# High-Speed Tracking Controller for Stable Power Control in Discontinuous Charging Systems

^{1}

^{2}

^{3}

^{4}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Transient High-Speed Controller

#### 2.1. Analysis of the Synchronous Buck Converter for Charging

#### 2.2. Transient High-Speed Current Controller Operation Concept

## 3. Proposed Control Method

#### Transient High-Speed Tracking Current Controller

## 4. Simulation and Experiment

#### 4.1. Simulation

_{s}.

#### 4.2. Experiment

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

THSC | transient high-speed current controller |

THSTC | transient high-speed tacking current controller |

$\Delta {T}_{total}$ | the target arrival time by calculating in THSC |

CSDB | current slope determination block |

$\Delta {T}_{est\_total}$ | the target arrival time by CSDB in THSTC |

$\Delta {T}_{est}$ | variable for increasing or decreasing $\Delta {T}_{est\_total}$ |

${T}_{r}$ | the remaining operation time of the THSTC block |

${T}_{s}$ | control time (equal to sampling time) |

$\Delta {T}_{s}$ | increases by ${T}_{s}$ every control cycle while the THSTC block is maintained |

$d{I}_{L\_dif}$ | the slope of the inductor current |

${k}_{c}$ | the current charging time point |

$\delta $ | small positive value |

## References

- Lau, K.K.L.; Chung, S.C.; Ren, C. Outdoor thermal comfort in different urban settings of sub-tropical high-density cities: An approach of adopting local climate zone (LCZ) classification. Build. Environ.
**2019**, 154, 227–238. [Google Scholar] [CrossRef] - Yuan, M.; Yin, C.; Sun, Y.; Chen, W. Examining the associations between urban built environment and noise pollution in high-density high-rise urban areas: A case study in Wuhan, China. Sustain. Cities Soc.
**2019**, 50, 101678. [Google Scholar] [CrossRef] - Qin, H.; Lin, P.; Lau, S.S.Y.; Song, D. Influence of site and tower types on urban natural ventilation performance in high-rise high-density urban environment. Build. Environ.
**2020**, 179, 106960. [Google Scholar] [CrossRef] - Hill, I.L.R.; Mangera, M.; Parshotam, D.S.; Panday, A.; Pedro, J.O. Genetic algorithm based design of pid and pdf controllers for velocity tracking of a high-rise building elevator. In Proceedings of the 2018 SICE International Symposium on Control Systems (SICE ISCS), Tokyo, Japan, 9–11 March 2018; pp. 136–143. [Google Scholar]
- Zhang, H.; Zhang, R.; He, Q.; Liu, L. Variable universe fuzzy control of high-speed elevator horizontal vibration based on firefly algorithm and backpropagation fuzzy neural network. IEEE Access
**2021**, 9, 57020–57032. [Google Scholar] [CrossRef] - Peng, Q.; Xu, P.; Yuan, H.; Ma, H.; Xue, J.; He, Z.; Li, S. Analysis of vibration monitoring data of flexible suspension lifting structure based on time-varying theory. Sensors
**2020**, 20, 6586. [Google Scholar] [CrossRef] - Al-Kodmany, K. Elevator technology improvements: A snapshot. Encyclopedia
**2023**, 3, 530–548. [Google Scholar] [CrossRef] - Ballester, C.; Copaci, D.; Arias, J.; Moreno, L.; Blanco, D. Hoist-based shape memory alloy actuator with multiple wires for high-displacement applications. Actuators
**2023**, 12, 159. [Google Scholar] [CrossRef] - Qiu, L.; He, C.; Yi, G.; Zhang, S.; Wang, Y.; Rao, Y.; Zhang, L. Energy-based vibration modeling and solution of high-speed elevators considering the multi-direction coupling property. Energies
**2020**, 13, 4821. [Google Scholar] [CrossRef] - Peng, Q.; Jiang, A.; Yuan, H.; Huang, G.; He, S.; Li, S. Study on theoretical model and test method of vertical vibration of elevator traction system. Math. Probl. Eng.
**2020**, 2020, 8518024. [Google Scholar] [CrossRef] - Wang, G.; Wang, B.; Li, C.; Xu, D. Weight-transducerless control strategy based on active disturbance rejection theory for gearless elevator drives. IET Electr. Power Appl.
**2017**, 11, 289–299. [Google Scholar] [CrossRef] - Zhang, Q.; Yang, Y.H.; Hou, T.; Zhang, R.J. Dynamic analysis of high-speed traction elevator and traction car–rope time-varying system. Noise Vib. Worldw.
**2019**, 50, 37–45. [Google Scholar] [CrossRef] - Zhang, Q.; Hou, T.; Zhang, R.J.; Liu, J. Time-varying characteristics of the longitudinal vibration of a high-speed traction elevator lifting system. Int. J. Acoust. Vib.
**2019**, 25, 153–161. [Google Scholar] [CrossRef] - Anghelache, G.; Nastac, S. Computational analysis of nonlinearities within dynamics of cable-based driving systems. IOP Conf. Ser. Mater. Sci. Eng.
**2020**, 227, 012007. [Google Scholar] [CrossRef] - Kumar, R.S.; Swaminathan, G.; Loganathan, G.B. Design and analysis of composite belt for high rise elevators. Mater. Today Proc.
**2020**, 22, 663–672. [Google Scholar] [CrossRef] - Zhao, B.; Quan, Z.; Li, Y.W.; Quan, L.; Hao, Y.; Ding, L. A hybrid driven elevator system with energy regeneration and safety enhancement. IEEE Trans. Ind. Electron.
**2019**, 67, 7715–7726. [Google Scholar] [CrossRef] - Kermani, M.; Shirdare, E.; Abbasi, S.; Parise, G.; Martirano, L. Elevator regenerative energy applications with ultracapacitor and battery energy storage systems in complex buildings. Energies
**2021**, 14, 3259. [Google Scholar] [CrossRef] - Jabbour, N.; Mademlis, C. Supercapacitor-based energy recovery system with improved power control and energy management for elevator applications. IEEE Trans. Power Electron.
**2017**, 32, 9389–9399. [Google Scholar] [CrossRef] - Yao, Y.; Sun, Z.; Yang, G.; Liu, W.; Prapamonthon, P. Analysis of aerodynamic noise characteristics of high-speed train pantograph with different installation bases. Appl. Sci.
**2019**, 9, 2332. [Google Scholar] [CrossRef] - Mariscotti, A.; Sandrolini, L. Detection of harmonic overvoltage and resonance in AC railways using measured pantograph electrical quantities. Energies
**2021**, 14, 5645. [Google Scholar] [CrossRef] - Raviraj, V.S.C.; Sen, P.C. Comparative study of proportional-integral, sliding mode, and fuzzy logic controllers for power converters. IEEE Trans. Ind. Appl.
**1997**, 33, 518–524. [Google Scholar] [CrossRef] - Wu, G.; Sun, L.; Lee, K.Y. Disturbance rejection control of a fuel cell power plant in a grid-connected system. Control Eng. Pract.
**2017**, 60, 183–192. [Google Scholar] [CrossRef] - Alhejji, A.; Mosaad, M.I. Performance enhancement of grid-connected PV systems using adaptive reference PI controller. Ain Shams Eng. J.
**2021**, 12, 541–554. [Google Scholar] [CrossRef] - Mobayen, S.; Bayat, F.; Lai, C.C.; Taheri, A.; Fekih, A. Adaptive global sliding mode controller design for perturbed DC-DC buck converters. Energies
**2021**, 14, 1249. [Google Scholar] [CrossRef] - Muñoz-Cruzado-Alba, J.; Villegas-Núñez, J.; Vite-Frías, J.A.; Carrasco Solís, J.M. Adaptive global sliding mode controller design for perturbed DC-DC buck converters. Energies
**2015**, 9, 1. [Google Scholar] [CrossRef] - Bibian, S.; Jin, H. High performance predictive dead-beat digital controller for DC power supplies. IEEE Trans. Power Electron.
**2002**, 17, 420–427. [Google Scholar] [CrossRef] - Rubio, J.; Figueroa, M.; Pérez Cruz, J.H.; Yoe Rumbo, J. Control para estabilizar y atenuar las perturbaciones en un péndulo invertido rotatorio. Rev. Mex. Física
**2012**, 58, 107–112. [Google Scholar] - Sorcia-Vázquez, F.D.J.; Garcia-Beltran, C.D.; Valencia-Palomo, G.; Brizuela-Mendoza, J.A.; Rumbo-Morales, J.Y. Decentralized robust tube-based model predictive control: Application to a four-tank-system. Rev. Mex. Ing. Química
**2020**, 19, 1135–1151. [Google Scholar] [CrossRef] - Lee, J.H.; Park, S.J.; Lim, S.K. High-Speed Controller to Enhance Responsiveness and Stability of Dynamic Characteristics for DC-DC Converter. IEEE Trans. Ind. Electron.
**2023**, 71, 3996–4005. [Google Scholar] [CrossRef] - Zhang, J.; He, Y.; Hang, L. A novel interleaved parallel cascaded three-level pfc with low inductance volt-second and low common-mode noise. IEEE Trans. Power Electron.
**2022**, 38, 17–21. [Google Scholar] [CrossRef] - Chen, H.; Sun, K.; Lu, L.; Wang, S.; Ouyang, M. A constant current control method with improved dynamic performance for cllc converters. IEEE Trans. Power Electron.
**2022**, 37, 1509–1523. [Google Scholar] [CrossRef] - Hou, N.; Hu, J.; Mou, D.; Zhang, Y.; Li, Y.W.; De Doncker, R.W. A simple DC-offset eliminating method of the series-inductance current for the dab DC–DC converter. IEEE Trans. Power Electron.
**2022**, 38, 4224–4228. [Google Scholar] [CrossRef] - Suh, J.-D.; Seok, J.; Kong, B.-S. A fast response pwm buck converter with active ramp tracking control in a load transient period. IEEE Trans. Circuits Syst. II Express Briefs
**2018**, 66, 467–471. [Google Scholar] [CrossRef] - Chen, J.J.; Hwang, Y.S.; Jiang, W.M.; Lai, C.H.; Ku, J. A new improved ultra-fast-response low-transient-voltage buck converter with transient-acceleration loops and V-cubic techniques. IEEE Access
**2022**, 10, 3601–3607. [Google Scholar] [CrossRef] - Yanarates, C.; Zhou, Z. Design and cascade pi controller-based robust model reference adaptive control of DC-DC boost converter. IEEE Access
**2022**, 10, 44909–44922. [Google Scholar] [CrossRef] - Tang, Y.; Tian, Z.; Zha, X.; Li, X.; Huang, M.; Sun, J. An improved equal area criterion for transient stability analysis of converter-based microgrid considering nonlinear damping effect. IEEE Trans. Power Electron.
**2022**, 37, 11272–11284. [Google Scholar] [CrossRef] - Wang, L.; Pei, Y.; Yang, X.; Qin, Y.; Wang, Z. Improving light and intermediate load efficiencies of buck converters with planar nonlinear inductors and variable on time control. IEEE Trans. Power Electron.
**2011**, 27, 342–353. [Google Scholar] [CrossRef] - Mastromauro, R.A.; Liserre, M.; Dell’Aquila, A. Study of the effects of inductor nonlinear behavior on the performance of current controllers for single-phase PV grid converters. IEEE Trans. Ind. Electron.
**2008**, 55, 2043–2052. [Google Scholar] [CrossRef]

**Figure 14.**Two controller simulation results according to inductor change. (

**a**) Change in characteristics of 2 controllers over the charge cycle after the inductor change. (

**b**) Waveforms of the first and last results zoomed in for 3 ms.

**Figure 16.**Transient state waveform at the 1st charge cycle: (

**a**) timebase: 5 ms/div; (

**b**) timebase: 500 μs/div.

**Figure 17.**Transient state waveform of the charge cycle with an optimized ${T}_{est\_total}$: (

**a**) timebase: 5 ms/div; (

**b**) timebase: 500 μs/div.

**Figure 18.**Changes in the transient state waveform with an increasing charge cycle: (

**a**) first cycle (timebase: 1 s/div (zoom 10 ms/div)); (

**b**) fourth cycle (timebase: 1 s/div (zoom 10 ms/div)); (

**c**) eight cycles (timebase: 1 s/div (zoom 10 ms/div)).

Note | Symbol | Value |
---|---|---|

Buck converter input voltage | ${V}_{in}$ | 48 V |

Battery voltage | ${V}_{bat}$ | 28 V |

Current command value | ${I}_{ref}$ | 16 A |

Inductor’s inductance | L | 760 μH |

Switching frequency | ${f}_{s}$ | 20 kHz |

System proportional gain | ${k}_{p}$ | 0.004 |

System integral gain | ${k}_{i}$ | 0.04 |

Charging cycle | ${T}_{c\_c}$ | 20 ms |

Note | Symbol | Value |
---|---|---|

Buck converter input voltage | ${V}_{in}$ | 48 V |

Battery voltage | ${V}_{bat}$ | 27 to 29 V |

Current command value | ${I}_{ref}$ | 5 to 16.5 A |

Inductor’s inductance | L | 760 μH |

Switching frequency | ${f}_{s}$ | 20 kHz |

System proportional gain | ${k}_{p}$ | 0.001 |

System integral gain | ${k}_{i}$ | 0.02 |

Charging cycle | ${T}_{c\_c}$ | 500 ms |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Lim, S.-K.; Park, J.-H.; Jun, H.-S.; Hwang, K.-B.; Hwangbo, C.; Lee, J.-H.
High-Speed Tracking Controller for Stable Power Control in Discontinuous Charging Systems. *Electronics* **2024**, *13*, 183.
https://doi.org/10.3390/electronics13010183

**AMA Style**

Lim S-K, Park J-H, Jun H-S, Hwang K-B, Hwangbo C, Lee J-H.
High-Speed Tracking Controller for Stable Power Control in Discontinuous Charging Systems. *Electronics*. 2024; 13(1):183.
https://doi.org/10.3390/electronics13010183

**Chicago/Turabian Style**

Lim, Sang-Kil, Jin-Hyun Park, Hyang-Sig Jun, Kwang-Bok Hwang, Chan Hwangbo, and Jung-Hwan Lee.
2024. "High-Speed Tracking Controller for Stable Power Control in Discontinuous Charging Systems" *Electronics* 13, no. 1: 183.
https://doi.org/10.3390/electronics13010183