph Structure

The construction of the macroscopic graph structure proceeds in three steps: generating
the initial graph structure, randomly generating the graph structure for the current iteration,
and merging the current iteration’s graph structure with the existing graph structure.

The first step involves integrating the three pre-defined graph structures into an initial
graph structure.

Ak ⇐
∼
D

− 1
2

k
∼
Ak

∼
D

− 1
2

k (5)

A(i,j) =
∑Nr

k=1 A(i,j)
k

∑Nr
k=1 Γ

[
A(i,j)

k

] (6)

where
∼
Ak = Ak + IN and

∼
D

(i,i)

k = ∑j
∼
A
(i,j)

k . Equation (6) was proposed by Kipf and
Welling [41] to place different graph structures in the same dimension for comparison. Γ
denotes the indicator function as:

Γ(x) =
{

1 if x ̸= 0
0 else

(7)

In the second step, the graph structure for the current iteration is generated. Traffic
flow on the road is unidirectional, and time-varying toll schemes charge different fees for
traffic flowing in different directions. In this section, a dedicated self-learning module is
designed to extract the unidirectional relationships between nodes.

Aada = ReLU
(

M1MT
2 − M2MT

1 + Diag(Λ)
)

(8)

where M1, M2 ∈ RN×F0(F0 ≪ N) and Λ ∈ RN are the learnable parameters and Diag(Λ)
diagonizes Λ. Diag(Λ) is utilized to generate the weights of diagonal positions. ReLU is
the activation function, which is used to enforce the sparsity of the newly generated graph
structure.

In the final step, after generating the graph structure for the current iteration, the
newly created structure is merged with the existing one.

S = Sigmoid(w1([Aada, Aini])) (9)

Anew = S ⊙ Aada + (1 − S)⊙ Aini (10)

where Sigmoid represents a sigmoid non-linear activation function, Aada represents the
self-learning graph structure that adjusts the initial graph structure Aini, Anew denotes the
newly adjusted graph structure, w1 represents 1 × 1 convolutional layers, and ⊙ indicates
element-to-element multiplication. To further improve the sparsity of the model by setting
a certain threshold, AMa is computed as:

Afil = ReLU
(

D− 1
2

new AnewD− 1
2

new − ε1

)
(11)

AMa = D− 1
2

fil AfilD
− 1

2
fil (12)

where D2 and D3 are diagonal matrices and D(i,j)
new = ∑N

j=1 A(i,j)
new, D(i,j)

fil = ∑N
j=1 A(i,j)

file , and
ε1 ∈ (0, 1) are the thresholds for filtering out the connections with smaller values in the
matrix Ahid. Afile represents the filtered new graph structure, and AMa corresponds to the
macroscopic graph structure.
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Microscopic Graph Structure

This section delineates the methodology for constructing the micro-level graph struc-
ture, achieving this objective through convolutional operations.

M = ω4 ∗ ReLU(ω3 ∗ ReLU(ω 2 ∗ X )) (13)

where ω2, ω3, and ω4 represent convolution kernels for the convolution of the time dimension
and ReLU represents the ReLU non-linear activation function. X ∈ RN×F×τ represents node
attributes and M ∈ RN×D′

represents the information matrix generated from the node data,
containing temporary information in the node, * represents the standard convolution operation.

The dot product is used to represent the nodes, and the matrix is processed to ensure
its sparsity.

AMi = ReLU
(

Norm
(

MMT
)
− ε2

)
(14)

where ε2 ∈ (0, 1) is the threshold for filtering out the connections with smaller values in
the matrix MMT .

Optimal Graph Structure

The ReLU activation function and normalization techniques are used to combine the
macroscopic graph structure AMa and the microscopic graph structure AMi to obtain the
optimal graph structure. The mathematical expression for this process is presented as follows:

A∗ = Norm(ReLU(AMa + AMi)) (15)

2.2.2. Graph and Temporal Dimension Convolution

This section is primarily dedicated to exploring the spatial and temporal relationships
between nodes based on the optimal graph structure. Following the work of Guo et al. [35],
this module involves two key components: temporal attention and graph and temporal
dimension convolution. These methods are employed to extract important temporal
features and perform convolution operations on the graph structure to uncover relevant
relationships between nodes in both the spatial and temporal domains.

In the temporal dimension, there are correlations between traffic conditions at different
times that vary under different circumstances. To capture this variability, an attention
mechanism that assigned different weights is employed to the data adaptively:

E = Ve·
((

(X )TU1

)
U2(U3X ) + be

)
(16)

E′
i,j =

exp
(
Ei,j
)

∑τ
j=1 exp

(
Ei,j
) (17)

where Ve, be ∈ Rτ×τ , U1 ∈ RN , U2 ∈ RC×N , and U3 ∈ RC are the weights and bias
parameters that can be learned.

To extract spatial information, this paper applies spectral graph theory [42], which
extends convolution operations from grid-based data to graph-structured data. In the tem-
poral dimension, a standard convolutional neural network (CNN) is used to extract features.
Node information is updated based on information from adjacent nodes. However, since
spectral graph theory requires feature decomposition, it becomes computationally expen-
sive for large-scale graphs. To address this, the Chebyshev polynomial as an approximation
method is employed to alleviate the computational burden.

gθ ∗ GX̂ = gθ(A∗) = ChebConv
(

Â∗, X̂ ; θ
)
= ReLU

(
K−1

∑
K=0

θkTk
(

Â∗)X̂) (18)
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where *G denotes a graph convolution operation, ReLU is the activation function, X̂
represents input information, which has been processed by time attention, and gθ is a kernel
filtering the signal X̂ on the graph G. The parameter θ ∈ RK is a vector of the polynomial
coefficients. Â∗ = 2

λmax
A∗ − IN , λmax is the maximum eigenvalue of the Laplacian matrix.

The recursive definition of the Chebyshev polynomial is Tk
(
X̂
)
= 2X̂ Tk−1

(
X̂
)
− Tk−2

(
X̂
)
,

where T0
(
X̂
)
= 1, T1

(
X̂
)
= X̂ .

As the graph structure in this study is defined as a directed graph, the graph structure
that takes directionality into account is no longer symmetric. To address this issue, the
following method is employed:

X̂ ∗ = Concat
[
ChebConv

(
Â∗, X̂ ; θP

)
, ChebConv

(
Â∗, X̂ ; θQ

)]
(19)

where θP and θQ are the learnable parameters, Â∗T is the transpose of Â∗, and Concat is the
concatenation of different data. X̂ ∗ represent the input data after graph convolution processing.

After applying graph convolution operations to capture neighboring information for
each node in the spatial dimension, this method utilizes one-dimensional time convolution
to aggregate information related to adjacent time points. This process involves sliding
a convolution kernel over the temporal axis to generate a feature map that reflects the
temporal information learned by the model. The feature map is then used to update the
node representations in the temporal dimension.

Xnew = ReLU
(
w5 ∗

(
ReLU

(
gθ ∗ GX̂ ∗))) ∈ RN×F×τ (20)

where w5 represents the convolution kernel in the time dimension, and the activation
function is ReLU. Xnew is not only the output of the temporal dimension convolution but
also the next layer of the input data.

3. Results and Discussion
3.1. Data Set

The input data for the model consists of toll collection data and road traffic flow
data from the Orange County region in the United States. The data utilized in this study
were obtained from two distinct sources: the Performance Measurement System (PeMS)
(available at https://pems.dot.ca.gov/, accessed on 21 January 2023) and The Toll Roads
of Orange County (available at https://www.thetollroads.com, accessed on 21 January
2023). The PeMS is an extensive database of traffic information collected in real-time
every 30 s by Caltrans on state highways across California, in addition to other Caltrans
and partner agency data sets. The data were aggregated into 5 min intervals from raw
data and encompass over 39,000 detectors installed in the major metropolitan areas of
California. The Toll Roads of Orange County is a website that provides comprehensive
road toll information for SR241, SR261, SR133, and SR73 in Orange County, California,
USA. To perform our experiments, we employed crawlers to acquire traffic data, including
the total flow and occupancy of 211 detectors in Orange County from the PeMS. Total flow
denotes the total number of vehicles that passed through the corresponding detectors in a
5 min period. The detectors installed in the PeMS measure the time taken for a vehicle to
pass over them, termed occupancy, which can be employed to calculate other performance
measures, such as speed and delay. Moreover, as shown in Figure 6, we manually combined
the road toll information as one of the node data with the total flow and occupancy. The
data in this study spanned from 4 July 2022 to 4 September 2022. We partitioned the data
into training, validation, and testing sets at a ratio of 6:2:2, respectively. Details of the data
set are shown in Table 2.

https://pems.dot.ca.gov/
https://www.thetollroads.com
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Table 2. Details of the data set.

Name Node Time Windows Node Data

PEMS—Orange County 211 17,856 Flow, Occupy, Price

3.2. Baseline

The performance of AASTGNet was verified by conducting experiments and compar-
ing it with other advanced models. The baselines included:

HA: Historical average, which predicts the traffic flow of the next period using the
historical average of previous periods, assuming traffic flow change is a periodic process;

VAR: Vector auto-regressive model, which is a variant of ARIMA (auto-regressive
integrated moving average model with a Kalman filter) that predicts subsequent data based
on previous data;

FC-LSTM [43]: Long short-term memory network with fully connected LSTM
hidden units;

DCRNN: Diffusion convolutional recurrent neural network, which models traffic
relations on a directed graph using diffusion convolutional and recurrent neural networks
(i.e., GRU and LSTM);

ASTGCN: Attention-based spatiotemporal graph convolutional network, which com-
bines graph convolution with spatial attention to extract spatial features and standard
convolution with temporal attention to extract temporal features;

AdapGL: An adaptive graph-learning algorithm for traffic prediction based on spa-
tiotemporal neural networks. It proposes a graph self-learning module that can be applied
to most graph convolutional traffic forecasting neural networks. The ASTGCN-based
AdapGLA was used as its representative.

3.3. Evaluation Metrics

Suppose y = y1, . . . , yn represents the ground truth, ŷ = ŷ1, . . . , ŷn represents the
predicted values, and Ω denotes the indices of observed samples; the metrics are defined
as follows.

Root-Mean-Square Error (RMSE):

RMSE(y, ŷi) =

√
1
|Ω| ∑

i∈Ω
(yi − ŷi)

2 (21)

Mean Absolute Error (MAE):

MAE(y, ŷi) =
1
|Ω| ∑

i∈Ω
|yi − ŷi| (22)
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Mean Absolute Percentage Error (MAPE):

MAPE(y, ŷi) =
1
|Ω| ∑

i∈Ω

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (23)

It is worth noting that the RMSE, MAPE, and MAE serve as evaluation metrics to
assess the similarity between predicted and actual values, each carrying distinct physical
meanings depending on their computation methods. The MAPE characterizes the average
relative error of the model’s traffic volume predictions at each node and is expressed as a
percentage. The MAE represents the model’s average absolute error in predicting traffic
volume at each node, measured in units such as vehicles. The RMSE effectively captures
the average absolute error in traffic volume predictions at each node, assigning higher
weights to larger error values. From a physical perspective, its unit is also in vehicles. In
terms of physical interpretation, its unit is also in vehicles. This section provides a unified
introduction to the units of evaluation metrics, and subsequent discussions will refrain
from further elaboration on this aspect.

All experiments use the traffic information in the last hour to forecast the traffic flow
over one hour in the future, i.e., S = T = 12. Adam with a learning rate of 0.001 was used
as the optimization method, and an early stop strategy was used to determine if the stop
criteria were met. M1 and M2 are set at 64, ε1 and ε2 are set as 1

2N , where N is the number
of nodes. The size of the Chebyshev polynomial k is set to 3, the kernel of the Chebyshev
polynomial and the kernel of the time convolution is set to 128, θP, and θq is set to 64. The
convolution kernel of w2 and w3 is set as 1× 1, The convolution kernel of w4 is set as 1× 12,
the output channels of w2 and w3 are set as 64, and the output channels of w4 is set as 6.
The number of spatiotemporal convolution blocks is set to 3. The batch size is set to 64.

In the training phase of the model, a noteworthy aspect is that the training of the
macroscopic graph structure is conducted independently of the other modules. From
the perspective of the paper’s design rationale, the microscopic and macroscopic graph
structures form an integrated whole. However, during model training, the self-learning
module for the microscopic graph and the spatiotemporal convolution module collectively
constitute the backbone network of the model, while the self-learning module for the
macroscopic graph operates as an independent branch. In each training iteration, the
macroscopic graph structure is generated based on the initial graph structure and the
self-learning module. Subsequently, the macroscopic graph structure, along with node
data, is fed into the backbone network of the model for training.

3.4. Experimental Results and Analysis

Table 3 demonstrates the predictive performance of AASTGNet, as well as the re-
maining various baselines. The results indicated that based on evaluation metrics, such
as the MAE, RMSE, and MAPE, AASTGNet exhibits higher accuracy compared to the
other models. Time series methods, such as the HA and VAR, demonstrate the lowest
overall performance, with the performance of the deep learning methods surpassing these
approaches. Within the realm of deep learning methods, the FC-LSTM exhibits inferior per-
formance compared to other models due to its failure to account for the spatial interactions
among node sensors. In contrast to the DCRNN and ASTGCN, AdapGLA demonstrates a
certain degree of improvement in predictive accuracy. This enhancement is attributed to the
utilization of graph self-learning methods during the construction of the graph structure,
allowing for the exploration of latent spatial relationships among nodes. AASTGNet has
enhanced the existing graph self-learning methods by incorporating node information and
generating the micro-level graph structure for the current moment. This improvement is
particularly beneficial for addressing sudden fluctuations in road traffic flow, resulting in
higher predictive performance.
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Table 3. Performance comparison of different methods for traffic flow prediction.

Model MAE RMSE MAPE (%)

HA 73 167.19 44.74
VAR 24.17 61.03 15.40

FC-LSTM 12.73 25.45 0.36
DCRNN 10.54 17.62 0.26
ASTGCN 10.18 17.05 0.27
AdapGLA 8.9728 15.1618 0.2552
AASTGNet 8.6204 14.0779 0.2402

Figure 7 illustrates the significant impact of a well-designed graph structure on the
performance of the model across each prediction period. As the prediction interval in-
creases, the ASTGCN and DCRNN are adversely affected by the inadequacy of the graph
structure in fully capturing the inter-node relationships, leading to fluctuating prediction
accuracy that even surpasses the FC-LSTM without spatial consideration. On the other
hand, AdapGLA demonstrates that modeling an appropriate macro-graph structure can
enhance the stability of the model in long-term prediction scenarios. Comparing the results
of AdapGLA with AASTGNet, we observe that the micro-graph structure plays a crucial
role in aiding the model to make more accurate predictions in each time interval. This
aligns with our initial design concept of capturing the dynamic changes in the inter-node
relationships through the micro-graph structure, thereby providing additional information
to the model for improved prediction at every step. The specific statistical significance
analysis can be found in Appendix A.
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the performance of each model in terms of MAE, MAPE, and RMSE at different time steps.

In Figure 8a, the model’s performance on toll nodes, which were nodes affected by
price changes due to the presence of toll stations nearby, was analyzed. The findings
revealed that AASTGNet outperformed other models in terms of accuracy on toll nodes,
indicating that our proposed model effectively captures the relationship between price
and traffic flow distribution on the road network. Moreover, in Figure 8b, the comparison
between AASTGNet and AdapGLA is presented. It is observed that AASTGNet achieves
higher accuracy than AdapGLA in each case. In particular, when the block size is set to
3, AASTGNet exhibits better performance with lower computation overhead. Notably,
increasing the block size from 2 to 3 leads to a significant improvement in the model’s
accuracy. On the other hand, AdapGLA’s performance remains relatively stable in normal
cases, with only a small improvement in REMS observed when the block size is increased
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from 3 to 4. However, this comes at a considerable computational cost. To ensure a
fair comparison between AdapGLA and AASTGNet, the block size was set to 3 for all
experiments in this study.
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son of different deep learning models under the premise that only nodes that are greatly affected
by price information are considered and (b) a performance comparison between AASTGNet and
AdapGLA when different numbers of spatiotemporal convolution blocks are set.

To further illustrate the advantages of AASTGNet over other models for traffic flow
prediction, we plot the prediction results of multiple models for the next hour at a node
against the ground truth in Figure 9. As depicted in Figure 9, the optimal graph structure,
benefitting from ample graph self-learning, demonstrates enhanced guidance for road traffic
flow prediction. Notably, both the red curve representing AASTGNet and the green curve
representing AdapGLA exhibit higher accuracy compared to other models. It is clearly
illustrated that in the face of sudden fluctuations, the green curve representing AdapGLA
fits the true curve relatively poorly, while the green curve representing AASTGNet has a
better fit in the face of sudden arriving peaks.
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4. Conclusions

In this research endeavor, we introduced and assessed AASTGNet, an advanced
model tailored for predicting traffic flow by leveraging toll collection and road traffic
data in Orange County, United States. The model’s architecture boasts a two-fold innova-
tion: a graph self-learning module for optimal graph construction and a spatiotemporal
graph convolutional neural network for precise traffic flow predictions. The following are
three main contributions:

(1) Optimal graph structure: AASTGNet pioneers a nuanced approach, amalgamating
macroscopic and microscopic graph structures. The model dynamically refines the
graph adjacency matrix, capturing intricate spatial relationships among traffic detectors;

(2) Micro-level graph adjacency matrix: The introduction of a micro-level graph structure,
utilizing node information for characterizing current traffic conditions, emerges as a
pivotal enhancement. This addition significantly addresses sudden fluctuations in
road traffic flow, enhancing predictive accuracy;

(3) Integration of price information: AASTGNet seamlessly integrates toll data with
traffic information, showcasing adaptability to scenarios influenced by toll stations.
The model excels in capturing the dynamic relationship between price changes and
traffic flow distribution, contributing to superior predictive accuracy.

While AASTGNet has improved in the area of traffic prediction, several avenues
beckon further exploration and enhancement:

(1) Investigating the integration of dynamic toll pricing models to enhance the adaptabil-
ity of the model to evolving toll schemes, this study explores potential patterns of
road toll status changes by extrapolating future adjustments in toll prices based on
the current tolling situation;

(2) Researching discerning indicators based on speed and traffic volume variations for
sudden road traffic congestion, this study employs fundamental principles from traffic
engineering to design control measures for managing sudden road traffic congestion.
The effectiveness of the proposed measures is validated through simulation or on-site
verification methods;

(3) Investigating factors beyond changes in toll prices that influence sudden alterations in
road traffic conditions, this study aims to enhance the model’s accuracy in predicting
unforeseen situations;

(4) The current model requires predicting future road traffic flow based on detection data
from node sensors. Enhancements to the model can be made on the input side to
accommodate a more diverse range of data.

In summary, AASTGNet emerges as a potent and versatile model for traffic flow
prediction, particularly in environments influenced by toll stations. Its innovative approach
to graph self-learning, coupled with the fusion of micro-level graph structures and price
information, establishes AASTGNet as a frontrunner in predictive accuracy. The model
holds promise for practical applications in traffic management and lays a solid foundation
for further advancements in spatiotemporal traffic prediction.
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Appendix A

This section provides additional details on the data presented in Table 3, focusing on
a statistical significance analysis by ANOVA and Tukey’s HSD tests based on the original
experimental data. The specific results are presented in Table A1. The null hypothesis assumes
no significant differences in performance among the models, while the alternative hypothesis
posits significant differences. If the alternative hypothesis holds, the “reject” value in the table
is True. The “meandiff” column indicates the mean difference, while “lower” and “upper”
represent the estimated range of mean differences. The data results indicate statistically
significant differences among the predictive outcomes of various models.

Table A1. Statistical significance analysis.

Model1 Model2 meandiff p-adj Lower Upper Reject

ASTGCN AdapGLA 1.0215 0 0.9168 1.1262 TRUE
ASTGCN AASTGNet 1.0444 0 0.9398 1.1491 TRUE
ASTGCN DCRNN −3.1472 0 −3.2517 −3.0427 TRUE
ASTGCN FC-LSTM 0.9515 0 0.8469 1.0562 TRUE
AdapGLA DCRNN −4.1687 0 −4.2732 −4.0642 TRUE
AASTGNet DCRNN −4.1916 0 −4.2961 −4.0871 TRUE

DCRNN FC-LSTM 4.0987 0 3.9942 4.2032 TRUE
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